A Dynamic Extent Control Operator for Partial Continuations *

POPL '91, pp 174-184.

Christian Queinnec† Bernard Serpette‡
École Polytechnique & INRIA-Rocquencourt

Abstract: A partial continuation is a prefix of the computation that remains to be done. We propose in this paper a new operator which precisely controls which prefix is to be abstracted into a partial continuation. This operator is strongly related to the notion of dynamic extent which we denotationally characterize. Some programming examples are commented and we also show how to express previously proposed control operators. A suggested implementation is eventually discussed.

Keywords: continuation, partial continuation, dynamic and indefinite extent, escape feature.

Continuations were introduced within denotational semantics to express the "rest of the computation" in those cases where some constructs of a language can alter it. Non local exits or jumps (stop, goto), exception handling, failure semantics in Prolog-like languages are usually described with continuations [Stoy 77, Schmidt 86]. The Scheme language [Rees & Clinger 86] offers procedural first-class continuations with indefinite extent. Like functions (lexical closures) which reinstall the environment of variables that was active when they were defined, continuations reinstall the rest of the computation which remains to be done when they were defined. Continuations have been proved to be valuable tools in Scheme where they are used to program non local exits [Haynes & Friedman 87b], multitasking [Wand 80], engines [Haynes & Friedman 87a] etc.

The problem of continuations is that they are too powerful [Haynes & Friedman 87b] since they reify [Friedman & Wand 84] the whole rest of the computation. To call one of them means losing control since they never return. A partial continuation [Johnson 87] is only a prefix of the computation that remains to be done. A partial continuation is thus a function that returns to its caller therefore partial continuations are composable like regular functions. Yet full continuations are still useful since they allow imperative (abortive) transfer control.

Programming languages widely differ with their offer of continuations. Continuations can be first-class or not, procedural or not, be accessed from a different namespace or from the regular lexical variable environment. Continuations can have a dynamic or indefinite extent, they can behave lexically or dynamically. Moreover two main uses of continuations can be recognized. First, continuations are a non-local exit facility and can be met in COMMON LISP as block/return-from or catch/throw, in Modula-3 as try-except/raise and in C as setjmp/longjmp. These constructs allow to escape from a computation and to return to a previous control point. They are often used to handle exceptional situations. Since these continuations can only be used while in their dynamic extent, their implementation is therefore very efficient.

The second use of continuations is particular to Scheme and is closely related to their indefinite extent. A computation may be reified (frozen) into a continuation, passed along as a normal value and finally unfrozen later on. This allows to easily implement a non preemptive multitasking facility [Wand 80]. But the most intriguing feature that makes them differ from threads (or lightweight processes) is that continuations are immutable objects that may be resumed more than once. From a naive implementation side, reifying a continuation roughly corresponds to save the current evaluation stack1; resuming a continuation reinstall the

1 This is straightforward for heap-based implementation of the
saved stack overwriting the current stack. The evaluation stack represents the above mentioned "rest of the computation" therefore, to copy back a saved stack implies that these continuations are not composable since there is no means to return to an overwritten stack.

Partial continuations are usually based on a couple of features: one which marks the beginning of continuations that might be abstracted later on and another feature which refines them. Several models of partial continuations exist: mainly [Felleisen & Wand & Friedman & Duba 88] with run/control and [Danvy & Filinski 90] with reset/shift. These constructs do not permit to easily pair related control operators i.e. to precisely specify up to which context partial continuations must be reified.

The paper therefore presents, in the framework of Scheme, a new control operator named splitter (cf. section 2) which creates pairs of associated control operators: one is a non-local exit facility whilst the other refines partial continuations up to the point where splitter was called. Various dressings for splitter are compared in section 4 as well as how they are typed.

The splitter construct reconciles the two previously recognized uses of continuations: dynamic extent full continuations and indefinite extent partial continuations. The basic idea is that a classical evaluation stack (or a list of linked activation records) may be marked in order to be later on split into two parts: the lower part, under the mark, represents the rest of the computation that can be escaped into. The upper part, above the mark, may be abstracted into a partial continuation and therefore multiply applied, stored etc. A partial continuation abstracts the part of the control between a mark and the point where it is reified. Therefore partial continuations can only be taken up to a mark which must exist i.e. be in the dynamic extent of the progenitor splitter, cf. section 1.

