
Marshaling/Demarshaling as a Compilation/Interpretation Process

Christian Queinnec
Université Paris 6 — Pierre et Marie Curie

LIP6, 4 place Jussieu, 75252 Paris Cedex — France
Christian.Queinnec@lip6.fr

Abstract

Marshaling is the process through which structured val-
ues are serialized into a stream of bytes; demarshaling con-
verts this stream of bytes back to structured values. Most of-
ten, for a given class of data, the marshaler and the demar-
shaler are tightly related pieces of code that are synthesized
conjunctly. This paper proposes a new point of view: the
demarshaler is considered as a byte-code interpreter evalu-
ating a stream of bytes that is itself considered as a program
i.e., as a sequence of commands interspersed with quoted
raw data. These programs are expressions of the marshal-
ing language. From that point of view, the marshaler log-
ically appears as a compiler translating structured values
into expressions of the marshaling language.

The demarshaler depends on the sole marshaling lan-
guage. If this language is powerful enough to deal with
any kind of data then the demarshaler can be kept constant
while many marshalers may coexist. This asymmetry and
programmatic view has far-reaching consequences: (i) it
is simple to accommodate new dynamically created classes
of data, (ii) it is possible to have simultaneously various
marshalers that offer different, even evolving, strategies in
order to cope with different situations such as network con-
gestion or processor memory exhaustion.

1. The Context

According to the taxonomy of Distributed Shared Mem-
ory [5], DMEROON is a library of functions allowing ob-
jects to be shared over the Internet in a coherent way among
multiple readers and, at most, one writer. Management is
distributed and coherency is causal. Coherency is out of the
scope of this paper [6] and so are many details of DME-
ROON [7]. The DMEROON project started as the memory
layer supporting a distributed language [9] but it soon tried
to be a portable common layer for different languages (cur-
rently C and Scheme) to exchange, copy or share typed
structured values.

Sites are autonomous address spaces connected by mes-
sages. An object is a contiguous chunk of bytes belong-
ing to a single site. An object is made of fields. A regu-
lar field holds a single value of any legal C type. An in-
dexed field holds a contiguous sequence of homogeneous
values of the same C type (size and alignment constraints
are those of C) prefixed by a number recording the length
of the sequence (all unsigned C types are possible for these
lengths). Lengths of indexed fields are determined at allo-
cation time. Indexed fields permit representation of strings
(indexed field of characters), (Java) vectors (indexed field
of pointers) and even activation frames (Corba’s NVList for
instance) as regular, mundane, plain objects. For any object,
it is possible to obtain the values that are held in its fields
and to mutate these values provided the field was declared
mutable. Moreover, for any object, it is possible to access
structural (reflective) information such as the length of its
indexed fields or, its class from which may be retrieved the
layout of its fields.

Semantically, pointers raise questions about the identity
of objects, whether they are shared or copied between sites,
what kind of coherence is achieved if they contain mutable
fields, etc. Independently of these questions the DMEROON

memory model simply supports, at the most fundamental
level, the concept of remote pointer allowing an object from
one site to refer to another object of another site.

An object is owned by the site where it was created re-
ciprocally, the object is said to be local to that site. A re-
mote object (i.e., an object that is not local) may be locally
cached with a replica. The remote object is then said to be
present since its replica stands for it. A remote pointer to a
present object may be swizzled [4] into a local pointer to the
replica. A local object is of course a present object. Objects
may migrate i.e., may change their owner and still keep their
identity. A companion report [8] presents the details of the
remote pointer machinery.

Albeit apparently simple, handling remote pointers is
rather subtle. One reason is the different sets of invari-
ants the implementation has to maintain with respect (i) to
the user or, (ii) to itself or, (iii) to the other sites. An-



other difficulty is the number of simultaneous goals this
machinery, and particularly the DMEROON machinery, also
wants to achieve: fast dispatch for object-oriented program-
ming, support for garbage collection, reflection (access to
the structural information), coherence (between an origi-
nal object and its replicas), dynamicity (creation of new
classes), mobility (of objects), security or fault-tolerance.

Sites are connected through an object pipe. When an ob-
ject is written in such a one-way pipe, another structurally
“equivalent” object is created at the other end. It is up to
the higher layers of the library to ensure coherency between
equivalent objects: for instance, such objects have to be told
that they are replicas of remote objects in order to obey
some coherency protocol. The object pipe is an interest-
ing layer that hides the message machinery. Requests from
one site to another are, for example, represented by objects.
The answer to a request just refers to the original request
with a (remote) pointer. Forwarding a request leaves a trail
of pointers that may be followed back by the answer.

