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Abstract: Scalable distributed systems, systems whose processing power remains propor-
tional to the number of component processors, require a programming methodology where
an application developer may take existing software modules and plug them together to form
a new application. To allow mistrusting modules to interact, the underlying kernel support
must o�er protection barriers which do not impede performance. The wide-ranging nature
of modern applications used on larger scale systems means that existing kernel functions
may not necessarily be the most e�cient for an application. The kernel must therefore
allow an application to dynamically install a function in the kernel; this is one aspect of
customization. This paper argues that customization support is one aspect of �ne-grained
protection for modules needing CPU supervisor privilege. We describe the kernel support
required for �ne grained protection. Basically, our approach relies on the assignment of a
single address space to an application with application modules having their own domain

of protection. An experiment was made by modifying the Mach kernel; results show that
inter-domain communication by protected procedure call is up to 5 times faster than
Mach 3.0 IPC.
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Int�egration d'un m�ecanisme de protection m�emoire �a

grain �n dans un micro-noyau : prise en compte des

besoins des applications distribu�ees modernes

R�esum�e : Les syst�emes distribu�es extensibles sont caract�eris�es par une puissance de calcul
qui crô�t avec le nombre d'�el�ements processeurs. �Etant donn�e la complexit�e de ces syst�emes,
leur programmation s'oriente vers une m�ethodologie de d�eveloppement reposant sur la com-
position et la r�eutilisation de composants logiciels existants. Comme ces composants sont
par nature h�et�erog�enes, le noyau doit o�rir un m�ecanisme de protection qui permette une
coop�eration entre des composants de niveau de con�ance di��erents sans pour autant sacri-
�er les performances. Par ailleurs, la diversit�e des applications rencontr�ees sur des grands
syst�emes entrâ�ne une multiplication des politiques de gestions des diverses ressources qui
doit être mises en �uvre dans le noyau. Il en r�esulte une ine�cacit�e du noyau soit parce que
les politiques existantes sont trop g�en�eralistes soit parce qu'elles sont trop sp�eci�ques. Une
solution repose sur l'installation dynamique, par application, de fonctions syst�emes ; cette
fonctionnalit�e est un aspect de la sp�ecialisation de syst�emes d'exploitation. Nous montrons
que le support syst�eme de la sp�ecialisation rel�eve de la protection m�emoire �a grain �n, i.e.,
les fonctions syst�emes sont des composants logiciels poss�edant le privil�ege superviseur. Cet
article pr�esente un m�ecanisme de protection �a grain �n permettant de satisfaire ces besoins
de protection. Notre approche repose sur l'association �a chaque application d'un espace
d'adressage unique, chaque composant de l'application poss�edant son propre domaine de

protection. Notre m�ecanisme a �et�e int�egr�e au sein du micro-noyau Mach 3.0 ; les r�esultats
de nos exp�erimentations montrent que les communications entre domaines par utilisation
d'un appel de proc�edure prot�eg�e peuvent être jusqu'�a cinq fois plus rapides que l'IPC
de Mach 3.0.

Mots-cl�e : micro-noyau, protection m�emoire de grain �n, domaine de protection, sp�eciali-
sation de syst�emes
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1 Introduction

A distributed system is said to be scalable if its processing power remains proportional to
the number of its component processors. High bandwidth networks and increased processor
speeds means that scalability is now viable, even for large scale architectures. Larger ar-
chitectures attract more users and consequently more wide-ranging applications. To reduce
software development costs, a convenient programmingmethodology for applications in such
systems is to build the application from several existing user-level and kernel-level software
modules (e.g., window managers, databases).

1.1 On the Need for Fine-Grained Protection

The modules available to a programmer are heterogeneous in several ways. They may be
written in di�erent programming languages, they may come from di�erent development
sources (e.g., di�erent development groups, public domain, software vendors) or they may
be at di�erent stages of development (e.g, debugging, �nal testing). One implication of this
is that any application will be composed of modules of di�ering trust levels. Consequently,
the underlying system must be able to isolate the software components without penalizing
inter-module communication performance. More speci�cally, we need to be able to construct
a trusted application from non-trusted components. Moreover, in-built operating system
components are not always able to match the requirements of a given application [2]; conse-
quently, it should be possible to safely install an application module which can access the
system's low-level resources and therefore implement an application-speci�c policy. The re-
placement of an existing system function with an application speci�c function, or installation
of a new one, is known as customization. Customized functions do not need to have access
to all of the kernel's address space; rather, they run in a protection unit within this space.
We thus argue that customization support is one aspect of �ne-grained protection for mo-
dules needing CPU supervisor privilege. Consequently, both should be handled by the kernel
within a single paradigm.