Eventually the paper suggests an implementation technique inspired from, at least, [Danvy 87] and [Hieb & Dybvig & Bruggeman 90] that avoids copying activation records from and back to stack (cf. section 5). A partial continuation freezes its associated activation records. Popping frames from the stack is non-destructive since it is only a pointer translation. Conversely pushing new frames may overwrite frozen frames. An extra pointer (free-stack) exists above which it is always possible to push new frames. To push frames in a regular zone is done as usual i.e. relatively to the regular stack pointer; conversely to push frames in a frozen zone is done relatively to free-stack with the necessary (and then explicit) control links. This technique allows allocating mutable locations in the stack since these locations are not duplicated.

1 Semantical Framework

This section presents much of the semantics of a Scheme-like language and formalizes our conception of dynamic extent, see also [Steele 90, chapter 3].

The term extent refers to a period of time: the lifetime of an entity\(^2\). Any entity of Scheme has an indefinite extent i.e. entities exist forever. In most languages (Scheme excepted) applications have a dynamic extent. The extent of the application of a function on its arguments is the time during which is computed the body of the function, this includes the time taken by the computation of all subforms that appear in this body. In that sense, dynamic extents are always nested or disjoint. When the language offers non-local exits, the dynamic extent of an application might be interrupted before its natural end which is when the function returns a value to its continuation. To finish a dynamic extent forces the end of all inner-nested dynamic extents.

Dynamic extent is strongly related to the height of the evaluation stack and governs the possibility of stack-allocating various entities such as lexical environments. It is a common compiling optimization to determine (or conservatively approximate) the exact extent that entities have and to allocate them accordingly.

\[
\begin{align*}
\pi & \quad \text{Prog} = \text{The set of forms} \\
\nu & \quad \text{Id} = \text{The set of identifiers} \\
\rho & \quad \text{Env} = \text{Id} \rightarrow \text{Loc} \\
\alpha & \quad \text{Loc} = \text{The set of locations} \\
\sigma & \quad \text{Store} = \text{Loc} \rightarrow \text{Val} \\
\varepsilon & \quad \text{Val} = \text{Fun} + \text{Pair} + \text{Num} + \ldots \\
\varphi & \quad \text{Fun} = \text{Val} \times \text{Store} \times \text{Ext} \times \text{Cont} \rightarrow \text{PAns} \\
\kappa & \quad \text{Cont} = \text{Store} \times \text{Val} \times \text{Ext} \rightarrow \text{PAns} \\
\zeta & \quad \text{Ext} = \text{Loc} \rightarrow \text{Bool}
\end{align*}
\]

Figure 1: Domains of Scheme with explicit dynamic extent

When continuations have an indefinite extent as in Scheme, it is possible that an expression multiply return results. In that case the concept of applications having a dynamic extent must be precisely defined. We therefore propose a denotational semantics for Scheme formally expressing our notion of dynamic extent. The main question concerning an entity with such an extent is whether it is alive or not? We thus add the domain Ext to the standard denotation of Scheme [Rees & Clinger 86] mapping active locations to the boolean true, see figure 1. Initially no location is active. Like the store, this map is passed to functions and continuations. Locations were chosen since they can be compared and thus distinguished. The PAns domain

\(^2\)First- or second-class objects form entities.
is the domain of partial answers yielded by regular (splitter-free) computations. This domain will be explicated when describing the semantics of splitter. Except for PAns which stands as if it is the domain of the final answers and Ext which is not yet used, the denotations are fairly standard and should not pose problems, see figure 2.

2 The splitter operator

The Scheme philosophy tries to reduce the number of special forms (even if introducing very special functions like \texttt{call/cc}), sticks to a single namespace and makes all concepts first-class citizens. Le fin du fin is to represent new concepts procedurally. We thus express our solution with respect to these tenets: a single function, named \texttt{splitter}, is necessary:

\begin{verbatim}
(splitter (lambda (abort call/cc) expression))
with (abort (lambda () ...))
and (call/cc (lambda (c) ...))
and (c expression)
\end{verbatim}

When \texttt{splitter} is invoked, the evaluation stack is marked. The argument of \texttt{splitter} is a binary function which is then applied on two new synthesized functions tied to this mark. These two functions can only be safely invoked during the dynamic extent of \texttt{splitter} otherwise they provoke a run-time error. If neither \texttt{abort} nor \texttt{call/cc} is used, \texttt{splitter} returns what its return.

\begin{verbatim}
(splitter (lambda (abort call/cc)
 'foo)) \rightarrow 'foo
\end{verbatim}

The first function \texttt{abort} takes a single argument, a thunk, and invokes it with the continuation of \texttt{splitter} as continuation. This allows to abandon a computation and to return to the level of the mark set by the progenitor \texttt{splitter}. For instance, to multiply the elements of a list of numbers and exit if a zero is found, may be written as:

\begin{verbatim}
(define (multlist l)
 (splitter
 (lambda (abort call/cc)
 (define (mult l)
 (if (pair? l)
 (if (= (car l) 0)
 (abort (lambda () 0))
 (* (car l) (mult (cdr l)))))
 1))
 (mult l)))))
\end{verbatim}

When \texttt{abort} is invoked, all waiting computations upto \texttt{splitter} are discarded and the thunk (\texttt{lambda () 0}) is invoked as if it replaces the original \texttt{splitter} form.

