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Abstract

Stream Processing Systems (SPSs) dynamically process input events. Since

the input is usually not a constant flow, presenting rate fluctuations, many

works in the literature propose to dynamically replicate SPS operators, aim-

ing at reducing the processing bottleneck induced by such fluctuations. How-

ever, these SPSs do not consider the problem of load balancing of the replicas

or the cost involved in reconfiguring the system whenever the number of repli-

cas changes. We present in this paper a predictive model which, based on

input rate variation, execution time of operators, and queued events, dy-

namically defines the necessary current number of replicas of each operator.

A predictor, composed of different models (i.e., mathematical and Machine

Learning ones), predicts the input rate. We also propose a Storm-based SPS,

named PA-SPS, which uses such a predictive model, not requiring reboot re-

configuration when the number of operators replica change. PA-SPS also

implements a load balancer that distributes incoming events evenly among
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replicas of an operator. We have conducted experiments on Google Cloud

Platform (GCP) for evaluation PA-SPS using real traffic traces of different

applications and also compared it with Storm and other existing SPSs.

Keywords: Big Data, Distributed Stream processing, Self-Adaptive

System, Dynamic Traffic, Predictive Algorithm, Google Cloud Platform

1. Introduction

The amount of data produced by current Web-based systems or applica-

tions is increasing rapidly due to extensive user interactions (e.g. real-time

stock trades, multiplayer game iterations, Twitter streaming data, etc.). As

a result, there is a growing demand, including in trading, security, and re-

search areas, for systems that can process such data in real-time and deliver

helpful information results in short amount of time [1]. Since Stream Pro-

cessing Systems (SPSs) fulfill these needs, and have been widely used to this

end [2]. The goal of an SPS is to process the most of information (number

of events) in order to provide high quality of results.

Numerous SPSs are based on directed acyclic graphs (DAGs) whose ver-

tices and unidirectional edges correspond to operators and event data flows

[3] respectively. An external source continuously provides data. Light pro-

gramming tasks (like filters, counters, storage, etc.) are handled by operators

that quickly and in pipeline-style process the data (events). In a processing

infrastructure (e.g. clusters, clouds, etc.), resources (e.g., VMs) are allocated

to execute the operators which are frequently replicated for performance rea-

sons. In most existing SPSs, the number of replicas per operator is predeter-

mined at initialization and remains constant throughout system operation.

2



However, the dynamic nature of data flows, which exhibit input rate fluc-

tuations, may cause bottlenecks in the processing of events. Unexpected

traffic upward spikes may overburden some operators, increasing the overall

processing time. To solve this problem, more replicas of the operators are

required, aiming at increasing throughput and thus mitigating the loss of

events. We point out that for some applications (e.g. bank fraud detection,

mitigation in natural disasters), this loss is critical. Nevertheless, a high

fixed number of replicas can degrade performance since physical resources

are limited. Consequently, the greater the number of operator replicas, the

higher the concurrent race among threads.

In [4], the authors present a performance degradation evaluation study

based on the number of replicas in SPar [5]. On the other hand, downward

spikes can cause resources to become underloaded. In this case, fewer replicas

should be allocated to avoid the waste of resources.

Operator’s grouping technique, which defines how a stream should be

partitioned among the operators, is another crucial decision of SPSs. For

instance, shuffle grouping is the most common used. However, the latter

does not consider the replica’s load state, i.e., current events in the queue

waiting to be processed [6], not ensuring, therefore, load balance among the

replicas.

This article proposes a predictive DAG-based SPS, named PA-SPS, for

stateless operators and skewed data stream environments. PA-SPS is an ex-

tension of the well-known SPS Storm1. It dynamically allocates the optimal

number of replicas per operator necessary to process the input stream, defin-

1https://storm.apache.org/
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ing the events that each operator O should process within a time interval. In

order to predict the input stream and analyze the system’s potential future

behavior, we propose a predictive model, integrated to PA-SPS. By consid-

ering both (1) the events sent to an O by its direct operator predecessors as

well as those from earlier time intervals that O could not process at the time,

therefore kept in a queue and (2) event execution time, the ideal number

of O’s replicas for processing these events at each interval is deduced. As a

result, the number of O’s replicas changes over time depending on the input

rate. Complementary to this approach, we propose a new grouping method

which takes into account the input load of operator replicas.

Experiments on the Google Cloud Platform (GCP) have been carried out

with applications that process Twitter streams, DNS traffic, or system log

stream traces. We have evaluated PA-SPS with different configurations and

compared it with the original implementation of Storm as well as the state

of the art works like SPS DABS-Storm [7] and PSPS [8]. Results related to

metrics such as latency, resource utilization, the number of processed events,

and error estimation, are presented and discussed in this article.

Sections are organized as follows. Some SPS concepts and definitions

are compiled in Section 2. Our solution is presented in Section 3. Results

of experiments performed on GCP are presented and discussed in Section

4. Section 5 summarizes some existing work related to adaptive SPS using

predictive models. Finally, Section 6 concludes the article, also presenting

some future directions.
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2. Stream processing systems

Processing large amounts of data in real-time is the aim of SPS, according

to [9]. A DAG represents SPS processing logic. Each vertex in the DAG

stands for a different operator in the SPS, and the unidirectional edges stand

for the data flow. Typically, an operator is a simple task (e.g., counting,

filtering, merging, etc.) that receives one or more data flows, processes them,

and then sends the transformed data over its output DAG edges. There are

two types of operators: stateless and stateful.

While the latter maintains a state based on previously processed events,

the former handles each event independently from those before it. As a result,

past events can affect how current events are processed.

Additionally, each operator replica is connected to a thread, and an op-

erator may have multiple replicas. They can therefore process the data con-

currently. A data source provides the raw data stream for the operators to

process over the DAG. Raw data are homogeneous [10], i.e., a collection of

key-value-identified structures (tuples).

