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‡Federal University of Paraná, Department of Informatics, Curitiba, Brazil

E-mail: elias@inf.ufpr.br

Abstract—Reliable broadcast protocol is a fundamental build-
ing block in fault-tolerant distributed systems. It consists of
a basic primitive that provides agreement among processes
of the system on the delivery of each broadcast message,
i.e., either none or all correct processes deliver the message,
despite failures of processes. In this work, we propose a reliable
broadcast solution on top of the VCube, assuming that the sys-
tem is asynchronous. The VCube is an autonomic monitoring
layer that organizes processes on a hypercube overlay which
provides several logarithmic properties even in the presence of
processes failures. We consider that processes fail by crashing,
do not recover, and faults are eventually detected by all correct
processes. The protocol tolerates false suspicions by sending
additional messages to suspected processes but logarithmic
properties of the algorithm are still kept.

Index Terms—Implementation of Distributed Systems, Asyn-
chronous system, Autonomic Computing, Fault-Tolerant
Broadcasts, Spanning trees

1. Introduction

Numerous distributed applications with information dis-
semination requirements rely on a broadcast communication
primitive to send messages to all processes that compose
the application [1]. Formally, reliable broadcast is defined
in terms of two primitives: broadcast(m), which is defined
by the broadcast algorithm and called by the application
to disseminate m to all processes, and deliver(m), which is
defined by the application and called by the broadcast al-
gorithm when message m has been received. The broadcast
algorithm that offers these primitives must ensure that, if
a correct1 process broadcasts a message, then it eventually
delivers the message (validity property). Furthermore, every
correct process delivers a message at most once and only
if that message was previously broadcast by some process
(integrity property).

From an implementation point of view, the broadcast
primitive sends point-to-point messages to each process of

1A correct process is a process that does not fail during execution

the system. However, if the sender fails during the execution
of the broadcast primitive, some processes might not receive
the broadcast message. In order to circumvent this problem,
reliable broadcast ensures, besides the validity and integrity
properties, that even if the sender fails, every correct process
delivers the same set of messages (agreement property) [2].

There exists a considerable amount of literature on reli-
able broadcast algorithms, such as the one where all correct
receivers retransmit all received messages guaranteeing then
the delivery of all broadcast messages by the other correct
processes of the system [3]. We are particularly interested
in solutions that use failure detectors [4] which notify the
broadcast algorithm about processes failures. Upon receiv-
ing such an information, the algorithm reacts in accordance
to tolerate the failure. Another important feature of reliable
broadcast algorithms concerns performance, which is related
to how broadcast messages are diffused to processes. Aim-
ing at scalability and message complexity efficiency, many
reliable broadcasts organize processes on logical spanning
trees. Messages are then diffused over the constructed tree,
therefore providing logarithmic performance [5], [6], [7],
[8], [9] (see Section 2).

This work presents an autonomic reliable broadcast al-
gorithm where messages are transmitted over spanning trees
dynamically built on top of a logical hierarchical hypercube-
like topology. Autonomic systems constantly monitor them-
selves and automatically adapt to changes [10]. The logical
topology is maintained by the underlying VCube monitor-
ing system which also detects failures [11] [12]. VCube
is a distributed diagnosis layer responsible for organizing
processes of the system in a virtual hypercube-like cluster-
based topology which is dynamically re-organized in case of
process failure. When invoked, the VCube gives information
about the liveness of the processes that compose the system.

We assume a fully-connected asynchronous system in
which processes can fail by crashing, and crashes are perma-
nent. Links are reliable. A process that invokes the reliable
broadcast primitive starts the construction of a spanning tree.
This tree is built with information obtained from the VCube,
and is dynamically reconstructed upon detection of a node
crash (process failure).



In a previous work [13], we proposed an autonomic
reliable broadcast algorithm on top of the Hi-ADSD, a
previous version of the VCube. The algorithm guarantees
several logarithmic properties, even when nodes fail, and al-
lows transparent and efficient spanning tree reconstructions.
However, for this solution, we considered a synchronous
model for the system, i.e., there exist known bounds on
message transmission delays and processors’ speed and,
consequently, the VCube needs to provide perfect process
failure detections. On the one hand, the advantage of such
synchronous assumption is that there was no false failure
suspicions and, thus, if the VCube notifies the broadcast
algorithm that a given process is faulty, the algorithm is sure
that it can stop sending message to this faulty process and
then removes it forever from the spanning tree constructions.
On the other hand, the synchronous assumption considerably
restrains the distributed systems and applications that can
use the broadcast protocol since many of the current network
environments are considered asynchronous (there exist no
bounds on message transmission delay or on processors’
speed).