The second function \texttt{call/cc} takes an unary function as single argument. It then reifies the partial continuation up to its parent \texttt{splitter} and invokes its argument on it. When reified, the partial continuation is left in place i.e. is still the current continuation. For instance,

\begin{verbatim}
(splitter
 (lambda (abort call/cc)
 (cons (call/cc (lambda (c))
 ; c = (lambda (x) (cons x 'a))
 (cons 'b (c (c 'd))))))
 'a))
\end{verbatim}

This form returns ((b . ((d . a) . a)) . a).

As regular objects, \texttt{abort} and \texttt{call/cc} have an indefinite extent but since they remove or reify the partial continuation up to the associated parent \texttt{splitter}, they must be invoked in the dynamic extent of \texttt{splitter}: their safe behavior has a dynamic extent. Contrarily the reified partial continuation has an indefinite extent behavior; once created, it can be used forever:

\begin{verbatim}
((cdr
 (splitter ;returns (a . partial-cont)
 (lambda (abort1 call/cc1)
 (cons
 'a
 (splitter
 (lambda (abort2 call/cc2)
 (cons
 'b
 (call/cc1
 (lambda (c)
 ; c = (lambda (x) (cons 'a (cons 'b x)))
 (abort2 (lambda () c))
 (lambda ()))))))))))
 'c) \rightarrow (a b . c)
\end{verbatim}

Since partial continuations have an indefinite extent behavior, \texttt{splitter} can be used to simulate the \texttt{call/cc} operator of Scheme. A toplevel \texttt{expression} of regular Scheme is equivalent\footnote{A slight difference might exist if one uses a toplevel loop since a new \texttt{call/cc} is synthesized every cycle.} to the following:

\begin{verbatim}
(splitter
 (lambda (abort0 call/cc)
 (let ([call/cc
 (lambda (f)
 (call/cc
 (lambda (c)
 (f (lambda (v)
 (abort0
 (lambda ()
 ((lambda ()
 (c v)))))))])
 expression))
 expression)
\end{verbatim}

There is no restriction on \texttt{expression} which can arbitrarily invokes \texttt{call/cc} or \texttt{splitter} without interference.
\[E[\nu] = \lambda \rho \sigma \zeta. \kappa(\sigma, \sigma(\rho(\nu)), \zeta) \]

\[E[(\text{if } \pi' \pi')] = \lambda \rho \sigma \zeta. \kappa \text{ let } \kappa' = \lambda \sigma' \varepsilon \zeta', \text{ if } \varepsilon \text{ then } E[\pi'][\rho, \sigma', \zeta', \kappa] \text{ else } E[\pi''][\rho, \sigma', \zeta', \kappa] \text{ endif in } E[\pi](\rho, \sigma, \zeta, \kappa') \]

\[E[(\text{set! } \nu \pi)] = \lambda \rho \sigma \zeta. \kappa \text{ let } \kappa' = \lambda \sigma' \varepsilon \zeta', \kappa(\rho(\nu) \rightarrow \varepsilon, \zeta') \text{ in } E[\pi](\rho, \sigma, \zeta, \kappa') \]

\[\text{allocate : Store } \times \text{ Num } \times (\text{Store } \times \text{ Loc}^* \rightarrow \tau) \rightarrow \tau \quad */ \text{ allocates num locations in store. */} \]

\[E[(\lambda \text{ lambda } \nu^\ast \pi)] = \lambda \rho \sigma \zeta. \kappa \text{ let } \varphi = \lambda e^* \sigma' \zeta' \kappa. \text{ allocate}(\sigma', \# \nu^\ast, \lambda \sigma' \alpha^\ast. E[\pi](\rho[\nu^\ast \mapsto \alpha^\ast], \sigma'\nu^\ast[\alpha^\ast \mapsto e^*], \zeta', \kappa)) \text{ in } \kappa(\sigma, \varphi, \zeta) \]

\[E[(\pi \pi^\ast)] = \lambda \rho \sigma \zeta. \kappa \text{ let } \kappa' = \lambda e' \varphi \zeta'. \text{ let } \kappa' = \lambda \sigma'' e'' \zeta''. e(\zeta'\kappa(\kappa', < \varepsilon > \varepsilon^\ast, \zeta'')) \text{ in } E^\ast[\pi^\ast](\rho, \sigma', \zeta', \kappa') \]

\[E^\ast[\pi] = \lambda \rho \sigma \zeta. \kappa(\sigma, < >, \zeta) \]

\[\rho_{in}(\nu) = \text{wrong("Undefined variable", } \nu) \]

\[\sigma_{in}(\alpha) = \text{wrong("Unknown location", } \alpha) \]