C types other than pointers do not pose much problem if
sites agree on a common representation as did XDR [11],
CDR [10], or the Java serialization protocol. Remote ref-
erences are encoded with an unique non ambiguous key (as
well as some other information, an IOR in Corba’s parlance)
allowing sites to retrieve them. But to make the object pipe
useful and efficient: (i) the marshaler has to reduce the
number of messages i.e., objects should be sent (pushed) in
advance but not too much (the receiving site must not be
overwhelmed by too many objects), (ii) the compiler must
not loop while marshaling cyclic data, (iii) resources al-
located to marshaling should be under control, (iv) some
network invariants should be enforced.

The point of this paper is to present a programmatic view
of marshaled objects. The demarshaler is a byte-code in-
terpreter that reads bytes from the object pipe and executes
them to build equivalent objects. The marshaler just appears
as a compiler transforming partial graphs of objects into a
stream of bytes, a sequence of raw XDR bytes structured by
demarshaling commands. Once the marshaling language is
set, the demarshaler derives simply from it. However to
have only one marshaler does not preclude a wide variety
of marshalers to be imagined, written, tested. With this lin-
guistic view it is possible as well as easy to change mar-
shalers at run-time to react to new network conditions. New
classes of objects may bring their own marshaling tech-
niques. Marshalers may also be disseminated via active net-
work à la [2].

This paper only focuses on the sole marshal-
ing/demarshaling process. The marshaling language
appears in Section 2; a naive marshaler is commented
in Section 3 and extended in Section 4. Related work
concludes the paper.

2. The Marshaling Language

Sites are connected via an object pipe that conveys mar-
shaled objects i.e., programs, conforming to the marshaling
language. This Section presents the basic six primitives of
this very specific language that deals with distributed ob-
jects in order to allocate them, manage their replicas, update
them etc. The marshaling language is expression-oriented.
Its most primitive commands appear in Table 1.

The allocate primitive expects at least one argument:
a class. Since a class contains all the structural information
that characterizes its instances and since this class is present
(this is why it appears underlined in Table 1), it is simple to
determine the number of its indexed fields and to expect as
many sizes, of the proper unsigned C type, as additional ar-
guments of the allocate invocation. The value of this
primitive is the allocated object with complete structural in-
formation: this object is local to the site where the allo-
cate primitive is run.

The fill primitive expects an object; this object must
be present. The class of this object is used to consume the
subsequent bytes until the object is entirely filled. Non-
pointer fields are encoded similarly to XDR. Pointers are
encoded as objects i.e., as expressions of the marshaling
language. The filled object is returned as the value of the
fill expression.

The two previous primitives relies upon the following
network invariant:

No object can be demarshaled if its class is not present.

There is a simple way to respect the previous network
invariant (a different solution will be presented in Section 4
with the try marshaling command): a site never marshals
an object whose class may be unknown by the receiving site,
instead the receiving site will receive a remote pointer from
which it will have to pull the class before pulling the object
(of course, the user is not aware of that, the user simply
asked for the object at the end of a pointer).

A site is cited via the site primitive. This primitive
expects host and port numbers. A site is represented by an
object that concentrates the information that is common to
all objects of that site. No communication is required with
the mentioned site.

Remote references are created with the remote primi-
tive. This primitive expects a key, a site and a class. The site
must be present (so enough information is present to create
a communication channel if needed) but the class may be
remote (enough information is present to fetch it if needed).
If the remote reference already exists on the receiving site it
is returned (and shared) otherwise it is built afresh. Observe
that the class of the remote object is available, this eases to
respect the afore-mentioned network invariant.



is called as does returns
allocate class sizes... Allocate an object the allocated object
fill object content... Fill an object with some content the filled object
site IP port Refer to a site the site
remote key site class Refer to a remote object the remote object or its replica if present
bind object remote-object Associate a replica to a remote object the replica of the remote object
predefined index Refer to an ubiquitous object the index’th ubiquitous object

Table 1. Basic primitives of the marshaling language (underlined arguments require the corresponding objects
to be present on the demarshaling site.)

The bind primitive normally expects a local object and
a remote object; it makes the local object become the replica
of the remote object. Of course, the remote object should
not already have a local replica.

Finally, there may exist some ubiquitous (often im-
mutable) objects (booleans, predefined classes, predefined
sites, etc.) that exist on every site. They are specially en-
coded for compactness reasons.

Most of these primitives are unsafe or dangerous. They
all err when an argument that should be present is not. The
fill primitive allows objects to be overwritten, the re-
mote primitive may confer an inappropriate class to a re-
mote object, the bind primitive may associate unrelated
objects. It is up to the marshaler and the upper layers (see
Table 6) to ensure safety with respect to representational in-
variants (see [8] for details).