Hence, considering the above constraints, we propose in
this article a new autonomic reliable broadcast algorithm,
using the VCube in an asynchronous model. We assume
that the failure detection service provided by the VCube
is unreliable since it can make mistakes by erroneously
suspecting a correct process (false suspicion) or by not
suspecting a node that has actually crashed. However, upon
detection of its mistake, the VCube corrects it. Further-
more, it also ensures that eventually all failures are detected
(strong completeness property). Note that such false sus-
picions render a broadcast algorithm much more complex
than the previous one since it can induce violation of the
properties. For instance, the algorithm must ensure that a
falsely suspected process must receive and deliver, only
once, all broadcast messages, otherwise the agreement and
integrity properties would be violated. In our solution, false
suspicions are tolerated by sending special messages to
those processes suspected of having failed. We must also
emphasize that our aim is to provide a reliable broadcast
algorithm which is efficient, i.e., that keeps, as much as
possible, the logarithmic properties of the spanning tree
diffusion over the hypercube-like topology. Our algorithm
tolerates up to n-1 node crashes.

The rest of this paper is organized as follows. Section 2
discusses some related work. In Section 3 we describe
the system model while Section 4 briefly describes the
VCube diagnosis algorithm and the hypercube-like topology.
In Section 5, we present the autonomic reliable broadcast
algorithm for asynchronous systems while Section 6 discuss
some performance issue of the algorithm. Finally, Section 7
concludes the paper.

2. Related Work

Many reliable broadcast algorithms of the literature ex-
ploit spanning trees such as [5], [6], [7], [8], [9].

Schneider et. al. introduced in [5] a tree-based fault-
tolerant broadcast algorithm whose root is the process that
starts the broadcast. Each node forwards the message to all
its successors in the tree. If one process p that belongs to
the tree fails, another process assumes the responsibility of
retransmitting the messages that p should have transmitted if
it were correct. Like to our approach, processes can fail by
crashing and the crash of any process is detected after a finite
but unbounded time interval by a failure detection module.
However, the authors do not explain how the algorithm
rebuilds or reorganizes the tree after a process failure.

In [6], a reliable broadcast algorithm is provided by ex-
ploiting disjoint paths between pairs of source and destina-
tion nodes. Multiple-path algorithms are particularly useful
in systems that cannot tolerate the time overhead for detect-
ing faulty processors, but there is an overhead in the number
of duplicated messages. On a star network with n edges, the
algorithm constructs n − 1 directed edge-disjoint spanning
trees. Fault tolerance is achieved by retransmitting the same
messages through a number of edge-disjoint spanning trees.
The algorithm tolerates up to n−2 failure of nodes or edges
and can be adjusted depending on the network reliability.
Similarly, Kim et al. propose in [7] a tree-based solution
to disseminate a message to a large number of receivers
using multiple data paths in a context of time-constrained
dissemination of information. Thus, arguing that reliable
extensions using ack-based failure recovery protocols cannot
support reliable dissemination with time constraints, the
authors exploit the use of multiple data paths trees in order to
conceive a fast and reliable multicast dissemination protocol.
Basically the latter is a forest-based (multiple parents-to-
multiple children) tree structure where each participant node
has multiple parents as well as multiple children. A third
work that exploits multi-paths spanning trees is [8] where
the authors present a reliable broadcast algorithm that runs
on a hypercube and uses disjoint spanning trees for sending
a message through multiple paths.

Raynal et. al. proposed in [9] a reliable tree-based
broadcast algorithm suited to dynamic networks in which
message transfer delays are bounded by a constant of δ
unit of times. Whenever a link appears, its lifetime is at
least δ units of time. The broadcast is based on a spanning-
tree on top of which processes forward received messages
to their respective neighbors. However, as the system is
dynamic, the set of current neighbors of a process p may
consists of a subset of all its neighbors and, therefore, p
has to additionally execute specific statements when a link
re-appears, i.e., forwards the message on this link if it is not
sure that the destination process already has a copy of it.