Figure 2: Semantics of main Scheme special forms

The splitter function separates two effects i.e. reifying the partial continuation and removing it from the current continuation. The abort function is a kind of “tail-recursivor” which takes a thunk and invokes it as if it was in tail position with respect to the associated splitter. abort clearly involves a side-effect on control. It closely corresponds to how exceptions are sometimes handled: the erroneous computations is escaped and the appropriate handler is invoked at the level where this handler was bound to that exception. On the other hand call/pc does not affect control. To express the formal semantics of splitter, see figure 3, we define the PAns domain of partial answers to be:

\[\text{PAns = Cont}^* \rightarrow \text{Ans} \]

where Ans is the domain of final answers and Cont* is the domain of sequences of continuations. In a computation \(E[\pi](\rho \sigma(\kappa)) \kappa^* \), \(\kappa \) and \(\kappa^* \) form together the regular full continuation.

The splitter operator first extends the set of active objects with a fresh location yielding \(\zeta' \). It then creates abort and call/pc (\(\varphi \) and \(\varphi' \)) and invokes its argument on them. The new continuation is \(\kappa_{return} \) while the former \(\kappa \) is “pushed” onto \(\kappa^* \). When a value is sent to \(\kappa_{return} \), \(\kappa_{return} \) will consider the current sequence of continuations and send the value to the first of them.

The abort function just invokes its argument at the level of splitter: it resets the set of active objects and the continuation to these of splitter. Contrarily call/pc does not affect the set of active objects. Observe that last and butlast access \(\kappa^* \) from the tail whereas other models count continuations from the head.

3 Generators

Our splitter operator can be put to work on the well-known same-fringe problem. Two or more binary trees are compared: same-fringe returns true if they all have a similar fringe i.e. the same sequence of leaves. Classical solutions involve only two trees and explicitly interleaves two coroutines enumerating sequentially the leaves of the two trees. Non-classical solutions can also be found for example in [Gabriel 89]. Our solution satisfies two goals (i) it handles an arbitrary number of trees and (ii) it is independent of how the tree is walked through.

Visiting the leaves of a tree, in prefix order, can be done thanks to:
\[\zeta_{init}(\alpha) = false \]

\[\mathcal{E}[\text{splitter}] = \lambda \varepsilon \sigma \zeta \kappa. \lambda \kappa^* . \]

\[\text{allocate}(\sigma, 1, \lambda \sigma \alpha^*) . \]

\[\text{let } \zeta' = \zeta[\alpha^* | \rightarrow \text{true}] \]

\[\kappa' = \lambda \sigma'' \zeta' / \lambda \kappa^* . \text{if } \# \kappa^* = \# \kappa^* \text{ then } \kappa(\sigma'', \varepsilon, \zeta')(\kappa^*) \text{ else } \kappa(\sigma'', \varepsilon, \zeta')(\kappa^*) \text{ endif} \]

\[\text{in let } \varphi = \lambda \varepsilon'' \sigma'' \zeta'' / \lambda \kappa'' . \text{if } \zeta''(\alpha^* | 1) \]

\[\text{then } \lambda \kappa'' \varepsilon'' \downarrow 1 (\langle \varphi', \sigma'', \zeta' ', \kappa_{\triangleright} \rangle(last(\kappa^*, 1 + \# \kappa^*))) \]

\[\text{else } \text{wrong("obsolete escape") endif} \]

\[\varphi' = \lambda \varepsilon'' \sigma'' \zeta'' / \lambda \kappa'' . \text{if } \zeta''(\alpha^* | 1) \]

\[\text{then } \lambda \kappa'' = \text{butlast}(\langle \kappa'' > \frac{\# \kappa^*}{\# \kappa^*}, 1 + \# \kappa^*) \]

\[\text{in let } \varphi = \lambda \varepsilon'' \sigma'' \zeta'' / \lambda \kappa'' . \kappa_{\triangleright}(\sigma''', \varepsilon''' \downarrow 1, \zeta''')(\kappa''', \kappa''', \kappa_{\triangleright}(\sigma''', \varepsilon''' \downarrow 1, \zeta''')(\kappa''', \kappa_{\triangleright})(\kappa''', \kappa_{\triangleright})) \]

\[\text{else } \text{wrong("out of extent") endif} \]