In order to provide e�cient support for �ne-grained protection, we propose to introduce
multiple domains of protection (DP) within a task, thereby preserving the association of a
unique address space with an application and consequently easing data sharing, since all
entities of the application name each other with the same names. A DP de�nes a set of
memory code and data regions with the property that the data may only be accessed by a
thread executing the code of the domain; a thread changes protection domains by executing
a protected procedure call (PPC). This paper describes the extension of a standard micro-
kernel, Mach 3.0 [1], incorporating this paradigm, while preserving binary compability, thus
allowing the reuse of existing software.
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4 Ciar�an Bryce & Gilles Muller

1.2 Why Enrich the Kernel with Domains of Protection

Application programmers formerly relied on language compilers to detect protection viola-
tions, when this was possible, though the presence of modules written in di�erent program-
ming languages complicates this issue. Another approach is software-based fault isolation,
where the compiler inserts instructions into the code which veri�es the legality of addresses
used [16]; this however leads to an overhead for each address dereference. Consequently, due
to the lack of a convenient protection mechanism, the only solution is to place mistrusting
application components in di�erent tasks. Tasks as protection units have successfully allowed
the implementation of protected sub-systems (e.g., OS personalities, �le systems, commu-
nication layers) using the micro-kernel technology and the client-server paradigm. However,
using multiple tasks within a single application complicates programming and makes inter-
domain communication costly. As a result, application programmers often choose to ignore
protection for their applications.

In kernels like Mach, communication is heavy partly due to the necessity of packaging
the message into a port, switching threads and then switching address and port spaces.
We adopt the procedural model of inter-domain communication and avoid task switching.
The mechanism also takes advantage of the fact that DPs share a common address space
to optimize for cases where DPs overlap and where the TLB contains entries visible in the
called and calling DPs, thereby avoiding the "cold-start" overhead of a switched domain.
These optimization techniques, described in a later section, mean that a PPC can be up to
5 times faster than a Mach 3.0 IPC.

Finally, our kernel model also simpli�es the application development process. During the
debugging phase, modules under test must be placed in di�erent fault domains at least
until a su�cient degree of mutual con�dence is reached [16]; this usually means di�erent
tasks. Since an application prototype using DPs runs in the unique address space that the
completed application will eventually use, the transition from the prototype to the running
system is simpli�ed since only the linking procedure is altered.

1.3 Plan of Paper

The remainder of this paper is organized as follows. The next section outlines the kernel
model. Section 3 describes important points of the implementation, in particular, PPC and
the modi�cations made to the Mach kernel. Section 4 presents a performance evaluation for
a PC/i486 platform. Section 5 looks at related work and our conclusions are presented in
section 6 along with a description of current work.

INRIA
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2 Introducing Domains of Protection into the Micro-

Kernel

2.1 Basic Principles

In our kernel model, an application is associated with a task. The task is almost the same
abstraction as in Mach; it provides a unique naming environment, containing an address and
port space; in addition, it includes a set of domains of protection (DPs). A DP is a subset of
a task's memory space. A thread executes in a single DP at any given moment and can only
access the memory regions belonging to, or visible in, that DP. Like all Mach abstractions,
a DP is named by a port.

The change in a thread's DP visibility is e�ected by a protected procedure call (PPC), a
mechanism similar to LRPC [3], where a thread traps into the kernel and comes back out
executing in the called domain. On a PPC, there is no need to change the name environment
or any task related kernel structure. Entry points into a DP for PPCs are speci�ed by a
dp register() system call: entry points are the addresses from which a thread executes on
entering into a domain. There are several other extra primitives in the model; these are for
creating and destroying DPs as well as for rendering memory regions already mapped into
a task visible and invisible to a DP.

The kernel model has two special kinds of DPs:

� DP root: of which there is one per task and which has visibility over all of the task's
memory regions. DP root is the default DP and is automatically created on task
creation. Standard Mach applications execute in DP root without any modi�cation
to their binaries.