3. A Simplistic Marshaler

The marshaler translates objects into expressions of the
marshaling language. However, the compilation is not so
obvious since: (i) to reduce the number of messages, ob-
jects should be pre-sent (i.e., pushed) but not too much: the
compilation ought to stop. (ii) the compiler must not loop
while marshaling cyclic data, (iii) last, the network and rep-
resentational invariants must be enforced.

A simple compiler may be explained as the conjunc-
tion of some smaller naive compilers. The

�

predef com-
piler just takes care of ubiquitous objects and emits ac-
cordingly predefined commands. The

�

share com-
piler never sends objects but sends instead remote refer-
ences onto them (with remote commands), this compiler
always try to share objects hence its name. At the opposite
is the

�
copy compiler that always send objects (an al-

locate embedded in a fill command). Between these
last two compilers, the

�

presend compiler sends objects if
predefined otherwise it shares them but try to pre-send their
content if their classes are predefined.

Compilers are ordered by the level of sharing they pro-
vide, they are ranked as follows:

�
copy,

�

presend,
�

share,
�

predef. Whenever an object is marshaled with a compiler,

the objects it refers to are marshaled with a more sharing
compiler. This order ensures the termination of the compi-
lation but other methods are obviously possible.

The resulting compiler is simplistic but satisfies the net-
work invariant.

4. Enriching the Marshaling Language

The marshaling language is very raw for the moment and
restricted to a few primitives. But to view it as a language
helps to make it better to (i) obtain more compact marshal-
ing programs, (ii) diminish the number of messages, (iii)
keep control of resources (stack, cache) devoted to marshal-
ing.

The marshaling language is expression-oriented, it is
therefore straightforward to extend it with a stack and op-
erations on that stack. We therefore add the primitives of
Table 2. This Table may be completed with other Forth-like
operations such as swap, roll, etc. Observe that a stack
is specific to a one-way object pipe. It exists on the emitting
site; the receiving site maintains a copy of that stack which
is similar to the one of the emitting site up to the commands
that are not yet demarshaled.

is called as does returns
push object push an object the pushed object
top the top of the stack
pop pop the stack the popped object

Table 2. Stack marshaling commands

These operations are useful in at least two situations: (i)
when marshaling many times a same object (for instance,
an object used to initialize the cells of a vector) (ii) when
marshaling short cycles forming a mutually recursive data
(this is simple to handle since allocation and filling are two
distinct operations).

A small example may be in order. We can marshal the
vector and the integer of Figure 1 into the following expres-
sion (where parentheses were added for clarity):

(fill (allocate Vector 2)



(push (fill (allocate Integer)
42 ))

(pop) )

Vector

42

Integer

Figure 1. A vector initialized with a shared
value.

A stack helps for a single message, a cache may help for
a series of messages. The sent objects may be inserted in
a cache and later referred to with only a few bytes. Instead
of providing a static caching strategy, we prefer to enrich
the marshaling language with a new set of commands to
manage this cache, see Table 3. Observe that a cache is
specific to a one-way object pipe. It has one occurrence on
the emitting site, the receiving site maintains a copy of that
cache which is similar to the one of the emitting site up to
the commands that are not yet demarshaled.

A good caching policy probably depends heavily on the
user’s applications requirements. The availability of the
caching commands allow to design new appropriate mar-
shalers with innovative, adaptive caching policies.

In order to reduce the size of messages, DMEROON also
uses the following commands, see Table 4. They don’t in-
troduce new concepts, they are pure but very common ab-
breviations. They allow to refer compactly to objects owned
by the sites at both ends of an object pipe. These abbrevia-
tions drastically reduce the size of messages since most of
the objects that are exchanged between two sites are owned
by either one of these two sites. However they have an im-
pact since their use makes messages non portable (messages
must be demarshaled then remarshaled in order to be routed
towards another site) since the result of the marshaler de-
pends on the sites that are at the ends of a communication
channel.