When there are replicas, the data flow is divided and distributed among

them. For instance, the Field Grouping approach uses the tuple’s key to

choose which replica will receive it instead of the Shuffle Grouping approach,

which sends tuples to each replica randomly.

The disadvantage of the shuffle strategy is that load balance may not be

achieved. Other existing SPS offer hash-based data partition [11], partial-

key based [12], or executor-centric [13] solutions to deal with the distribution

problem.

An SPS logical design (DAG) example with an input data source, three
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replicated operators, and three edges is shown in Figure 1(a). The source

provides the operator O1 with the raw data by partitioning the stream data

input and sending it to each of O1’s replicas. Following data processing, O1

transmits the processed data to O2, its neighbor downstream in the DAG.

Based on the grouping technique, each operator processes the data sent to

them and then sends the processed output data to the next. In the absence

of an adjacent neighbor, data flow is stopped. O3 is the final operator to

process the data in the figure.

For physical execution, the processing logic (DAG) must be mapped to

nodes (machines, cores, or virtual machines) of a distributed platform like a

Grid, Cluster, or Cloud. The scheduling algorithm carries out the mapping.

Problems with load balance could occur during this process. For instance,

there is no assurance that the workload will be evenly distributed among the

operators when a random policy is used (as Storm does), as one operator may

be more complex than another and machine resources may be heterogeneous

[14]. Unbalance problems can occur even with homogeneous computation

nodes [15]. Figure 1 show an example of mapping a DAG to physical resources

(VMs of a cluster).

2.1. Storm

In this work, we extend the well-known SPS Apache Storm [16]. The

latter is an SPS framework implemented in Java that enables the process-

ing of unbounded data flows. In Storm, a processing application is denoted

as topology which has three different types of components: Streams, Spouts,

and Bolts. According to the DAG model, operators share Streams or data

flows (composed of key-value tuples). Spouts are in charge of gathering the
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(a) SPS logical architecture.
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(b) SPS physical architecture.

Figure 1: Mapping processing DAG to physical resources.

topology’s input data from external sources. They organize the tuples before

sending them through one or more Streams to the following topology ele-

ments. The operators are called Bolts and they can can send the processed

tuples through one or more Streams much like Spouts can. At run-time, sev-

eral threads, denoted executors, which are instances of the operators, execute

the topology operators.

A Storm cluster comprises a master node, called Nimbus, and Supervisor

nodes. The latter provides a fixed number of processes, called workers, that

run executors. Nimbus is responsible for distributing the application code

across the cluster, scheduling executors to available workers, collecting the

statistics, monitoring the state of nodes, and detecting failures. Moreover, a

distributed coordination service called Zookeeper [17] enables communication

among Storm’s cluster nodes.

3. PA-SPS Overview

A self-adaptive stream processing system is expected to support high

throughput, low latency, and scalability while ensuring the completeness of
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the results. We thus propose a self-adaptive elastic stream processing system,

denoted PA-SPS, an extended version of Apache Storm, that dynamically

adapts itself in order to cope with highly variable input rate environments.

Based on the MAPE control loop, PA-SPS monitors and predicts input rate

behaviour, adapting its processing logic even in presence of stream up-spikes

(or down-spikes).

PA-SPS’s architecture comprises three components: an adaptive SPS, the

input predictive model, and the MAPE control loop. Figure 2 presents the

architecture of our solution:

Adaptive SPS

O1.1

O2.1

O2.2 O3.1

O2.3

Input
Data Memory

Monitor Analysis Plan Execute
Control loop

Predictor

Figure 2: PA-SPS Architecture.

3.1. Adaptive SPS

Most SPS cannot re-configure itself at runtime, requiring expert knowl-

edge to configure the system’s processing resources according to the environ-

ment requirements. Highly variable input rate environments may induce re-

source over-provisioning, wasting processing resources, or under-provisioning,

which may induce the loss of event processing.
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In order to handle such scenarios, PA-SPS can dynamically allocate/deallocate

operators’ replicas at runtime. Such an elasticity enables PA-SPS to adapt

its processing logic, optimizing resource usage while minimizing event loss.

PA-SPS exploits two mechanisms that do not exist in the original Storm:

a pool of replicas and a load-aware grouping strategy. The first one attempts

to reduce adaptation reaction delay, reducing, therefore, event processing

latency. Apache Storm’s original version provides a rebalancing feature to

reallocate the number of executors for a bolt. However, this action involves

system downtime, loss of messages, and increasing end-to-end latency. The

second mechanism handles operators’ replicas event distribution. Grouping

strategies in Storm define how events are distributed among operators. Due

to the heterogeneous nature of the processing resources and operators’ tasks

complexity, balance issues may occur, creating bottlenecks and increasing

latency.

3.1.1. Pool of replicas

At initialization, PA-SPS assigns, for each operator, a pool of replicas

deployed by the scheduler. Replicas can be either in active or inactive state.

The state of a replica can be modified at runtime. An inactive (resp., active)

replica consumes negligible (resp., non negligible) CPU power and can be

dynamically activated (resp., deactivated) whenever the prediction model of

the system detects the need for increasing (resp., decreasing) the replicas for

the operator in question. Thus, based on the number of available cores by

VMs and the fact that, in general, each replica is associated with a thread, it

is possible to set the size of pool. Figure 3(a) and 3(b) consider a DAG with

operators OA and OB and their respective pool of replicas. In Figure 3(a)
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there is only one active replica per operator, while in Figure 3(b), a inactive

replica of OA has been activated.

OA.1

OA.2

OA.3

OA.p

Input 
data

OB.1

OB.2

OB.3

OB.p

(a) One active replica per operator.