Similarly to our approach, many existing reliable broad-
cast algorithms exploit spanning trees constructed on
hypercube-like topologies [8], [14], [15]. In [14], the authors
present a fault-tolerant broadcast algorithm for hypercubes
based on binomial trees. The algorithm can recursively re-
generate a faulty subtree, induced by a faulty node, through
one of the leaves of the tree. On the other hand, unlike
our approach, there is a special message for advertising that
the tree must be reconstructed and, in this case, broadcast



messages are not treated by the nodes until the tree is rebuilt.
The HyperCast protocol proposed by [15] organizes the
members of a multicast group in a logical tree embedded
in a hypercube. Labels are assigned to nodes and the one
with the highest label is considered to be the root of the
tree. However, due to process failures, multiple nodes may
consider themselves to be the root and/or different nodes
may have different views of which node is the root.

Leitão et al. present in [16] the HyParView, a hybrid
broadcast solution that combines a tree-based strategy with
a gossip protocol. A broadcast tree is created embedded on
a gossip-based overlay. Broadcast is performed by using
gossip on the tree branches. Later, some of the authors
proposed a second work [17] where they introduced Thicket,
a decentralized algorithm to build and maintain multiple
trees over a single unstructured P2P unstructured overlay
for information diffusion. The authors argue that multiple
trees approach allow that each node to be an internal node
in just a few trees and a leaf node in the remaining of the
trees providing, thus, load distribution as well as redundant
information for fault-tolerance.

In [13], we presented a reliable broadcast solution based
on dynamic spanning trees on top of the Hi-ADSD, a
previous version of the VCube. Multiple trees are dynami-
cally built, including all correct nodes, where each tree root
corresponds to the node that called a broadcast primitive.
Contrarily to the current work, this solution considers that
the system model is synchronous and that the VCube offers
a perfect failure detection.

3. System Model

We consider a distributed system that consists of a finite
set P of n > 1 processes. Each process has a unique
address. Processes {p0, .., pn−1} communicate only by mes-
sage passing. Each single process executes one task and runs
on a single processor. Therefore, the terms node and process
are used interchangeably in this work.

The system is asynchronous, i.e., relative processor
speeds and message transmission delay are unbounded.
Links are reliable, and, thus, messages exchanged between
any two correct processes are never lost, corrupted or du-
plicated. There is no network partitioning.

Processes communicate by sending and receiving mes-
sages. The network is fully connected: each pair of processes
is connected by a bidirectional point-to-point channel. Pro-
cesses are organized in a virtual hypercube-like topology,
called VCube. In a d-dimensional hypercube (d-cube) each
process is identified by a binary address id−1, id−2, i0. Two
processes are connected if their addresses differ by only
one bit. Processes can fail by crashing and, once a process
crashes, it does not recover. If a process never crashes during
the run, it is considered correct or fault-free; otherwise it
is considered to be faulty. After any crash, the topology
changes, but the logarithmic properties of the hypercube are
kept.

We consider that the primitives to send and receive a
message are atomic, but the broadcast primitives are not.

4. The VCube

Let n be the number of processes in the system P .
VCube [11] is a distributed diagnosis algorithm that orga-
nizes the correct processes of the system P in a virtual
hypercube-like topology. In a hypercube of d dimensions,
called d-VCube, there are 2d processes. A process i groups
the other n−1 processes in log2 n clusters, such that cluster
number s has size 2s−1. The ordered set of processes in each
cluster s is denoted by ci,s as follows, in which ⊕ denotes
the bitwise exclusive or operator (xor).

ci,s = {i⊕ 2s−1, ci⊕2s−1,1, ..., ci⊕2s−1,s−1} (1)

A process i tests another process in the ci,s to check
whether it is correct or faulty. It executes a test procedure
and waits for a reply. If the correct reply is received within
an expected time interval, the monitored process is consid-
ered to be alive. Otherwise, it is considered to be faulty. We
should point out that in an asynchronous model, which is the
case in the current work, VCube provides an ureliable failure
detection since it can erroneously suspect a correct process
(false suspicion). If later it detects its mistake, it corrects it.
On the other hand, according to the properties proposed by
Chandra and Toueg [4] for unreliable failure detectors, the
VCube ensures the strong completeness property: eventually
every process that crashes is permanently suspected by every
correct process. Since there are false suspicions, the VCube
does not provide any accuracy property. A VCube provid-
ing both completeness and accuracy could not possibly be
implemented in a fully asynchronous system, according to
Fischer, Lynch and Paterson [18].