� Supervisor DPs, are DPs in a task address space in which threads execute with super-
visor CPU privilege, thus allowing customization to be implemented on an application
basis. That is, since a thread executes in a supervisor DP with high privilege, an ap-
plication can use its own trusted operating system routine. One such example is a
specialized driver.

Access to ports is also controlled on a DP basis. As is the case with addressing, ports are
uniformly named by threads of a task, no matter what their current DP; a dp pass port right()
kernel operation is used to transfer a port right from one DP to another.

2.2 Protected Modules

From an application's point of view, a DP contains a protected programmed module. This is
an encapsulated entity, that is, it can only be accessed through its procedural interface. Pro-
tected modules are associated with stubs which push the parameters and calls the dp call()
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trap; this is the kernel traps which changes DPs and retarts the thread in the called DP. A
PPC possesses the following signature:

ppc (dp port, entry point, proc id,[capability], procedure parameters)

The entry point parameter identi�es the protected module; it is the value of the entry
point address for the DP speci�ed in the dp register() call; there may be several entry points
to a DP. The proc id parameter names the procedure of the protected module to be invoked;
it is an integer which o�sets into a jump table for the protected module. The capability para-
meter is optional; its goal is to control access by other protected modules to it. In our model,
a capability is a sparse password capability (a random number), kept in user space, which
is created for the called module on initialization; the module must validate the capability
itself on each PPC. The fact that the capability mechanism is implemented in the protected
module means that the module can implement its own access control policy: algorithmic
based access control mechanisms are more expressive than traditional data structure ba-
sed mechanisms such as the old capability systems [10]. Other systems using this password
capability approach are Opal [6] and Amoeba [12]; related work is discussed in section 5.

Protected modules contain a header code which is invoked on each PPC; this code is placed
at the enclosing DP's entry point. The header manages parameter passing data structures
and veri�es the validity of the capability parameter. Protected modules are mainly created
by the operating system loader; a loader not only creates tasks and maps memory regions,
but it must also create the DPs for the module within the task and assign the entry points
using dp create() and dp register() respectively. It then makes some of the task's memory
regions visible in the DPs. Finally, after having installed the code and memory segments of
the module, it can choose a capability.

A loader is just a task and any other task may also initialize a protected module. This de-
legation of DP creation is important in applications requiring dynamic module creation such
as object-based systems. Supervisor DPs are installed, by necessity, by a special operating
system loader task, loader. Only loader can set entry points or change the memory visi-
bility of supervisor DPs. To enforce this requirement, the operating system creates a 512-bit
password capability on booting; this capability is needed for all modi�cations to the entry
point set and memory visibility of supervisor DPs. loader, one of the �rst tasks created
on booting, can read the value of this capability. This approach requires that loader be
trusted not to divulge the value of the capability to other tasks, but, in any case, a user
has no business using an operating system whose loader is not trusted. Finally note that
calling a supervisor module is no di�erent from calling a normalmodule from the application
programmer's point of view: the signature given above is also used.

INRIA
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3 Implementing Domains of Protection

This section is devoted to the implementation of DPs. We �rst describe modi�cations made
to the Mach 3.0 kernel for managing DPs and then the PPC implementation and its possible
optimizations.

3.1 Modifying the Mach 3.0 Micro-kernel

Modi�cations to Mach mainly concern the memory subsystem even if some minor changes
have been made to the port and thread subsytems. The memory subsystem is made up of
the following entities: vm map, pmap, kernel k objects and pages.

� vm map: This structure represents the task's address space. It contains a list of vm-
map entrys, one for each of the task's memory region. A vm map entry de�nes the
region's inheritance values, memory manager, size and a pointer to the kernel k object
containing pages of the region currently mapped into memory. The vm map module
implements Mach virtual memory operations such as vm protect(), vm allocate().

� kernel k object: This structure is used for managing (those parts of) regions currently
mapped into physical memory. A k object principally contains the port of the region's
external pager and a list of physical pages.

� Page: The page lists contain entries for all pages of physical memory. They indicate if
a page has been read or modi�ed, if it is in the process of being written or read from
disk, if the page must be returned to the memory server or if the physical page is free
or non-existent. A page descriptor (entry in a page list) contains the physical address
of the page as well as a pointer to the external pager to which the virtual page belongs.

� pmap: This structure contains the virtual address to physical address bindings of the
task. The pmap module is processor dependent and there is a single pmap structure
per address space. The pmap module's role is to implement the following operations:
�nd the physical address bound to some virtual address, remove this binding or add
new ones, �nd the virtual addresses associated with some physical address, change the
protection rights associated with some address binding, and to verify if a given virtual
memory page has been read or written.