OA.1

OA.2

OA.3

OA.p

Input 
data

OB.1

OB.2

OB.3

OB.p

(b) Per operator replica pool example.

Figure 3: Example of pool replicas.

Because of its simplicity, performance results showed that the pool of

replica is very effective, since PA-SPS is self-adaptive at runtime at a negli-

gible cost, as evaluated and discussed in [18].

3.1.2. Load-Aware Grouping

A grouping technique specifies how a stream (tuples) should be parti-

tioned among operators. Using traditional methods like shuffle grouping,

tuples are randomly distributed across operators, ensuring that each opera-

tor receives an equal number of tuples. Due to the complexity of the tasks or

the heterogeneous nature of the processing resources, load balance issues may

occur. In this case, while pending events are still in the processing queue,

new events can go on arriving.

Ui.j(t) =
µi.j(t)× eti

td
(1)

To overcome this problem, we propose a load-aware grouping strategy.

The load-aware grouping considers the load state of active replicas in terms
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of µi.j(t), i.e., the number of events processed by replica j of an operator

i during a time interval t, eti, the average execution time of one event at

operator i, and td, the time interval duration. Note that we define a replica

j of an operator i as Oi.j.

Therefore, the proportional distribution of events considers the current

utilization of active replicas. The utilization is computed following Equation

1, where U ranges between 0 and 1. A 0 and 1 values represent 0% and

100% utilization of the replica respectively. If all replicas present the same

utilization value, events are sent in a round-robin fashion. Otherwise, events

will be assigned to the replica with the lowest load.

Algorithm 1 shows the pseudo-code of the load-aware grouping technique.

Algorithm 1 Load-Aware grouping for operator Oi.

Require: Statistics of ri replicas of Oi in interval t.
Ensure: Replica Oi.m that should process the event.
1: m← 0
2: for j : 1→ ri do
3: if Ui.j < Ui.m then
4: m← j
5: end if
6: end for
7: if Ui.m = 1 then
8: m← getReplicaRoundRobin(Oi)
9: else

10: Ui.m ← Ui.m + eti
td

11: end if
12: sendEvent(Oi.m)
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3.2. Predictive model

Under highly variable input rate environments, input prediction is crucial

in order to adapt the system processing logic over the time, which will keep

events flowing, ensuring accurate results. In our proposal we use a prediction

model for the estimation the optimal number of replicas for a given operator

in the DAG. Table 1 summarizes all the parameter’s notations used in our

predictive model.

ri(t+ 1) =
λ̂i(t+ 1)× eti

td
(2)

λ̂i(t+ 1) = λ̂r
i (t+ 1) + λ̂q

i (t+ 1) (3)

λ̂r
i (t+ 1) = λ̂G(t+ 1)× θi(t) (4)

θi(t) =
∑

p∈pred(Oi)

θpi (t)× θp(t) (5)

θpi (t) =
λp
i (t)

µp(t)
(6)

λ̂q
i (t+ 1) = |qi(t)|+

∑
p∈pred(Oi)

λ̂q
p(t+ 1)× θp(t) (7)

The model estimates how many active replicas would be necessary for

operator Oi to process input data estimation for the next time interval t+ 1

(λ̂i(t+1)). It considers the processing capacity of Oi as the average execution

time of one event at the operator (eti). Note that the value of eti for each

operator is computed with a benchmark before the deploy of the application.

At the end of each interval, the number of replicas is calculated following

Equation 2. We point out that since prediction of an operator’s number of
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Parameter Description
Oi operator i
t time interval number
td time interval duration
eti average execution time of one event by Oi

qi(t) queue of events received and not processed by Oi at the end of t
λG(t) number of events sent by input data during t
λr
i (t) number of events received by Oi during t

λp
i (t) number of events received by Oi sent from Op during t

µi(t) number of events processed by Oi during t
θx(t) percentage of events processed of λG(t) by Ox during t
Op

i predecessor operator of Oi in the SPS DAG
θpi (t) percentage of events produced by Op

i sent to Oi during t

λ̂G(t+ 1) predicted number of events sent by input data during t+ 1

λ̂i(t+ 1) predicted number of events to process by Oi during t+ 1

λ̂r
i (t+ 1) predicted number of events received by Oi during t+ 1

λ̂q
i (t+ 1) predicted number of queued events to be processed by Oi during t+ 1
ri(t+ 1) number of replicas of Oi computed at the end of t

Table 1: Parameters notation and their description.

replicas depends on multiple factors, dynamically determining it is not trivial.

We model the calculus of this complex problem based on the previously

equations. In order to simplify its understanding, we present some examples

of how they are used in our model.

Let us consider that the time interval duration (td) equals 1000 ms. Fig-

ure 4 shows an example composed by three independent operators (O1, O2,

and O3) which have different event execution time eti. By prediction, they

will receive the same number of events λ̂i(t + 1). In the figure scenario, at

the beginning of t, all the three operators have two replicas. However, due

to eti’s differences, Equation 2 will render r1(t + 1) = 2, r2(t + 1) = 1,

and r3(t + 1) = 4 at the end of t. Such results inform that the number of
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O1’s active replicas should not change but that of O2 (resp., O3) is overes-

timated (resp., underestimated) and should be reduced (resp., increased) to

one (resp., four). Note that arriving events λ̂i(t) will be distributed among

the active replicas ri(t) of Oi by applying our grouping policy presented in

Section 3.1.2. The value of λ̂i(t + 1) is determined by Equation 3, which in

turn is determined by Equation 4 and 7.

O1 O2 O3O1 O2 O3

 

 

 

 

 

 

Figure 4: Example of the number of replicas calculation, according Equation 2.