Timestamps are used to identify the latest state of the
tested processes. Based on the replies of the tests, process
i connects itself to one fault-free process of each cluster
s, if it exists. If there are no failures, a complete logical
hypercube is created.

Fig. 1 shows the hierarchical cluster-based logical or-
ganization of n = 8 processes connected by a 3-VCube
topology as well as a table which contains the composition
of all ci,s of the 3-VCube.

Let’s consider process p0 and that there are no failures.
The clusters of p0 are shown in the same figure. Each cluster
c0,1, c0,2, and c0,3 is tested once, i.e., p0 only performs tests
on nodes 1, 2, 4 which will then inform p0 about the state
of the other nodes of the respective cluster.

In order to avoid that several processes test the same
processes in a given cluster, process i executes a test on
process j ∈ ci,s only if process i is the first faulty-free
process in cj,s. Thus, any process (faulty or fault-free) is
tested at most once per round, and the latency, i.e., the
number of rounds required for all fault-free processes to
identify that a process has become faulty is log2 n in average
and log22 n rounds in the worst case.



s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6

2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4

3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

Figure 1. VCube hierarchical organization.

5. Reliable Broadcast Algorithm for Asyn-
chronous System

A reliable broadcast algorithm ensures that the same set
of messages is delivered by all correct processes, even if
the sender fails during the transmission. Reliable broadcast
presents three properties [3]:

• Validity: if a correct process broadcasts a message m,
then it eventually delivers m.

• Integrity: every correct process delivers the same mes-
sage at most once (no duplication) and only if that
message was previously broadcast by some process (no
creation).

• Agreement: if a message m is delivered by some correct
process pi, then m is eventually delivered by every
correct process pj . Note that the agreement property
still holds if m is not delivered by any process.

Our reliable broadcast algorithm exploits the virtual
topology maintained by VCube, whenever possible. Each
process creates, thus, a spanning tree rooted at itself to
broadcast a message. The message is forwarded over the
tree and, for every message that a node of the tree sends to
one of its correct neighbor, it waits for the corresponding
acknowledge from this neighbor, confirming the reception
of the message. Algorithm 1 presents the pseudo-code of
our proposal reliable broadcast protocol for an asynchronous
system with n=2d processes. The dimension of the VCube is,
therefore, d. A process gets information, not always reliable,
about the liveness of the other processes by invoking the
VCube. Hence, the trees are dynamically built and auto-
nomically maintained using the hierarchical cluster structure
and the knowledge about faulty (or falsely faulty suspected)
nodes. The algorithm tolerates up to n-1 failures.

Let i and j be two different processes of the system.
The function clusteri(j) = s returns the identifier s of the

cluster of process i that contains process j, 1 ≤ s ≤ d. For
instance, in the 3-cube as shown in Fig. 1, cluster0(1) =
1, cluster0(2) = cluster0(3) = 2 and cluster0(4) =
cluster0(5) = cluster0(6) = cluster0(7) = 3.

5.1. Message types and local variables

Let m be the application message to be transmitted from
a sender process, denoted source, to all other processes in
the system. We consider three types of messages:

• 〈TREE,m〉: message broadcast by the application that
should be forwarded over the VCube to all processes
considered to be correct by the sender;

• 〈DELV,m〉: message sent to processes suspected of
being faulty in order to avoid that false suspicions
induce the no delivery of the message by correct pro-
cesses. The recipient of the message should deliver it
but not forward it;

• 〈ACK,m〉: used as an acknowledgement to confirm
that a TREE message related to m was received.

For the sake of simplicity, we use TREE, DELV, and ACK
to denote these messages.

Every message m keeps two parameters: (1) the iden-
tifier of the process that broadcast m and (2) a timestamp
generated by the process local counter which uniquely iden-
tifies the m. The first message broadcast by a process i
has timestamp 0 and at every new broadcast, i increments
the timestamp by 1. The algorithm can extract these two
parameters from m by respectively calling the functions
source(m) and ts(m).

