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Gilles Benattar1 Béatrice Bérard2 Didier Lime1

John Mullins3 Olivier H. Roux1 Mathieu Sassolas2
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Two problems

◮ Decide the existence of a distributed program such that the
joint behavior P1||P2||P3||P4||E satisfies ϕ, for all E .

◮ Synthesis : If it exists, compute such a distributed program.

 Undecidable for asynchronous communication with two processes and total
LTL specifications [Schewe, Finkbeiner; 2006].
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Channel synthesis

◮ Pipeline architecture with asynchronous transmission

◮ Simple external specification on finite binary messages :
output message = input message (perfect data transmission)
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Channel synthesis

◮ Pipeline architecture with asynchronous transmission

◮ Simple external specification on finite binary messages :
output message = input message (perfect data transmission)

◮ All processes are finite transducers

System
M ⊆ H∗ × L∗

Sender
E ⊆ {0, 1}∗ × H

∗

Receiver
D ⊆ L

∗ × {0, 1}∗
{0, 1}∗ H∗ L∗ {0, 1}∗

Attacker
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A small example of channel

OpenServer|OpenClientLongData|ε

ε|Data1st ε|Data

ShortData|ε

ε|Data

CloseServer|CloseClient

Packet transmission system

ε|OpenServer

0|LongData

1|ShortData

ε|CloseServer

Encoder

OpenClient|ε

Data1st|ε Data|0

Data|1

CloseClient|ε

Decoder
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Channels with transducers

◮ A transducer is a finite automaton with set of labels Lab ⊆ A∗ × B∗,
it implements a rational relation.

◮ The identity relation on A∗ is Id(A∗) = {(w , w) |w ∈ A∗}.

◮ Rational relations can be composed: M·M′.

Definition

A channel for a transducer M is a pair (E ,D) of transducers such that

E ·M · D = Id({0, 1}∗).

The definition can be relaxed to take into account bounded delays or errors:
existence of such a channel implies existence of a perfect channel.

Decision problems:

◮ Verification: Given M and the pair (E ,D), is (E ,D) a channel for M ?

◮ Synthesis: Given M, does there exist a channel (E ,D) for M ?
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Outline
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Results

Theorem
◮ The channel verification problem is decidable.

◮ The channel synthesis problem is undecidable.

◮ If M is a functional transducer, the synthesis problem is decidable in
polynomial time. Moreover, if a channel exists, it can be computed.
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Results

Theorem
◮ The channel verification problem is decidable.

◮ The channel synthesis problem is undecidable.

◮ If M is a functional transducer, the synthesis problem is decidable in
polynomial time. Moreover, if a channel exists, it can be computed.

Decision for the verification problem: given E , M and D

1. Decide whether E ·M · D is functional
[Schützenberger; 1975], [Béal, Carton, Prieur, Sakarovitch; 2000].

2. If not, it cannot be Id({0, 1}∗) which is a functional relation.

3. Otherwise decide whether E ·M · D = Id({0, 1}∗), which can be done since
both relations are functional.
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A necessary condition

for the existence of a channel

An encoding state in a transducer is a (useful) state r such that:

• there exist cycling pathes: r
u0|v0
===⇒ r and r

u1|v1
===⇒ r ,

• the labels form codes: u0u1 6= u1u0 and v0v1 6= v1v0.

s0 r f
u|v

u1|v1

u0|v0

u′|v ′

If a transducer admits a channel, then it has an encoding state
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An encoding state is not enough
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s1 and s2 are encoding states.

There is a channel.
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s1 introduces errors.

There is a channel.

Encode 0 with u1u0

and 1 with u0u1. The
decoder decodes v1v0

into 0, v0v1 into 1,
and rejects otherwise.
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An encoding state is not enough

s0
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u|v u|v

u0|ε

ε|v0

u1|ε

ε|v1

u0|ε

ε|v1

ε|v0

u1|ε

ε|v0

ε|v1

s1 introduces errors.

There is no channel.
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Undecidability of the synthesis problem

Scheme of the proof: Encoding Post Correspondence Problem.