In most SPS, the processing logic is represented by a DAG. The latter

establishes a dependency condition where operators share a stream of events

according to their location in the DAG. For example, let’s use a linear DAG

with two operators (see Figure 5), O1 and O2, and their respective values of

λr
i (t) and µi(t) (see Table 1). µ1(t) and λr

2(t) are equal since operator O1 has

sent all the events it has processed to its single successor O2. If i is the initial

single DAG operator, then λr
p(t) equals λG(t) (λ

r
1(t) equals λG(t)). Note that

the increase of Op’s number of active replicas at the end of the interval t has

a direct impact in Op’s successors, since, in this case, µp(t+1) increases and

thus, λr
i (t+1) too, inducing a domino effect that the prediction formulations

should avoid. For example, in Figure 5, if µ1(t + 1) increased from 5 to 10

events due to replication of O1 at the end of t, λr
2(t + 1) would increase as

well. Hence, if the operators process all received events during t+1, we have
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that λG(t + 1) = λr
1(t + 1) = µ1(t + 1) = λr

2(t + 1) and, consequently, all

operators Oi are dependent on λG(t).

Input 
Data

O1 O2

Figure 5: DAG operators dependence example.

The above example is a borderline case. In SPS DAG, not always, all

the output processed events of Op
i , the predecessor operator of Oi, will be

sent to Oi. It might happen that Op
i splits, filters, or replicates the events

into several streams, sending each of them to one of its different successor

operators in the DAG.

The θpi parameter tackles this issue by informing the percentage of pro-

cessed events of Op
i sent to Oi. The latter is calculated by Equation 5 for

each operator. Figure 6 shows a DAG example and a θpi value estimated

following Equation 5. Notice that given the dependence between the opera-

tors, it is necessary to start from the initial operator downstream to the last

one. Since θ1 is equal to 1, O1 receives all the events sent from the input

and then splits them among O2 and O3. In this case, the two operators do

not receive all the events from their respective predecessor, O1 in this case;

therefore θ12 and θ13 have values 0.7 and 0.3 respectively. Finally, operator O4

receives events from its predecessor operators O2 and O3. However, O2 does

not send all its processed events to O4, but only θ24 = 0.4, unlike O3 which

sends all processed events to O4 (θ24 = 1). The value of θ4 is, therefore, 0.58,

according to Equation 6.
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O1

O2

O3
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Input
Data

O1 O2 O3 O4

λ̂r
i (t+ 1) 100 70 30 58

Figure 6: DAG example of predicted received number of events according to Equation 4.

For the input prediction we apply Equation 4. λ̂G(t + 1) is obtained by

predicting the number of input events sends during t + 1. The observation

window was set to one second. The number of samples was one hundred, so

as to be statistically representative and not degrade the response time of the

adaptation [19]. For prediction, an asynchronous system based on REST API

was implemented in Python, in which it is possible to use different predictive

models. The chosen models are the following:

• Basic: considers that the input data values during t + 1 will behave

the same way as they did during t. This model was used in [8].

• LR: uses a simple linear regression similar to the one presented in [20].

• FFT : Fast Fourier Transform decomposes functions depending on space

or time into functions depending on frequency. It allows to predict

the input data by modeling its behavior as a time series [21]. The
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parameters values are equal to those for defects2 in the Darts library

[22].

• ANN : uses a neural network regression model, specifically a Multi-

Layer Perceptron (MLP). It implements a MLP algorithm for training

and testing data sets using backpropagation and stochastic gradient

descent methods [23]. The parameters values are equal to those for

defects3 in Scikit-learn library [24].

• RF : Random Forest combines ensemble learning methods with the de-

cision tree framework to create multiple randomly drawn decision trees

from the data. [25]. The parameters values are equal to those for

defects4 in Scikit-learn library [24].

Finally, we should consider the events received and not processed during

t by Oi which are kept in qi(t). Hence, the number of input events λ̂i(t+ 1)

that Oi should actually process in t is composed not only of received events

λ̂r
i (t + 1) but also of the events queued in Oi and its predecessor operators

Oi
p due to the domino effect on the DAG. For this reason, we have defined

λ̂q
i (t+1) that represents the number of events queued inOi and the percentage

of queued events that will be sent by its predecessor operators Op
i during t.

For the definition of Equation 7, we have considered that there is one queue

per operator.

2https://unit8co.github.io/darts/generated_api/darts.models.

forecasting.fft.html
3https://scikit-learn.org/stable/modules/generated/sklearn.neural_

network.MLPRegressor.html
4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html
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3.3. MAPE Control Loop

Monitoring, Analysis, Planning, and Execution is referred to as the MAPE

control loop. This model is exploited in most autonomic systems. By repeat-

ing these four steps, the system can detect issues throughout the capture of

data and its analysis. If a problem is found, a strategy is developed to ad-

dress the issue and then executed. The MAPE control loop brings the system

autonomic features such as self-configuration and self-optimization.

In our system, the MAPE model integrates the before-mentioned compo-

nents where each of the four MAPE modules performs the following tasks:

1. Monitor: module in charge of collecting statistics from the DAG. At a

predefined time interval, the monitor requests the values of λi(t), eti,

and the number of queued events qi.

2. Analysis: The module analyzes input data and predicts its behavior

following Equation 3 and 7. Note that the analysis is performed for

each operator in the DAG.

3. Plan: Based on the previous analysis and the current number of ac-

tive replicas of an operator, the module defines whether it is neces-

sary to modify the operator’s current number. Algorithm 2 shows the

pseudo-code of the Plan module, responsible for increasing/decreasing

the current number of active replicas, if necessary. The getReplicas(Oi)

function returns the current active replicas of Oi.

4. Execute: module in charge of carrying out the change in an operator’s

current number of replicas, if required by the Plan module.
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Algorithm 2 Adaptive Plan algorithm for operator Oi.