The kernel in Mach has its own address space with its own pmap structure; the kernel
space is mapped into all task address spaces at the same virtual address in the high part of
each task's virtual address space.

One of our implementation goals was to keep the modi�cations as much as possible to the
vm map and pmap modules. The pmap structure now references an address space containing
several DPs. Several operations have been added to the pmap module in order to create,
destroy, activate and deactivate DPs as well as change the visibility of a memory region in
the DP.

RR n�2647



8 Ciar�an Bryce & Gilles Muller

The vm map module has been modi�ed as follow: (i) each vm map entry contains a list
of the DPs in which a region is visible; (ii) an additional structure, dp map, is allocated
per task and contains a list of dp map entrys, one for each of the DPs of the task. A DP's
dp map entry contains a list of the regions visible in the DP, the rwx rights, a ag indicating
if the DP is supervisor or not, port, parent task pointer, inheritance values for cases where
a DP is a clone of its parent.

As presented in section 4, our approach has been evaluated on a PC/i486 platform.Typical
CISC processors such as the MC68000 and Intel x86 families do not support the notion of
protection domain in their virtual memory subsystem. An address space is linear and is
represented by a translation tree. A thread executing in a task has direct access to all
memory pages currently resident in physical memory and referenced by the task's memory
tree. Since each memory reference must be validated, the default implementation of a DP is
to assign it its own translation tree, which will obviously be a subset of the task's translation
tree. Changing DPs thus involves changing the page table root pointer.

When a page fault occurs in Mach, the kernel consults the vm map of the task to determine
to which memory region, and thus to which memory object, the page belongs. The kernel
veri�es that the page is not actually in memory before sending a request to the page's
external pager. The entry in the translation tree is updated once the page is brought into
main memory. In our case, only the pmap of the DP which generated the fault is updated; if
the page is visible in other DPs, then their translation trees will be updated whenever they
generate a page fault. Since the page can be in memory, fault resolution in these latter cases
is less costly. This approach corresponds to the Mach philosophy of lazy evaluation [1].

Whenever a region is mapped into a task, only the page tree of DP root is updated since
only this DP can initially access the region until a dp make visible() is executed. Whenever
the protection rights of DP root on a memory region are changed, the kernel veri�es that
no other DP has more rights for the region than DP root. All the information necessary
for this call can in any case be found in the vm map structure of the task.

Currently in Mach, whenever the kernel must verify if a page has been references or
modi�ed, it consults the translation tree of each task which has mapped the page. Thus,
by assigning one pmap per DP, there is no need to alter neither this algorithm nor its
implementation.

3.2 Basic PPC Execution Schema

The PPC implementation is based on an optimization of LRPC [3] for a single addressing
environment. LRPC is itself an optimization of RPC for address spaces situated on the same
processor and where the parameters transferred are non-complex. The essential di�erence of

INRIA
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PPC to (L)RPC is that, in PPC, there is no need for special procedures which package com-
plex pointer structure parameters (like linked lists) since these entities are named universally
by the calling and called domains via the application's address space.

There are three basic data structures in a PPC: A-stacks, E-stacks and linkage segments.
An A-stack is a memory region mapped into the calling and called domains and is used to
hold the transferred parameters. An E-stack is a memory region allocated for the stack of the
executing thread; a thread thus possesses a sequence of E-stacks, one for each of the domains
that it has traversed. However, a thread can only access the E-stack of its current domain.
The linkage segment is a kernel visible entity which, for each PPC, holds the thread's return
program counter and the stack pointer address for the calling domain.

Phase 1 - Compilation and Loading During compilation and loading, communication
stubs are generated for the calling and called modules - there being a generator for each
language. To avoid (in C) the double copy of parameters on a procedure call - a copy on the
thread stack followed by a copy onto the A-stack: the stubs are implemented as assembly
code macros. The code of the stub chooses an A-stack which is free. In the case where the
calling and called DPs are not disjoint, then the use of A-stacks is not always necessary.
This is particularly the case where the called DP is an extension of the calling since the
caller can read parameters directly. The return parameters must then be placed in caller
visible memory. On DP creation, the kernel allocates memory in the DP for the E-stacks.
The number of E-stacks in a DP represents the maximum degree of parallelism of the DP.