\[\text{in } \varepsilon'' \downarrow 1 (\langle \varphi, \varphi', \sigma'', \zeta' ', \kappa_{\triangleright} \rangle(\langle \kappa'' > \frac{\# \kappa^*}{\# \kappa^*})) \]

\[\kappa_{\triangleright}(\sigma, \varepsilon, \zeta) = \lambda \kappa^*. \kappa^* \downarrow 1 (\sigma, \varepsilon, \zeta)(\kappa^* \downarrow 1) \]

\[\text{last}(\kappa^*, i) / \star \text{return the last } i \text{ elements of } \kappa^* / \]

\[\text{butlast}(\kappa^*, i) / \star \text{return all but the last } i \text{ elements of } \kappa^* / \]

Figure 3: Semantics of splitter

(\text{define} \ (\text{visit tree} fn)

 (if (pair? tree)
 (begin (visit (car tree) fn)
 (visit (cdr tree) fn)
 (fn tree)))

We now abstract over this tree walk. For each tree the comparing process must receive the leaf and the partial continuation expressing the rest of the visit (and not the rest of the computation). If they are all equal the comparison goes on otherwise it is aborted. We thus wrap visit into a new function which allows to return at the same time the leaf and the rest of the visit.

(\text{define} \ (\text{make-tree-walker} visit)

 (lambda (tree)
 (splitter
 (lambda (exit grab)
 (visit
 tree
 (lambda (leaf)
 (grab
 (lambda (c)
 (exit (lambda ()
 (cons
 leaf
 (lambda (v)
 (splitter

When a leaf is found, a pair made of this leaf and the partial continuation is returned. The splitter controlling this partial continuation is thus no longer valid and cannot be reused. The partial continuation which is returned is thus wrapped inside a new invocation of splitter, the new grab and exit functions are also updated with respect to this new splitter. It will therefore be possible to make a partial continuation of the restarted partial continuation.

We can now simply compare fringes i.e. sequences of pairs (leaf, continuation) as enumerated by a particular tree-walker:

(\text{define} \ (\text{compare-fringes} walk \ trees)

 (let ((\end (list 'end)) ; sentinel
 (define (end? leaf) (eq? leaf end))
 (define (loop leafs)
 (define (same-leaf? leaf)
 (eq? (car leaf) (car leafs))
 (or ; all trees are finished ?
 (every? end? leafs)
 ; some trees are finished ?
 (if (some? end? leafs) \#f

Page 5
(and (every? same-leaf?
 (cdr leaves))
; all leaves are equal!
(loop (mapcar
 (lambda (leaf)
 ((cdr leaf) end))
 leaves))
)

Finally same-fringe is just:
(define (same-fringe trees)
 (compare-fringes (make-tree-walker visit)
 trees))

Observe the modularity of this solution. The visit function is expressed in direct style and can be varied, for instance to visit every other leaf or numeric leaves only. This visit function does not have to know how it is used; in particular it does not bear the burden of interleaving the various visits of the different trees. Similarly compare-fringe only handles the multiplicity of trees, compares leaves and resumes the visiting processes; it is not concerned with the details of the tree-walking. The whole burden is borne by make-tree-walker which makes computations progress step by step.

This example shows that splitter has the ability to construct complex generators not restricted to simple and reduced internal state held in some variables. Complex generators can compute arbitrary things, be saved in their current state of computation and later resumed. Note that computations within such generators are not restricted and can even use partial continuations.

4 Variants

Other dressings can be imagined for splitter, we investigate two of them that can be put to work in Scheme or other languages.

It might be tempting to create a new type to represent marks of the evaluation stack. The interface to splitter would become:

(splitter (lambda (mark) ...))

Such marks can be used thanks to two new functions which only know how to handle marks: abort and call/pc:

(abort mark (lambda () ...))
(call/pc mark (lambda (c) ...))

The partial continuation is still functional but the mark is now a first class non-procedural object which can be asked whether it is alive or not thanks to a third specialized function:

(alive-mark? mark)

This variant leads to simple type equations, where (Mark τ) is the type of marks created in a context where splitter must yield a τ value.

(splitter : ((Mark τ) → τ)
 abort : (Mark τ) × (Unit → τ) → τ'
 call/pc : (Mark τ) × ((τ' → τ) → τ') → τ'

Obviously we gain a little power since it is now possible to explicitly test if the mark is alive or not but the neat interest of this dressing is that only one object is allocated (the mark) instead of the two synthesized functions abort and call/pc. On the other hand the interface is more complex since at least one type and three more specialized functions have been added to Scheme.