Require: Statistics Operator Oi in time interval t.
Ensure: Modifying the current number of active replicas of operator Oi.
1: ri(t+ 1)← computeReplicas(λ̂i(t+ 1) , eti, td)
2: ki ← ri(t+ 1) - getReplicas(Oi)
3: if ki > 0 then
4: Add ki active replicas to Oi

5: else if ki < 0 then
6: Remove ki active replicas from Oi

7: end if

4. Performance Evaluation

This section presents performance results related to the evaluation of PA-

SPS and its ability to adapt to the dynamics of the event stream without

degrading the rate of processed events. In Section 4.1, we introduce our

system settings and the use-case application which analyses tweet streaming.

The implementation code is available in a public repository5.

Evaluation experiments consist of five steps: (1) an analysis of predictive

models (Section 4.2); (2) a comparison of PA-SPS with the original Storm,

using a fixed number of replicas (Section 4.3) as well as with (3) the two

predictive SPSs DABS-Storm and PSPS, respectively proposed in [7] and [8]

(Section 4.4); (4) experiments with a complex application (Section 4.5) and

finally (5) with other input stream rather than tweet stream (Section 4.6).

4.1. Experiment Environment

Experiments were conducted over the Google Cloud Platform (GCP) em-

ploying eleven Virtual Machines (VMs): three in charge of Zookeeper, seven

5https://github.com/dwladdimiroc/sps-storm
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as Supervisor nodes, and one for running both the Nimbus and PA-SPS.

Three types of machines were used: a n1-standard-1 (1 CPU, 2.2 GHz, 3.75

GB of RAM) machine for hosting Zookeeper VMs, a n1-standard-4 (4 CPU,

2.2 GHz, 15 GB of RAM) for Nimbus and PA-SPS, and a n1-highcpu-8 (8

CPU, 2.2GHz, 7.2GB of RAM) machine for the Supervisors VMs.

4.1.1. Application

We have deployed an application (or topology) composed of four opera-

tors which analyzes and classifies tweet events, as shown in Figure 7. The

events (tweets) were previously collected from Twitter and extracted using

the Twitter API. Events classification is based on the tweets’ content and the

identity of the person who has published them. Classified tweets are stored

in a database.

Stopword Sentiment 
classifier

User
classifier

Database
store

Twitter 
streaming

Figure 7: Twitter application in SPS.

4.1.2. Scenario

The same input stream has been used and applied for all the experiments

except the last one. The traffic model is based on data from Twitter related

to COVID-19, with 237 million tweets [26]. However, we have considered

only a sample of these tweets in the experiments, i.e., those in periods of the

datasets that present high rate variation. In other words, we select a combi-

nation of traffic spikes and under spikes to compose the input traffic for the

experiments. The methodology adopted to compose the testing dataset was

introduced in [27]. Figure 8 presents the dataset. The purple line represents
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the actual data trace behavior, while the green line is the composed traffic

employed in our tests.
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Figure 8: Traffic shape of Covid Twitter dataset.

4.1.3. Metrics

We have defined six evaluation metrics.

• Saved resources: proposed in [28], this metric expresses the proportion

of resources (active replicas) saved with respect to a statically over-

provisioned configuration. It is defined by 1− r
rover

, with r the number

of active replicas, and rover the overestimated number of replicas. rover

is the number of replicas needed to process all the events during the

highest input rate peak of the benchmark. Note that if the value of the

metric is close to 1, a high number of resources has been saved.

• Throughput degradation: this metric, also described in [28], aims at

analyzing the behavior of the system in terms of throughput stability.
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It is defined by |inputrate−outputrate|
inputrate

. If the metric value is close to 0, the

system has a good stability. On the other hand, if it is close to 1,

the system is not capable to process the input rate and the system is

unstable.

• Latency: is the average time taken by an event between the moment it

enters and leaves the SPS (end-to-end latency). This metric is relevant

since SPSs are supposed to deliver real-time processed events.

• Difference in the number of processed events: is the difference between

the total number of processed events and the total number of received

events. It is an important metric since SPSs are used to process high

volumes of data.

• Error estimation input: is the mean absolute percentage error of the

difference between the input rate and the predicted input rate during

each interval.

• Error estimation replica: is the mean absolute percentage error of the

difference between the number of replicas needed to process all events

and the number of predicted replicas during each interval.

4.1.4. Parameters

Based on the study presented in [8], we have selected parameter values for

which PA-SPS processes the greatest number of events without significantly

degrading latency. Such values are: td = 30s, tout = 30s and qsize = 100000.

For calculating the Saved resources metric, we have fixed rover = 32 (i.e.,

ri = 8).
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4.2. Predictive models

We propose in this section to discuss the use of predictive models for the

calculation of λ̂G(t+ 1) and their impact on system performance.

For each predictive model, Table 2 shows the respective values for the

above discussed metrics. There is no difference in processed events, except

for the RF model that presents a slight decrease in the number of processed

events, representing a loss of only 0.4% of the incoming events. Therefore,

all models are reliable to be used in whole event processing experiments.

Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.475 0.070 1.000 355.490 0.212 0.277
FFT 0.519 0.189 1.000 1023.380 0.249 0.345
LR 0.533 0.195 1.000 663.030 0.090 0.140
RF 0.538 0.227 0.996 583.921 0.140 0.193
Basic 0.560 0.325 1.000 1295.490 0.180 0.287

Table 2: System metric values of the predictive models.

We can also observe that ANN has the lowest latency, with a difference of

39.12% compared to the second lowest latency model (RF). Such values mean

that PA-SPS using ANN processes the received events faster than the others.