Given alphabet Σ = {1, . . .n} and instance I = (x , y) of PCP, with morphisms

x :

∣

∣

∣

∣

Σ → A∗

i 7→ xi
and y :

∣

∣

∣

∣

Σ → A∗

i 7→ yi

a solution is a non empty word σ ∈ Σ+ such that x(σ) = y(σ).

From I, build a transducer MI reading on {⊤,⊥} ⊎ Σ and writing on {⊤,⊥} ⊎ A

such that:

MI has a channel iff I has a solution
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Given alphabet Σ = {1, . . .n} and instance I = (x , y) of PCP, with morphisms

x :

∣

∣

∣

∣

Σ → A∗

i 7→ xi
and y :

∣

∣

∣

∣

Σ → A∗

i 7→ yi

a solution is a non empty word σ ∈ Σ+ such that x(σ) = y(σ).

From I, build a transducer MI reading on {⊤,⊥} ⊎ Σ and writing on {⊤,⊥} ⊎ A

such that:

MI has a channel iff I has a solution

Definition of MI :

MI(bσ) =
(

A+b
)

∪
(

(A+ \ {x(σ)})b
)

∪
(

(A+ \ {y(σ)})b
)

On input bσ, MI returns an arbitrary (non empty) word on A followed by the input
bit b, or its opposite except for x(σ) ∩ y(σ).
On input b1σ1 . . . bpσp , MI returns MI(b1σ1) . . .MI(bpσp),
with MI(ε) = ε, and MI(w) = ∅ otherwise.
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Undecidability (continued)

◮ The relation MI can be realized by a transducer;

◮ If x(σ) 6= y(σ) for all σ 6= ε, then MI outputs A+ · {⊤,⊥} for any bσ and
there can be no channel;

◮ If x(σ) = y(σ) = w for some σ, the bit b can be transmitted by detecting w .
For example, to transmit 0:

1. the encoder sends ⊥ · σ,
2. it will be transformed by MI into

`

A
+ · ⊥

´

∪
`

(A+ \ {w}) · ⊤
´

;
3. the decoder rejects what does not start by w , then reads the bit;

in this case, it is ⊥, which is transformed into 0.

E : 0|⊥, 1|⊤

ε|σ

D :
w |ε

⊥|0,⊤|1
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The case of functional transducers

Proposition

If a functional transducer has an encoding state, then it has a channel.

s0 r f
u|v

u1|v1

u0|v0

u′|v ′

The encoder is E = (ε, u) · {(0, u0), (1, u1)}∗ · (ε, u′),
the decoder is D = (v , ε) · {(v0, 0), (v1, 1)}∗ · (v ′

, ε).

 The decision procedure consists in finding an encoding state.
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Detecting encoding states

Let M be a functional transducer and s a (useful) state of M

1. Consider Ms , similar to M, with s as initial and final state.

2. Find u0 ∈ A+ such that Ms(u0) 6= ε, i.e. a cycle on s labeled by u0|v0 with
v0 6= ε. If all cycles have output ε, s is not an encoding state.

3. Otherwise compute the (rational) set of words N(v0) ⊆ Im(Ms) that do not
commute with v0. If N(v0) is empty, s is not an encoding state.

4. Otherwise compute P the preimage of N(v0) by Ms , pick u1 ∈ P and let
v1 = Ms(u1): State s is encoding with cycles u0|v0 and u1|v1.
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Conclusion

◮ The case of synthesis under study is very simple:
◮ a simple model: transducers;
◮ a simple specification: input = output.

But the problem is already undecidable !

◮ An even simpler case, namely functional transducers, is decidable, with
polynomial complexity.

◮ It can nonetheless be used to detect covert communication in systems with
limited nondeterminism.

◮ The complexity gap gives hope for finding intermediate decidable classes:
◮ of transducers;
◮ of specification.
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Thank you
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⊤-half of MI

q0(⊤, q∗) (⊤, q>) (⊤, q 6=) (⊤, q<)

⊤, x

⊤, y

⊤|ε

ε|a⊤, a ∈ A

i |ε, i ∈ Σ
ǫ|a, a ∈ A

⊤|ε

⊤|ε

ε|⊥

ε|⊥

ε|⊥
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