Process i keeps the following local variables:
• correcti: the set of processes considered correct by pro-

cess i;
• lasti[n]: an array of n elements to keep the last messages

delivered by i (lasti[j] is the last message broadcast by
j that was delivered by i);

• ack seti: a set with all pending acknowledgement mes-
sages of process i. For each message 〈TREE,m〉 re-
ceived by i from process j and retransmitted to process
k, an element 〈j, k,m〉 is added to this set; The symbol
⊥ represents a null element. The asterisk is used as a
wildcard. For instance, 〈j, ∗,m〉 means all pending acks
for a message m received from process j and re-sent to
any other process;

• pendingi: list of the messages received by i that where not
delivered yet because they are “out of order” with regard
to their timestamp, i.e., ts(m) > ts(lasti(source(m))+1;

• historyi: the history of messages that were already broad-
cast by i. This set is used to prevent sending the same
message to the same cluster more than once. 〈j,m, h〉 ∈
historyi indicates that the message m received from
process j was already sent by i to the clusters ci,s for
all s ∈ [1, h].

5.2. Algorithm description

Process i broadcasts a message by calling the
BROADCAST(m) function. Line 7 ensures that a new broad-



Algorithm 1 Reliable broadcast - process i

1: lasti[n]← {⊥, ...,⊥}
2: ack seti ← ∅
3: correcti ← {0, ..., n− 1}
4: pendingi ← ∅
5: historyi ← ∅

6: procedure BROADCAST(message m)
7: wait until ack seti ∩ {〈⊥, ∗, lasti[i]〉} = ∅
8: lasti[i]← m
9: DELIVER(m)

10: BROADCAST TREE(⊥,m, log2n)

11: procedure BROADCAST TREE(process j, message m, integer
h)

12: start← 0
13: if ∃x : 〈j,m, x〉 ∈ historyi then
14: start← x
15: historyi ← historyi\{〈j,m, x〉}
16: historyi ← historyi ∪ {〈j,m,max(start, h)〉}
17: if start < h then
18: for all s ∈ [start+ 1, h] do
19: BROADCAST CLUSTER(j,m, s)

20: procedure BROADCAST CLUSTER(process j, message m, in-
teger s)

21: sent← false
22: for all k ∈ ci,s do
23: if sent = false then
24: if 〈j, k,m〉 ∈ ack seti and k ∈ correcti then
25: sent← true
26: else if k ∈ correcti then
27: SEND(〈TREE,m〉) to pk
28: ack seti ← ack seti ∪ {〈j, k,m〉}
29: sent← true
30: else if 〈j, k,m〉 /∈ ack seti then
31: SEND(〈DELV,m〉) to pk

32: procedure CHECK ACKS(process j, message m)
33: if j 6= ⊥ and ack seti ∩ {〈j, ∗,m〉} = ∅ then

34: SEND(〈ACK,m〉) to pj

35: procedure HANDLE MESSAGE(process j, message m)
36: pendingi ← pendingi ∪ {m}
37: while ∃l ∈ pendingi : source(l) = source(m)
38: ∧(ts(l) = ts(lasti[source(l)]) + 1
39: or lasti[source(l)] = ⊥ ∧ ts(l) = 0) do
40: lasti[source(l)]← l
41: pendingi ← pendingi\{l}
42: DELIVER(l)
43: if source(m) /∈ correcti then
44: BROADCAST TREE(j, lasti[source(m)], log2n)

45: upon receive 〈TREE,m〉 from pj
46: HANDLE MESSAGE(m)
47: BROADCAST TREE(j,m, clusteri(j)− 1)
48: CHECK ACKS(j,m)

49: upon receive 〈DELV,m〉 from pj
50: HANDLE MESSAGE(m)

51: upon receive 〈ACK,m〉 from pj
52: for all k = x : 〈x, j,m〉 ∈ ack seti do
53: ack seti ← ack seti\{〈k, j,m〉}
54: CHECK ACKS(k,m)