Besides the previous commands, DMEROON adds three
more technical commands, see Table 5. The two first com-
mands, prog1 and prog2, allow expressions to be gath-
ered for their side-effects (stack or cache commands are
clearly candidates).

is called as returns
prog1 object object the first object
prog2 object object the second object
try size object object the first or second object

Table 5. Ancillary marshaling commands

With these additional primitives, a possible marshaling
of the vectors of Figure 2 is:

(prog1 (record 47 (allocate Vector 2))
(prog1 (record 48 (allocate Vector 1))
(prog1 (fill (refer 48) (refer 47))

(fill (refer 47) (refer 48)
(refer 48)))))

Vector
Vector

Figure 2. A small cycle

The most interesting command is the third of Table 5.
The try command tries to demarshal its first object (ap-
pearing as second argument). If demarshaling this first ob-
ject is free of errors then try acts similarly to prog1 and
returns this first object. If an error occurs while demarshal-
ing the first object, then try skips it and behaves similarly
to prog2 that is, it returns the second object (appearing as
its third argument). Wherever is the demarshaling error, it
is always possible to skip the first object since the length of
its encoding is available in the first argument of try.

The try command is powerful since it confines demar-
shaling anomalies, it also allows new strategies that still re-
spect the network invariant. One may try to send an object
assuming that its class is known from the receiving site but,
to play it safe, the remote pointer is also sent to allow the re-
ceiving site to fix the problem of the missing class. In other
words, one may send an object � with the

�

try compiler
defined as:

�

try
� ������ try � �

copy
� ���� 	�
 �

� bytes

�

share
� ���

If the content of the object � cannot be demarshaled then
this expression simply returns a remote pointer onto � .

The try command is obviously reminiscent of the try
or unwind-protect keywords of well-known program-
ming languages and actually comes from the point of view
we adopted for the marshaling language.

The semantics of the marshaling language could have
been presented to describe more precisely the formal mean-
ing of these commands and their interaction. For instance,
a try command resets the stack at the height it had when
try started but the cache is left unchanged. With this se-
mantics, one may prove whether a marshaler respects the
representational invariants.



is called as does returns
record index object record an object with a given index the object
refer index the index’th object of the cache
double double the size of the cache nothing
reset empty the cache nothing

Table 3. Cache marshaling commands

is called as returns
receiving-site the receiving site
emitting-site the emitting site
emitter-reference key class � remote key emitting-site class
receiver-reference key � remote key receiving-site � the appropriate class �

Table 4. Abbreviation marshaling commands

5. Related Work

The XDR (for eXternal Data Representation [11]) li-
brary, introduced by the NFS system, allows to marshal
structured values. This is a lower level library since it does
not deal with (remote) references nor it does introduce the
illusion of a distributed memory model (no object identity).
The marshaler and the demarshaler form a single piece of
code whose behavior is specified at invocation time. This
code is generated from the description of the data structure,
typically a .h-like file. Messages are shaped after the con-
trol structure of the generated de/marshaler.

Corba introduced CDR (for Common Data Representa-
tion [10]) for marshaling. Since Corba brings the notion
of object identity, references to remote objects are easily
marshaled. However these libraries are opaque, cannot be
tailored, and, as for XDR, statically generated from the de-
scription of the exchanged data structure expressed in IDL
(for Interface Definition Language). However Corba also
offers a Dynamic Invocation Interface (DII) to cope with
non static situations.

Static generation of marshalers/demarshalers produces a
code whose size may be extremely large since it depends
on the number of classes. Some alternate solutions were
explored. It was proposed some years ago to interpret type
descriptors and shown that the speed is not too much dete-
riorated since the demarshaler is very compact and fits well
in processor cache. [1] also proposed a kind of interpreter
that he called the marshaling engine. Finally, [3] lessens the
need for space with just-in-time stub generation.

Within the Java realm, RMI (for Remote Method Invo-
cation) introduces a serialization/deserialization interface.
This interface takes care of all sorts of objects (provided
they are serializable) and may be customized or ex-
tended by the user. The caching policy cannot be parame-
terized: by default, all sent objects are memorized.

Compared to these proposals, ours is clearly more com-
pact: On a PC box with Linux, the DMEROON demarshaler
weighs 18 Kbytes. The marshaler, which is slightly bet-
ter than the naive one above, adds 6 Kbytes. These sizes
are independent of the number of classes although the 103
predefined DMEROON classes add some 17 Kbytes. Were
we to use rpcgen, these classes will generate a static mar-
shaler/demarshaler of 23 Kbytes to which we must add the
necessary XDR library making up to a total of 79 Kbytes
(not taking into account DMEROON indexed fields which
are not naturally accommodated by rpcgen).

With respect to speed, our solution is clearly slower than
XDR-style compiled code although the whole process is
clearly dominated by network latency. Every demarshaler
has to decipher (interpret) an incoming stream of bytes.
Conversely to XDR where description of types is compiled,
our solution interprets type descriptors. The flexibility of
this compilation/interpretation process allows the marshaler
to be enriched at run-time to incorporate new dynamically
created classes or user’s dynamically specified customiza-
tion. The marshaler may also react to overall changes such
as network bandwidth, memory exhaustion etc. Marshalers
can themselves be marshaled and disseminated over the net-
work. Our solution is portable, does not depend on the op-
erating system and tolerates a Garbage Collector recycling
unused classes for instance.