Another variant is to consider that marks are no more first-class objects but must be accessed à la COMMON LISP\(^6\) with ad-hoc special forms.

(splitted label body)
(abort label new-body)
(call/pc label (lambda (c) expression))

This introduces a new namespace, the space of labels which associates names to marks. This space is lexically managed: a label can only be used in the body of the splitter special form binding it. This does not restrict the power of this variant since an abort or call/pc special form referencing this label can be closed in a lambda abstraction and exported outside.

Using this solution makes simpler for a compiler to recognize the places where some optimizations might be performed such as the validity of a mark, static computation of partial continuations or abortion. It also makes the compiler more complex since it introduces new special forms.

Depending on the natural inclination of the embedding language, the splitter facility can be provided under multiple forms. To have first-class marks and specialized functions might be a good choice.

5 Implementation

From the viewpoint of the implementor, splitter induces the same problems as call/cc in Scheme. Above all is the management of the evaluation stack. A partial continuation is represented by a slice of the execution stack. We propose an implementation scheme where partial continuations are not copied in the heap nor copied back onto the execution stack. The technique is closely related to [
\cite{Hieb}] and \cite{Hieb}. Once a partial continuation is reified, the corresponding stack slice is considered as frozen and must not be overwritten before the Garbage Collector unfreezes it.

\(^6\)It is a simple exercise to write the structured lexical non-local exit facilities of COMMON LISP, see \cite{Stern} for return-from with this variant of splitter.
Let us only consider push and pop as the only operations on the evaluation stack. Push allocates new activation records and increments the stack pointer (SP) while pop just decrements it. Observe that pop is non destructive. We must then forbid pushing while SP is in a frozen zone. We thus suppose to have an extra pointer (free-stack or, FS, for short) above which there is no frozen zone: therefore it is always safe to allocate new activation records there, see figurefigstack1. In regular mode only SP is used. When a partial continuation is created or activated, FS is set to SP. Popping activation records is always done with respect to SP. Conversely pushing a frame depends on the mode: in regular mode, pushing a frame is done relatively to SP but if SP is in a frozen slice i.e. if SP<FS then pushing must be done relatively to FS. A special frame (or return address) *R* is then pushed at FS to save the current SP. After that SP is reset to FS (plus some offset) and pushing is performed as usually since we are now in a non-frozen zone. This extra work is only done once since after that SP is higher than FS. When returning to *R*, SP is reset to its old value somewhere in the frozen zone.

![Figure 4: Calling a function from a frozen zone](image4)

An extra stack, the control stack, is necessary. Each times splitter is called, its continuation is pushed onto the control stack. When a partial continuation is created, the corresponding slice of the control stack is copied in the heap, see figure 5. When a partial continuation is called, the current SP is pushed onto the control stack as well as the saved slice. Then SP is set to the top of the partial continuation. Its last frame (*contPOP*) is a special activation record imposing to return where the control stack specifies it.

The benefits of this implementation are: (i) a stack-based discipline with implicit control linkage is used, (ii) copying stack slices is avoided, (iii) mutable locations can be directly put in the stack since stack slices are never duplicated. There are also inconveniences. The technique puts a fix cost on every push (two instructions) to check the current mode i.e. to compare FS and SP. When a stack slice is frozen when set-

![Figure 5: Partial continuation reification](image5)

ting FS, the whole bottom of the stack is frozen. The stack must now be scavenged (as in [Hieb & Dybvik & Bruggeman 90]) and this requires cooperation of the GC and a perfect knowledge of the stack. This probably precludes conservative GCs, but to compact the stack may allow some frame elimination as illustrated in [Saint-James 84, Hanson 90].

The above implementation of splitter is not tail-optimal: the synthesized functions abort and call/pc have to be invalidated when splitter returns. On the other hand, call/pc is tail-optimal. Yet another inconvenience is that strictly tail-recursive calls are not possible from a frozen zone since a new frame has to be pushed at FS. The tail-recursion property is immediately regained since after that calls are performed from a free zone.

6 Related Works

Felleisen and others have introduced prompts and partial continuations in a series of paper [Felleisen 88, Felleisen & Wand & Friedman & Duba 88, Sitaram & Felleisen 90]. Their control operators behave dynamically since control can only abstract control up to the most recent run. We can easily provide these operators:

```scheme
(let ((run-stack '()))
  (set! run
    (lambda (thunk)
      (let ((old-rs run-stack))
        (begin0
          (splitter
            (lambda (abort call/pc)
              (define (cpc f)
                (call/pc
                  (lambda (c)
                    (abort (lambda ()
                        (if c ))))
                  c))
              (set! run-stack
                (cons cpc run-stack)))))
```
(thunk))
(set! run-stack old-rs)))
(set! control (lambda (f))
((car run-stack) f))

The above program records all call/pcs in a stack in order for control to abstract up to the last run\(^7\). Our construct is not limited to the latest context; it is possible to take partial continuations up to different splitters. Sitaram and Felleisen [Sitaram & Felleisen 90] introduced hierarchies to solve the problem of correctly pairing runs and controls but require some protocol to be respected. Our solution solves naturally this problem.