55: upon notifying crash(j)
56: correcti ← correcti\{j}
57: for all p = x,m = y : 〈x, j, y〉 ∈ ack seti ∩ {〈∗, j, ∗〉}

do
58: BROADCAST CLUSTER(p,m, clusteri(j))
59: ack seti ← ack seti\{〈p, j,m〉}
60: CHECK ACKS(p,m)
61: if lasti[j] 6= ⊥ then
62: BROADCAST TREE(j, lasti[j], log2n)

63: upon notifying up(j)
64: correcti ← correcti ∪ {j}

cast starts only after the previous one has been completed,
i.e., there is no pending acks for the lasti[i] message. Note
that some processes might not have received the previous
message yet because of false suspicions. Then, the received
message m is locally delivered to i (line 9) and, by calling
the function BROADCAST TREE (line 10), i forwards m to
its neighbors in the VCube. To this end, it calls, for each
cluster s ∈ [1, log2n], the function BROADCAST CLUSTER
that sends a TREE message to the first process k which
is correct in the cluster (line 27). To those processes that
are not correct, i.e, suspected of being crashed, and placed
before k in the cluster, a DELV message (line 31) is sent
to them. Notice that in both cases, the messages are sent
provided i has not already forwarded m, received from j,
to k. For every sent TREE message the corresponding ack
is included in the list of pending acks (line 28).

Let’s consider the 3-VCube topology of Figure 2. Fig-
ure 2(a) shows a fault-free scenario where process 0 (p0)

(a) No failures (b) p4 suspected

Figure 2. Reliable broadcast - process 0 (p0)

broadcasts a message. After delivering the message to itself,



p0 sends a copy of the message to p1, p2, and p4, which are
neighbors of p0 and the first correct process on each of i’s
clusters.

Upon reception of a message 〈TREE,m〉 from process
j (line 45), process i calls the function HANDLE MESSAGE.
In this function, m is added to the set of pending mes-
sages and then all pending messages which were broadcast
by the same process that broadcast m (source(m)) are
delivered in increasing order of timestamps, provided no
message is missing in the sequence of timestamps (lines 36
- 42). In the same HANDLE MESSAGE function, if i sus-
pects that source(m) failed, it restarts the broadcast of
lasti[source(m)] (line 44) to ensure that every correct pro-
cess receives the message even if source(m) crashed in the
middle of the broadcast. Otherwise, by calling the function
BROADCAST TREE with parameter h = clusteri(j) − 1
(line 47), m is forwarded to all neighbors of i in each sub-
cluster of i that should receive m. Figure 2(a) shows the
forwarding of m from p4 to p5.

If process i is a leaf in the spanning tree of the broadcast
(clusteri(j)−1 = 0) or if all neighbors of i (i.e., children of
i in the tree) that should receive the message are suspected
of being crashed, i sends an ACK message to the process
which sent m to it, by calling function CHECK ACKS (line
34).

If process i receives a 〈DELV,m〉 message from j
(line 49), it means that j falsely suspects i of being crashed
and has decided to trust another process with the forwarding
of the message to the rest of the tree. Therefore i can simply
call the HANDLE MESSAGE function to deliver the message
and does not need to call BROADCAST TREE.

Whenever i receives a message 〈ACK,m〉, it removes
the corresponding ack from set of pending acks (line 53)
and, by calling the function CHECK ACKS, if there are
no more pending acks for message m, i sends an ACK
message to the process j which sent m to it (line 34). If
j = ⊥, the ACK message has reached the process that has
broadcast m (source(m)) and the ACK message does not
need to be forwarded.

The detection of the failure of process j is notified
to i (crash(j)). It is worth pointing out that this detection
might be a false suspicion. Three actions are taken by i
upon receiving such a notification: (1) update of the set
of processes that it considers correct (line 56); (2) removal
from the set of pending acks of those acks whose related
message m has been retransmitted to j (line 59); (3) re-
sending to k, the next neighbor of j in the cluster of j
(if k exists), of those messages previously sent to j. The
re-sending of these messages triggers the propagation of
messages over a new spanning tree (line 58). For instance,
in Figure 2(b), after the notification of the failure of p4, p0
sends message m to p5 since the latter is the next fault-free
neighbor of p4 in c0,3 = {4, 5, 6, 7} (cluster s = 3) The
message is then propagated to the other correct processes
of the cluster, i.e., processes p6 and p7. Notice that if p4 is
considered faulty by p0 before the start of the broadcast, p0
sends a DELV message to p4 in order to ensure the reception
and handle of m by p4. Finally, in case of crash of j, i has

to re-broadcast the last message broadcast by j (line 62).
Notice that, in this case, the history variable is used in
order to prevent i from re-rebroadcasting the message to
those clusters that i has already sent the same message.