However, in this case, it needs a larger amount of resources, as shown by the

saved resources metric, where ANN has the lowest value, i.e., 15.17% worse

than the Basic model metric. Thus, there is a trade-off between latency and

the amount of resources: on the one hand, if the requirement is a SPS that

processes all incoming events with low latency, ANN is the most suitable

model; on the other hand, if the aim is the reduction of costs and the loss of

events is not an issue, having an acceptable latency, RF is more suitable.
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Figure 9: Adaptation of PA-SPS using different predictive models.

Regarding the estimation error of the input rate and number of repli-

cas, a lower estimation error can not be interpreted as better performance.

Overestimating the input rate implies an overestimation of the number of

replicas, but using a larger amount of resources. Consequently, the margin
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for event processing is larger as shown in Figure 9(b). Conversely, if the

number of replicas is underestimated, the margin for processing events is

smaller, making it more likely that events will be stuck and the system will

be more unstable. In this case, events will probably get stuck in queues, mak-

ing the SPS more unstable. Regarding accuracy, LR has the best one with

an improvement of 57.54% over ANN, which does not mean that it present

better performance, because there are moments when underestimating the

number of replicas decreases the processing of events in the execution of the

system. Unlike ANN that presents an overprovisioning of resources when-

ever the curve rises. On the other hand, in FFT, its estimation error has a

strong impact in PA-SPS performance since it does not accurately predict

the behaviour of the input rate, as shown in Figure 9(a).

4.3. Comparison with Storm

Experiments compared PA-SPS with the original Storm where the number

r of replicas per operator is fixed. We have considered three configurations

for Storm: no replication (r = 1); four replicas (r = 4); eight replicas (r = 8).

The latter corresponds to the overprovisioning configuration where the total

number of replicas, rover, is equal to 32 in PA-SPS. To calculate the value of

λ̂G(t+ 1), ANN was used.

Table 3 summarizes the results of the different configurations. We observe

that the system without replication (r = 1) has a very low performance,

because it only processes 33.1% of the incoming events. Such a result is due

to the lack of adaptation when incoming events increase. Consequently, there

exists a bound for the number of events to process and the others are queued.

Therefore, although such a configuration presents low resource usage, it is
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not recommended for performance sake.

On the other hand, the r = 4 configuration has only a 1.3% difference

between incoming and processed events. The decrease in the amount of

resources by 50% increases latency by 43.03%. Thus, once again, there is

a tradeoff between performance and used resources, corroborating to our

previous discussion.

Finally, above r = 4, PA-SPS has a 5% decrease in Saved Resources, but it

is able to process all incoming events. Compared to the r = 8 configuration

PA-SPS presents: (1) a 131.57% higher latency, whose impact should be

balanced with its ability to dynamically adapt itself; (2) a difference of 7.01%

in throughput degradation, which means that it greatly adapts itself in order

to process most of incoming events.

System
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

PA-SPS 0.475 0.071 1.000 355.490
r = 1 0.875 0.515 0.331 196962.950
r = 4 0.500 0.855 0.987 269.750
r = 8 0.000 0.000 1.000 153.510

Table 3: System metric values with PA-SPS and different configurations in Storm.

4.4. Comparison with other existing SPSs

Table 4 gathers the metric values related to PA-SPS as well as PSPS and

DABS-Storm (denoted DABS), proposed in [8] and [7] respectively (see Sec-

tion 5). We can observe that the difference in the number of events processed

by PA-SPS and PSPS is negligible, but not with DABS. The latter decreases

by 17.2% of the events, a consequence of its deployment. Similarly to Storm
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(see Section 3.1.1), DABS needs to restart the application for reconfiguring

the number of replicas, which is not the case of PA-SPS neither PSPS due to

their pool of replicas. Therefore, downtime has an impact in the number of

events that are processed. As we have already discussed, the increase of re-

sources has a correlation with the decrease of latency, but there are scenarios

where it does not apply. For example, in DABS, saved resources have been

decreased by 16.63% when compared to PA-SPS, but its latency is 291.36%

higher. Such a behavior can be explained since DABS overestimates resources

in non-critical intervals, as observed between t = 800 and t = 900 in Figure

10(a), which is useless in the case of curve peaks, where more resources are

needed. On the other hand, corroborating the previous correlation, the main

difference between PSPS and PA-SPS is latency and saved resources. The

former increases 490.42% (resp. 15.32%) latency (resp. saved resources) that

the latter. This difference has aend-to-end n impact also in the stability of

the SPS, as shown in Figure 10(b). Correctly estimating the input rate for

PA-SPS implies the dynamic allocation of the necessary resources to pro-

cess the incoming events and thus the decrease in throughput degradation of

61.20% when compared to PSPS.

System
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

PA-SPS 0.475 0.071 1.000 355.490
PSPS 0.561 0.183 0.998 2098.910
DABS 0.396 0.284 0.828 1391.280

Table 4: PSPS and DABS-Storm metric values.
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Figure 10: Comparison with DABS, PSPS and PA-SPS.

4.5. Complex application

We have also evaluated PA-SPS with a more complex application, whose

DAG is represented in Figure 11. It analyzes Twitter streaming containing

information such as news or opinions. Depending on the type of information,
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the stream can be split. Results are stored in a database. In the experiments,

rover = 40.

Parse 
data

Spam
detector

Data 
saved

News 
detector

Twitter 
streaming

Topic 
Classified

User 
Detect

Send 
notification

Sentimental 
classified

Figure 11: A Twitter more complex application in PSPS.

Table 5 shows evaluation results obtained with PA-SPS and Storm with a

fixed per operator number of replicas of five (r = 5). In PA-SPS, we observe

a high reduction of used resources with 68.8% fewer active replicas, when

compared to Storm. Such a decrease has an impact on the physical used

resources: CPU consumption of PA-SPS (resp. Storm) is in average, 9.57%

(resp. 14.66%). This difference happens because each replica is associated

with a thread. Therefore, with a fixed number of 5 replicas, Storm requires

more CPU than PA-SPS where the number of replicas dynamically varies.

Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

PA-SPS 0.688 0.031 1.000 209.270
r = 5 0.000 0.000 1.000 31.990

Table 5: Complex application metric values.

4.6. Other datasets

We consider the following datasets: Twitter raw stream, DNS traffic data

stream, and distributed system logs.
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Similarly to the application presented in Section 4.1.1, we have deployed

two other ones with linear topology, composed of four operators, that re-

spectively analyze and classify events based on DNS traffic and distributed

system logs datasets.

4.6.1. Twitter raw stream

In order to evaluate the impact of having used in the previous experiments

Twitter smoothed traces instead of the original one (raw data, described in

4.1), we conducted an experiment with the same application but with Twitter

raw data as input. We have considered rover = 32.

Table 6 shows the results obtained, which have similar values with Table 2,

related to smoothed data. PA-SPS, regardless the model, has processed most

of the received events, with only 1.2% (resp.,1.3%) of events not processed

by LR (resp., RF). Also, the lowest latency corresponds to ANN, although

the difference in latency with respect to the second best model (Basic) is

0.47%. By using a more unstable input rate, the estimation error of the

models increases as the input behaviour is more complex to predict. Since

PA-SPS also becomes more unstable, the throughput degradation increases,

as not all events received are processed. FFT presents the highest difference

because the input rate does not have a stationary behaviour. Consequently,

there is a large percentage of error in the prediction of the input and the

number of replicas which degrades performance.

4.6.2. DNS traffic data stream

We have deployed an application with linear topology as shown in Figure

12, composed of four operators which analyzes and classifies events based on
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Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.395 0.213 1.000 1044.510 0.424 0.466
FFT 0.153 0.579 1.000 12285.990 0.903 1.282
LR 0.421 0.261 0.988 1366.680 0.397 0.391
RF 0.539 0.381 0.987 2610.330 0.253 0.398
Basic 0.513 0.251 1.000 1049.490 0.312 0.407

Table 6: Twitter raw stream metric values.

DNS traffic. For the experiments, we have used the dataset presented in [29]

with fixed rover = 12 (i.e., ri = 3).

Detect
Destination

Latency
Classification 

Weight
Rating

Database
store

DNS 
Traffic

Figure 12: DNS application in PSPS.

The aim of this experiment is to verify the adaptation ability of PA-SPS

with an input with a different fluctuation than the previous inputs and then

analyse the behaviour of it with each predictive model. Table 7 summarizes

the obtained results. The processing capability of PA-SPS is reconfirmed

since each proposed model has none or a negligible difference in the number

of processed events. The highest difference percentage is around of 2.5%

(RF) when compared to LR.

Figure 13(b) shows both the input rate and the throughput. Despite

the high dynamics of the input rate, PA-SPS is able to adapt its number

of resources in order to process the largest number of events in each time

interval. In this experiment, the model with the best performance is FFT,

having the lowest value of latency and throughput degradation. On the

contrary, the input prediction error is the highest. Considering the values
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of saved resources, we can conclude that there was an overestimation of the

input which led to an overestimation of resources as shown in Figure 13(a). If

a model with lower resource utilisation is required, RF is a good choice, given

that it has a difference of 22.08% of the saved resources value with respect to

FFT. It is worth remarking that due to the above difference, FFT throughput

degradation and latency decrease by 29.37% and 27.25% respectively.

Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.515 0.381 0.998 446.840 0.294 0.872
FFT 0.498 0.337 0.995 397.140 0.367 1.674
LR 0.561 0.350 1.000 464.010 0.216 0.714
RF 0.608 0.436 0.975 545.910 0.112 0.583
Basic 0.604 0.511 0.984 487.600 0.090 0.738

Table 7: DNS scenario metric values.

4.6.3. Distributed system logs

We deployed an application with linear topology as shown in Figure 14,

composed of four operators for parsing and determine events based on dis-

tributed system logs. For the experiments, we use the dataset presented in

[30] and fixed rover = 32 (i.e., ri = 8).

Table 8 summarizes the obtained results. The processing capacity of PA-

SPS is once again confirmed, where each proposed model has a none or a

negligible difference of processed events and the highest difference percent-

age of events processed is around of 1.52% (ANN). Basic presents the best

performance, both in terms of resource usage and latency. Figure 15(a) shows

the amount of used replicas, where we can observe that the amount used by

Basic does not vary much. Although there are high peaks of the input rate
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Figure 13: Comparison with different predictive models used DNS traffic.
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Figure 14: Log application in PA-SPS.
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(see Figure 15(b)), as in t = 700, they are short for periods. Thus, it is more

appropriate to use a constant amount of replicas rather than to adapt the

SPS many times according to the input rate behaviour.

Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.603 0.236 0.987 905.290 0.355 0.537
FFT 0.503 0.572 1.000 9184.060 0.746 1.191
LR 0.565 0.252 0.994 1021.800 0.412 0.413
RF 0.661 0.335 0.998 1673.560 0.243 0.394
Basic 0.655 0.306 0.989 855.970 0.250 0.449

Table 8: Log scenario metric values.

4.7. Discussion

PA-SPS presents better performance than the other two adaptive SPSs

(DABS or PSPS ), confirming its ability to dynamically adapt the number

of replicas based on the variation of input behavior. Experimental results

showed a 17.2% increase in the total number of events processed and an

83.01% reduction in latency.

We also observed that the most appropriate predictor model depends on

the scenario (e.g. the input rate behavior, the application, the dataset,etc.).