Another major point is that our construct reintroduces dynamic extent continuations which are both useful and efficient.

The “Abstractive Control” paper [Danvy & Filinski 90] introduced two special forms acting as control operators: shift and reset. A denotational semantics accompanies them. Intuitively, a program using these special forms is translated into a regular program with explicit continuations i.e. written in an Extended Continuation Passing Style. These programs can also be directly typed thanks to abstract judgements involving the natural type of the expression and of its continuation yielding another natural type for the final result, see [Danvy & Filinski 89]. The main difference with our work is that they only consider the first embedding contexts (i.e. the head of \(< \kappa > \| \kappa^* \) in our terminology) whereas we count them from the tail. To change \((\text{lambda} \ (\nu^*) \ \pi)\) into \((\text{lambda} \ (\nu^* \ (\text{reset} \ \pi))\) might deeply affect the meaning of a whole program. But to replace it with \((\text{lambda} \ (\nu^* \ (\text{splitter} \ (\text{lambda} \ (k \ j) \ \pi))))\) does not alter it. This property eases modularity.

Hieb and Dyalvig introduced a new construct \texttt{spawn} in [Hieb & Dyalvig 90b]. Although close to our work there are some fundamental differences. \texttt{spawn} is defined in a concurrent context and allows to suspend or resume bunches of processes. \((\text{spawn} \ (\text{lambda} \ (\text{control} \ ...))\) creates a new process controlled by control. When control is invoked, it applies its argument, a monadic function, on the partial continuation up to \texttt{spawn}. Moreover it freezes all the concurrent subcomputations initiated between \texttt{spawn} and the invocation of control. These subcomputations will be resumed when the partial continuation is called. control can only be used while the process is not suspended. \texttt{spawn} can be accurately written with splitter. But since the suspend/resume capabilities are needless but to handle concurrency and forbid to write sequential programs calling control inside control, we therefore simplify \texttt{spawn} to the following sequential version:

\begin{verbatim}
(define (spawn f)
 (define (mk-cpc curr-cpc curr-abort)
 (lambda (c)
 (curr-cpc
 ; takes the current partial continuation
 (lambda (cc)
 (curr-abort ; and aborts it
 (lambda ()
 (c (lambda (v)
 (splitter
 (lambda (na ncpc)
 ; resets the root of the process
 (set! curr-cpc ncpc)
 (set! curr-abort na)
 (cc v)))))))))
 (f (mk-cpc call/pc)
 (f (mk-cpc call/pc abort)))))

(splitter)
 (lambda (abort call/pc)
 (f (mk-cpc call/pc abort)))))
\end{verbatim}

The first difference concerns the lifetime of control which is not reduced to the dynamic extent of \texttt{spawn}. Every times the partial continuation is invoked, it is legal to call control again. We simulated this behavior by wrapping the partial continuation itself within a new splitter. This eases to multiply suspend a computation up to its root (see, for instance, the same-fringe example) but makes more difficult to know what is the partial continuation since it is up to the last point where it has been invoked. Assume that the evaluation order of arguments is from right to left, and consider the following example where the partial continuation itself contains another call to control:

\begin{verbatim}
(splash (lambda (f)
 (cons (f (lambda (c1)
 (cons 1 (c1 4)))
 (f (lambda (c2)
 (cons 2 (c2 3))
)))
\end{verbatim}

The value is \((2 \ 1 \ 4 \ . \ 3)\). The reason is when calling foo, the partial continuation \texttt{c2} is \((\lambda (u) \ (\text{cons} \ (f \ (\lambda (c1) \ (\text{foo} \ c1 \ 4))) \ u))\). The new partial continuation reified by the second \texttt{f} in \texttt{c1} is: \((\lambda (y) \ (\text{cons} \ y \ 3))\) and not the whole partial continuation up to \texttt{spawn} i.e. \((\lambda (v) \ (\text{cons} \ 2 \ (\text{cons} \ v \ 3))\)\). In effect in this case there are two simultaneous roots and Hieb and Dyalvig restrict the partial continuation to take up to the most recent root i.e. the partial continuation is restricted up to the calling site of \texttt{f}.