If VCube detects that it had falsely suspected process j,
it corrects its mistake and notifies i which then includes j
in its set of correct processes (line 64).

5.3. Proof of correctness

In this section we will prove that Algorithm 1 imple-
ments a reliable broadcast.

Lemma 1. Algorithm 1 ensures the validity property of
reliable broadcast.

Proof. If a process i broadcasts a message m, the only way
that i would not deliver m is if i waits forever on line 7. This
wait is interrupted when the set ack seti contains no more
pending acknowledgements related to the message lasti[i]
previously broadcast by i.

For any process j that i sent lasti[i] to, i added a
pending ack in ack seti (line 28). If j is correct, then it
will eventually answer with an ACK message (line 34) and
i will remove 〈⊥, j, lasti[j]〉 from ack seti on line 53. If j
is faulty, then i will eventually detect the crash and remove
the pending ack on line 59.

As a result, all of the pending acks for lasti[i] will
eventually be removed from ack seti and i will deliver m
on line 9.

Line 9 then ensures that i will deliver the message before
broadcasting it.

Lemma 2. For any processes i and j, the value of
ts(lasti[j]) only increases over time.

Proof. For the sake of simplicity, we take the convention
that ts(⊥) = −1. The lasti array is only modified on lines 8
and 40.

The first case can only happen when i broadcasts a new
message m, and since timestamps of new messages sent by a
same processes have to be increasing, ts(m) > ts(lasti[i]).
When i calls the broadcast procedure with m, ts(lasti[i])
will therefore increase on line 8.

The other way for lasti to be modified is on line 40.
lasti[source(l)] will then be updated with message l if
lasti[source(l)] = ⊥ and ts(l) = 0 (and therefore
ts(lasti[source(l)]) = −1 < ts(l)), or if ts(l) =
ts(lasti[source(l)]) + 1. It follows that lasti[source(l) is
only updated if the new value of ts(lasti[source(l)]) would
be superior to the old one.

Lemma 3. Algorithm 1 ensures the integrity property of
reliable broadcast.

Proof. Processes only deliver a message if they are broad-
casting it themselves (line 9) or if the message is in their
pendingi set (line 42). Messages are only added to the
pendingi set on line 36, after they have been received from
another process. Since the links are reliable and do not create



messages, it follows that a message is delivered only if it
was previously broadcast (there is no creation of messages).

To show that there is no duplication of messages, let us
consider two cases:

• source(m) = i. Process i called the broadcast proce-
dure with parameter m. As proved in Lemma 1, i will
deliver m on line 9. Since the broadcast procedure is
only called once with a given message, the only way
that i would deliver m a second time is on line 42.
Since lasti[i] was set to m on line 8, it follows from
Lemma 2 that m will never qualify to pass the test on
lines 37 – 39.

• source(m) 6= i. Process i is not the emitter of message
m, and did not call the broadcast procedure with
m. Therefore the only way for i to deliver m is on
line 42. Before i delivers m for the first time, it sets
lasti[source(m)] to m on line 40. It then follows from
Lemma 2 that m will never again qualify to pass the
test on lines 37 – 39, and therefore i can deliver m at
most once.

Lemma 4. Algorithm 1 ensures the agreement property of
reliable broadcast.

Proof. Let m be a message broadcast by a process i. We
consider two cases:

• i is correct. It can be shown by induction that every
correct process receives m.
As a basis of the induction, let us consider the case
where n = 2 and P = {i, j}. It follows that ci,1 = {j}.
Therefore i will send m to j on line 31 if i suspects j
or on line 27 otherwise. If j is correct, it will eventually
receive m since the links are reliable, and will deliver
m on line 42. i will also deliver m, by virtue of the
validity property.
We now have to prove that if every correct process
receives m for n = 2k, it is also the case for n = 2k+1.
The system of size 2k+1 can be seen as two subsystems
P1 = {i}∪