Phase 2 - Connection This phase installs the communication channels between the DPs.
The A-stacks are mapped into both domains using the dp make visible() primitive. The
number of A-stacks represents the maximum number of concurrent PPCs to the domain.
The connection is normally made on the �rst PPC between the two domains.

Phase 3 - Call & return When a module makes a PPC, its communication stub: chooses
a free A-stack, stacks the parameters onto the A-stack and calls the system trap dp call().
In the dp call() trap, the kernel, saves the stack pointer and the return address in the
thread's linkage segment, chooses a new E-stack, changes DP memory visibility, veri�es the
validity of the entry point and of the procedure identi�er and then and resumes the thread
execution at the procedure address. On returning from a PPC, the called module executes
the dp return() trap which, recovers the old stack pointer and return address, changes the
DP memory visibility, resumes thread execution and the calling stubs then frees the A-stack.

3.3 Optimizing PPC

There are two possible optimizations for PPCs arising out of the unity of the application's
address space: (i) optimizing calls to supervisor DPs, (ii) selectively invalidatingTLB entries.
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10 Ciar�an Bryce & Gilles Muller

3.3.1 Optimizing PPC for supervisor DPs

The PPCs to supervisor modules, i.e., those modules which run in supervisor DPs, also
give rise to optimizations. TLBs generally contain an attribute for each entry indicating
if the entry is visible only in user-space or also in supervisor space. Thus, the MMU has
a functionality similar to that of a protection lookaside bu�er [9] and region visibility is
fully managed by the MMU when changing the cpu privilege within the dp call trap and
return. Moreover, there is no need to allocate an A-stack since the supervisor DP has kernel
visibility; the routine is forcibly trusted so that there is no need to allocate a new E-Stack.

3.3.2 Optimizing PPC with selective TLB invalidation

In the basic PPC schema, a DP switch is implemented by changing the MMU translation
tree root pointer, thus invalidating all TLB entries on some CISC processors (e.g., i486).
However, when the calling and caller DPs overlap, some TLB entries are unnecessarily
invalidated - an entry which has just been ushed may be re�lled. For instance, about 25%
of the overhead in a nil LRPC call is due to the initial TLB misses in the called domain
[3]. Thus, on a DP switch, it is sometimes better to modify the translation tree and then
to selectively invalidate TLB entries than to perform a global ush. The TLB overhead in
the case where the TLB is ushed equals the cost of invalidating the TLB plus the cost of
the misses on the entries in F , where F is the set of addresses used by the called DP which
would lead to an entry of the TLB being loaded for the �rst time were the TLB initially
empty. Subsequent loads do not interest us as the cost of these misses is not inuenced by
whether the TLB was globally or selectively invalidated at DP switch time. tlbglob is the
cost of globally invalidating the TLB, tlbmiss, the cost (in terms of supplementary processor
cycles) of accessing a memory word when its virtual address is not in the TLB, # denotes
set cardinality. Thus, the overhead of a global TLB invalidation is:

tlbglob + (#F � tlbmiss)

In the general case, the overhead of the selective invalidation caller is the cost of invali-
dating entries in the TLB not visible in the called DP, plus the cost of the TLB misses on
the set F for its elements not already in TLB, plus the cost of altering the page table entries
(PTE) to reect the new visibility:

#(N n C) � tlbsel + ((#F �#(F \ C)) � tlbmiss) + (D � y)

Parameters are: tlbsel, the cost of selectively invalidating an entry in the TLB. N , the
set of entries in the TLB following a DP switch but before execution starts in the called
DP. C is a subset of N, containing those TLB entries which are valid in the called DP. y is
the cost of writing a new value to a PTE. D is the di�erence in page size between the two
DPs, that is, the number of pages visible in the called DP though not in the calling. The
term #(F \ C) depends on the behavior of the called function: how many caller's entries
are reused. Its value falls between [0 .. #F]. Let us rename it in �#F with � in [0 .. 1].
Consequently, a selective invalidation is cheaper when:

(#(N n C) � tlbsel)� (�#F � tlbmiss) + (D � y) < tlbglob

INRIA
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Analysing PPC to an englobing DP Englobing DPs are useful for implementing trus-
ted sub-systems which do not need to run in a supervisor DP. Examples include safe object
runtimes and secure execution environments where the application behavior is controlled.
We now analyse the gain of selective invalidation when calling an englobing DP with the
i486 as a target processor.