The analog form using splitter is:

\begin{verbatim}
(splitter)
 (lambda (abort call/pc)
 (cons
 (call/pc
\end{verbatim}
(lambda (c1)
 (abort (lambda () (foo c1 4)))))
(call/pc
(lambda (c2)
 (abort (lambda ()
 (cons 2 (c2 3)))))))

The value, assuming the same order of evaluation\(^8\), is (1 2 4 . 3) since the second call to call/pc reifies up to splitter.

To sum up, our construct controls more precisely extent and still offers spawn.

7 Conclusions

Partial continuations are new and very powerful tools. Their use is nevertheless complex. Not being able to know up to where, escapes (provoked by abort) or partial continuations are created (thanks to call/pc), makes partial continuations nearly useless except for toy programs. Our splitter construct allows to appropriately pair two moments: — marking the evaluation stack, — referring to the lower part of this evaluation stack (under the mark) or referring to the intermediate slice (above the mark) between this mark and the current control point. It is thus possible to write programs using simultaneously multiple marks without interferences. We showed how to use splitter to program generators enumerating leaves of trees as well as we showed how to rebuild call/cc from splitter.

Our view of computation recognizes that computations involves a structure of nested control points. A partial continuation is therefore taken up to an active control point. It is interesting to observe that this view supports the concept of dynamic extent but still allows to define indefinite extent partial continuations.

Acknowledgements

Thanks to Matthias Felleisen, Dorai Sitaram, Olivier Danvy, Pierre Weis and Damien Doligez for their help while drafting, revising and discussing this paper.

Bibliography

[Danvy & Filinski 89] Olivier Danvy, Andrzej Filinski, A Functional Abstraction of Typed Contexts, DIKU report 89/12, DIKU, University of Copenhagen, Denmark, August 1989.

[Hanson 90] Chris Hanson, Efficient Stack Allocation for Tail-Recursive Languages, ACM conference on Lisp and Functional Programming, Nice, France, Juin 1990.

[Saint-James 84] Emmanuel Saint-James, Recursion is More Efficient than Iteration, 1984 ACM symposium on Lisp and Functional Programming, Austin, Texas.

Appendix: Embedding splitter in standard Scheme

In [Sitaram & Felleisen 90] was explained how to program control/run in Scheme. We like this idea since it helps to popularize the concept of partial continuations. The embedding that follows has been designed to mimic a native implementation.

A call to call/cc must be thought of just as a copy of the stack-pointer. Push and pop operations are simulated with cons and cdr. Other allocations in the heap are named with a “make-” prefix. We make explicit the data that are necessary and do not use implicit closures to keep them.

(define stack-of-marker ')

(define (splitter f)
 (let ((marker '())
 (v '())
 (topmarker '())
 (set! v)
 (call/cc
 (lambda (kk)
 (set! marker (cons kk '))
 (set! stack-of-marker
 (cons marker stack-of-marker))
 (let ((v (f
 (make-abort marker)
 (make-call/pc marker))))
 (set-car! (car stack-of-marker)
 '())
 v))))
 (if (not (null? (caar stack-of-marker)))
 ;; Someone did (kk thunk)
 (begin
 ;; markers down to marker are obsolete.
 (obsolete-stack! marker)
 ;; Compute thunk with continuation kk.
 (set! v (v))
 (set-car! (car stack-of-marker)
 '())
)
 (set! topmarker (car stack-of-marker))
 (set! stack-of-marker
 (cdr stack-of-marker))
 (cond
 ;; The continuation is ‘return’
 ((null? (cdr topmarker)) v)
 ;; end of a partial continuation.
 (else ((cdr topmarker) v))))

(define (make-abort marker)
 (lambda (thunk)
 (if (null? (car marker))
 (wrong "obstruct splitter")
 ;; Return to the marker.
 ((car marker) thunk))
)

(define (make-call/pc marker)
 (lambda (g)
 (if (null? (car marker))
 (wrong "out of extent")
 (call/cc
 (lambda (kj)
 (g (make-pc kj marker)))))))

(define (make-pc kj marker)
 (let ((slice (marker-prefix
 stack-of-marker
 marker)))
 (lambda (v)
(call/cc
 (lambda (kc)
 (set! stack-of-marker
 (append slice
 (cons (cons #t kc)
 stack-of-marker))
 (kj v))))

(define (marker-prefix l m)
 (if (eq? (car l) m)
 '()
 (cons (cons #t (cdar l))
 (marker-prefix (cdr l) m))))

(define (obsolete-stack! marker)
 (if (eq? (car stack-of-marker) marker)
 marker
 (begin (set-car! (car stack-of-marker) '())
 (set! stack-of-marker
 (cdr stack-of-marker))
 (obsolete-stack! marker))))