⋃k
x=1 ci,x and P2 = ci,k+1 such that |P1| =

|P2| = 2k.
The broadcast tree and broadcast cluster proce-
dures ensure that for every s ∈ [1, k+1], i will send m
to at least one process in ci,s. Let j be the first process
in ci,k+1. If j is correct, it will eventually receive m.
If j is faulty and i detected the crash prior to the
broadcast, i will send the message to j anyway in case
it is a false suspicion (line 31) but it will also send it
to another process in ci,k+1 as a precaution (line 27). i
will keep doing so until it has sent the TREE message
to a non-suspected process in ci,k+1, or until it has sent
the message to all the processes in ci,k+1.
If j is faulty and i only detects the crash after the
broadcast, the broadcast cluster procedure will be
called again on line 58, which ensures once again that
i will send the message to a non-suspected process in
ci,k+1. As a result, unless all the processes in ci,k+1

are faulty, at least one correct process in ci,k+1 will

eventually receive m. This correct process will then
broadcast m to the rest of the P2 subsystem on line 47.
Since a correct process broadcasts m in both
subsystems P1 and P2, and since both subsystems are
of size 2k, it follows that every correct process in P
will eventually receive m.

• i is faulty. If i crashes before sending m to any process,
then no correct process delivers m and the agreement
property is verified. If i crashes after the broadcast is
done, then everything happens as if i was correct. If i
crashes after sending m to some processes and a correct
process j receives m, then j will eventually detect the
failure of i. If j detects the crash before receiving m,
when it receives m it will restart a full broadcast of
m on line 44. If j only detects the crash of i after
receiving m, it will also restart a full broadcast of m
on line 62. Since j is correct, every correct process will
eventually receive m.

Theorem 1. Algorithm 1 implements a reliable broadcast.

Proof. The proof follows directly from Lemmas 1, 3, and 4.

6. Performance Discussion

The goal of exploiting the VCube overlay in our solution
is to provide an efficient broadcast where each process sends
at most log2n messages. However, this complexity cannot be
ensured at all times in an asynchronous system where false
suspicions can arise. Algorithm 1 aims to take advantage
of the VCube whenever possible while still ensuring the
properties of a reliable broadcast despite false suspicions.

In the best case scenario where no process is ever
suspected of failure, each process will send at most one
message per cluster (line 27). Therefore n − 1 TREE
messages will be sent in total (since no process will be sent
the same message twice) with no single process sending
more than log2n messages. This is the example presented
in Figure 2(a).

If a process other than the source of the broadcast is
suspected before the broadcast, there will be n− 2 TREE
messages and one DELV message sent. A single process
might send up to log2n TREE messages plus one DELV
message per suspected process. This is the example of
Figure 2(b).

If the source of the broadcast suspects everyone else,
then it will send n − 1 DELV messages. In this case,
Algorithm 1 is equivalent to a one-to-all algorithm where
one process sends the message directly to all others, losing,
thus, the advantages of tree topology properties, such as
scalability.

The main cost of suspicions lies in the fact that when a
process is suspected, its last broadcast must be resent. This
is the purpose of lines 44 and 62. Such a re-broadcast is



an unavoidable consequence of the existence of false suspi-
cions, necessary in order to ensure the agreement property
of reliable broadcast.

Note that the fact that the information about a node
failure is false or true has no difference in the impact on the
performance of the broadcast algorithm in terms of message
complexity.

7. Conclusion and Future Work

This article presented a reliable broadcast algorithm for
message-passing distributed systems prone to crash fail-
ures on asynchronous environments. It tolerates up to n-
1 failures. For broadcasting a message, the algorithm dy-
namically builds a spanning tree over a virtual hypercube
topology provided by the underlying monitor system VCube.
In case of failure, the tree is dynamically reconstructed.
To this end, the VCube provides information about node
failures. However, as the system is asynchronous, it can
make mistake falsely suspecting no faulty nodes. Such false
suspicions are tolerated by the algorithm by sending special
messages to those processes suspected of having failed.
In summary, whenever possible, the algorithm exploits the
hypercube properties offered by the VCube while ensuring
the properties of the reliable broadcast, even in case of false
suspicions.

As future work, we intend to implement our algorithm
and conduct extensive simulation experiments in order to
compare its performance in terms of latency and number of
messages in different scenarios with and without failure of
nodes as well as false suspicions.
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