For instance, if the input rate behaviour is stationary, time series based mod-

els such as FFT may perform better. Contrarily, if the input rate behaviour

is too dynamic, it would be better a simple model, such as Basic, whose

number of replicas does not vary much since, in this case, events queued in

up-spike periods could be processed in down-spike periods. Finally, it is also

important to take into account cost/performance trade-off. Models such as

ANN that overestimate the number of replicas, on the one hand, increase
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Figure 15: Comparison with different predictive models used log traces.

the costs associated with the system but, on the other hand, improve perfor-

mance.
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5. Related Work

In this section, we focus on existing works of the literature that, similar

to ours, propose predictive SPS solutions.

DABS-Storm, a congestion prevention SPS, is presented in [7]. Its aim

is to reduce the degradation of the accuracy of the results. To this end, a

monitor gathers statistics about the operators activity and then, based on a

metric, decides if the amount of resource allocated to each operator should be

modified or not. Such a metric that estimates the level of activity is defined

by predicting the system input by using a regression function as well as taking

into account pending events. The capacity of the operators is also estimated,

considering both the physical capacity of the machine where the operator is

located and latency of the system. As DABS-Storm has been implemented in

Storm, its operators reconfiguration approach carries the drawback of Storm

reconfiguration downtime cost, contrarily to PA-SPS that avoids it with the

pre-allocated pool of inactive replicas.

The authors in [31] propose a predictive model implemented in Borealis

SPS [32], taking into account not only the input rate as a metric, but also

the capacity of the nodes as well as data processing complexity. Then, the

model provides an equation that characterizes the workload of the system

and determines the amount of required parallelism for processing events.

Therefore, its objective is both the balance of the workload between the nodes

and the reduction of latency. Although the system is capable of scaling-out,

it does not perform scale-in, so it does not consider the reduction of allocated

resources that PA-SPS provides.

ELYSIUM [28] is a Storm-based SPS that scales in and out the number
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of replicas of the operators and, if necessary, modifies the number of workers

associated with the application (horizontal and vertical scalability). It pro-

vides both a reactive and predictive approach based on time window and an

ANN model. Unlike PA-SPS, ELYSIUM was not been evaluated with a real

prototype integrated in Storm.

Based on look-ahead approach, PLAStiCC is a predictive scheduling pro-

posed in [33]. Its model analyzes the system performance through the balance

of resource overload. Furthermore, as it has been conceived to run on clouds,

allocated resources can have different costs. Therefore, the model considers

not only the workload of the system, but also the costs associated with the

increase in resources. Contrarily to our experiments which were conducted

on the public cloud GCP with real Twitter traces, PLAStiCC uses for eval-

uation the cloud simulator CloudSim [34], as well as synthetic dataflows.

The Elastic-PPQ SPS [35] proposes to analyze the system at short and

medium/long terms. The first one performs an analysis on the events that

arrive in a time interval while the second one takes into account longer peri-

ods to perform a more complex analysis, using Fuzzy Logic Controller. For

this purpose, an autonomous system, based on QoS, manages the system

resources according to a runtime strategy, which considers the complexity

of the system components. In this way, the parallelism of the tasks, associ-

ated with a set of threads, can increase or decrease. For the evaluation and

validation of system load analysis, both synthetic and real data were used.

Although the solution is quite robust, since it is implemented in FastFlow

[36] framework, its focus is more on high performance processing than on

distributed data processing.
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In [37], the authors propose a hierarchical decentralized adaptive SPS

in Apache Storm, using the MAPE model to design the solution. Regarding

scaling policy, the adopted metric is CPU utilization of the operator replicas,

which defines whether a system adaptation is necessary or not. The proposed

solution also analyzes the costs associated with each reconfiguration. One

of their parameters is the downtime, i.e., the time necessary to restart the

system which can induce much overhead. PA-SPS does not present such an

overhead since inactive replicas are pre-allocated at the beginning of the SPS

execution.

The predictive MEAD SPS [38] was implemented in Flink [39]. Opera-

tor auto-scaling takes place based on Markovian Arrival Processes approach,

where the system load is analysed according to a queuing model. The SPS

proposes a MAPE-K for the control flow. Evaluation experiments use both

synthetic and real environments. However, even if the authors state that the

MEAD supports operators scaling-out, such a feature has not been imple-

mented. On the other hand, similarly to PA-SPS and other works that use

Flink, such as [40], reconfiguration does not induce performance degradation.

A SPS adaptation model, which minimises system reconfiguration costs, is

proposed in [41]. It uses several metrics to predict the future behaviour of the

system, which are based on time series and EKF model. Therefore, through

the knowledge of the system, the model decides whether it is necessary to

modify the amount of resources, considering the cost of such an adaptation.
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6. Conclusion

This work proposes PA-SPS, a predictive Storm-based SPS model, which

dynamically adapts the active number of operator replicas according to the

behaviour of the input data. Based on a MAPE model, our solution predicts

the number of operator replicas using statistics collected from operators. To

this end, we defined a set of equations and predictive models of the input

rate as well as a Load-Aware grouping strategy which is based on current

replicas load.

Compared to both DABS or PSPS, evaluation results confirm the effec-

tiveness of the dynamic replica adaptation of PA-SPS. In the experiments,

latency decreases by 74.44% and saved resources increase 19.94%, when com-

pared to DABS, and latency decreases by 83.06%, when compared to PSPS.

On the other hand, we observed that the most appropriate predictor model

depends on the type of input rate behavior.

As future work, we are going to evaluate PA-SPS with various benchmark

datasets, such as [42] or [43]. Their use will enable us to characterize the

different input rate behaviors and define the most appropriate predictive

model. Given the design and implementation of PA-SPS, the system accepts

the use of new models as Markov Chain [44] or Wavelet [45] providing the

possibility of other predictive solutions. We also plan to evaluate PA-SPS

using stateful operators and then propose an operator state replication model.
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