Compared to dynamic situations (Corba’s DII for in-
stance), our solution offers some advantages: it may use
just-in-time technology and be compiled (or partially evalu-
ated) to gain speed. Since we extend XDR, part of the XDR
library may be woven into our marshalers, this will mainly
benefit to flat numeric matrices whereas our technique is
better suited to marshal parts of graphs of linked objects.
Moreover our solution may also be used when marshaling
is done via XML [12] i.e., structured plain text.



6. Conclusions and Future Work

The main point of this paper is to consider the stream
of bytes carrying marshaled objects as a sequence of ex-
pressions of some marshaling language. This programmatic
view adds more meaning to the exchange protocol, stresses
the asymmetry between the marshaler (a compiler) and the
demarshaler (an interpreter) and, brings all useful language
technologies to the level of marshaling. The rest of the pa-
per exposes some corollaries. The marshaling language is
inspired by programming languages and allows for versatil-
ity both at compile-time and run-time.

The paper is supported by the layered architecture of Ta-
ble 6.

Application Programming Interface user
Request/Answer protocol protocol between sites

Marshaling language commands
Representational properties invariants

Memory model objects, classes, replicas

Table 6. Layers

We think that the few allusions at formalism here and
there in this paper may be a hint for some proof systems, at
the interface between layers:

� to prove the semantics of the marshaling language not
to violate representational invariants,

� to prove a marshaler with respect to (i) the fundamen-
tal network invariant or (ii) other user-oriented invari-
ants,

� to prove a protocol over the marshaler to respect some
network invariants.

We plan to develop these points as well as to experiment
with the reification of marshalers in order to let class con-
ceptors express their marshaling needs.

These ideas have been implemented in the DMEROON

distributed shared memory since 1996. Additional details
may be found in the DMEROON documentation available
from:
http://www-spi.lip6.fr/~queinnec/WWW/DMeroon.html

References

[1] A. Bartoli. A novel approach to marshalling. Software Prac-
tice and Experience, 27(1):63–86, Jan. 1997.

[2] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Net-
tles. Plan: A packet language for active networks. In
ICFP ’98 – International Conference on Functional Pro-
gramming, pages 86–93, 1998.

[3] M. Hof. Just-in-time stub generation. In JMLC’97 —
Joint Modular Languages Conference, pages 197–206, Linz
(Austria), Mar. 1997.

[4] J. E. B. Moss. Working with objects: To swizzle or not
to swizzle? Technical Report 90–38, University of Mas-
sachusetts, Amherst, Massachusetts, May 1990.

[5] J. Protić, M. Tomas̆ević, and V. Milutinović. A survey of
distributed shared memory systems. In Proc. 28th annual
Hawaii International Conference on System Sciences, vol-
ume I (architecture), pages 74–84, 1995.

[6] C. Queinnec. DMEROON: Overview of a distributed class-
based causally-coherent data model. In T. Ito, R. H. Hal-
stead, Jr, and C. Queinnec, editors, PSLS 95 – Parallel Sym-
bolic Langages and Systems, Lecture Notes in Computer
Science 1068, pages 297–309, Beaune (France), Oct. 1995.

[7] C. Queinnec. DMEROON A Distributed Class-based
Causally-Coherent Data Model – General docu-
mentation. LIP6, 1998. Rapport LIP6 1998/039
<http://www.lip6.fr/reports/lip6.1998.039.html>.

[8] C. Queinnec. Marshaling/unmarshaling as a com-
pilation/interpretation process. Research Report
LIP6/1998/049, LIP6, Dec. 1998.

[9] C. Queinnec and D. De Roure. Design of a concurrent and
distributed language. In R. H. Halstead Jr and T. Ito, editors,
Parallel Symbolic Computing: Languages, Systems, and Ap-
plications, (US/Japan Workshop Proceedings), volume Lec-
ture Notes in Computer Science 748, pages 234–259, Boston
(Massachussetts USA), Oct. 1993.

[10] J. Siegel. Corba, Fundamentals and Programming. John
Wiley and Sons, 1995.

[11] Sun Microsystems, Inc. NFS: Network file system protocol
specification. RFC 1094, Network Information Center, SRI
International, Mar. 1989.

[12] World Wide Web Consortium. Xml. http://www.w3c.org/.