On the call, there is no need for TLB invalidations since addresses of the caller are also
visible in the called DP. (N n C) is therefore zero (N will contain kernel entries after the
trap though these obviously cannot be used by the called DP). In the i486, y equals 2: an
instruction for loading the PTE value to a register and then a second instruction which
writes it to the PTE address. tlbglob equals 4. For a page in physical memory, tlbmiss is
13 processor cycles in the fastest case (worse for us), and 29 in the slowest case (where
the referenced and dirty bits of the page's table descriptor must be set by the processor).
Consequently, selective invalidation is better when:

D < ((�#F � 13) + 4)=2

The worst case, is when � is 0 ; D must be equal to 1. This is unlikely since there is
sharing between the two DPs due to parameter passing. The best case is when � is 1; For
a typical #F equal to 20, D must be less than 132 for selective invalidation to be more
e�cient. In practice, � depends mainly on the size and memory mapping of parameters. In
an i486, the size of the TLB is 32 and kernel takes few entries during trap execution and
PTE modi�cation, thus reducing the value of �. Also, it should be said that we must use
absolute addressing to invalidate a single TLB entry and so know the address beforehand
from analysis. This information can be retrieved from link and binding phases.

For the return from call, F now applies to those entries loaded by the calling DP (i.e.,
results return by the procedure). The only di�erence to the above formula is that the �rst
term for the selective invalidation (#(N n C)) becomes D ; the kernel cannot know what
DP addresses visible in the called DP have been loaded into the TLB during the procedure
call so it must remove all (a selective TLB invalidation is 11 cycles when the entry is there
and 12 when it is not). For maximum and minimum � and an F -set of size 20, a selective
invalidation turns out to be more e�cient when D is less than 20 and 0 for minimum and
maximum � respectively. The following subsection contains a more applicative evalution of
the mechanism.

4 Performance Evaluation

In order to evaluate the performance of protection domains, we extended an OSF Norma
MK 78 version of Mach 3.0. Most of the modi�cations are done in C; only a few assembly
code routines were needed in the dp call() and dp return() traps for stacking the parameters
to the C-implemented trap routines. For our test we have consider the execution of a small
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12 Ciar�an Bryce & Gilles Muller

procedure Max (), which returns the maximum of two integers, in order to evaluate the
overhead of our mechanims against other solutions. The results are shown in the �rst table
below for a system running on a PC/i486 66 Mhz.

No. Implementation Execution Time
1 PPC (no TLB optimization) 24.2 �secs
2 PPC (with TLB optimization) 16.2 �secs

3 Separate Tasks 100.9 �secs
4 User Library 0.8 �secs

5 System Call (Trap) 6.7 �secs
6 System Call (Port) 48.8 �secs

The �rst row gives is the cost of the Max() procedure when executed in a DP disjoint
from its calling module's. The cost is broken down as follows:

Task Execution Time
A-Stack Management 1.5 �secs

dp call() trap 11.1 �secs
dp return() trap 11.1 �secs
Max () Procedure 0.5 �secs

Total 24.2 �secs

As we mentioned, the TLB is invalidated in the dp call() and dp return() traps in the
i486 implementation. Thus, the Max procedure is executed from a cold TLB; the cost of
executing Max() with a warm TLB (in a loop) is about 0.2 �secs.

The second row is the cost of executing Max () in a DP which is an extension of the calling
DP. The TLB is selectively invalidated. The procedure is called in a loop and the TLB is
still warm for the caller when the procedure returns. Moreover, the execution times of the
two traps are reduced since the TLB invalidation that normally happens also invalidates
kernel entries. The third row corresponds to an emulation of DPs using multiple tasks. PPC
is implemented by a message on a port and hando� scheduling [5] is used. IPC is thus more
than 5 times slower than an optimized PPC which it is still 20 times slower than a user
level library implementation (see row 4) though there is no protection between the caller
and the calling modules. The �fth row gives the cost of Max() when it is implemented as a
trap based system call. The thread enters into the kernel via a processor gate; a jump table
is then consulted which maps a system call number to a kernel routine. Mach system calls
implemented in this way include mach thread self which returns the port of the executing
thread. The execution time is very low and the called function is protected from the caller.
The call (overhead) here is very similar to a PPC to a supervisor DP. However, this approach
does not allow dynamic loading - the kernel must be recompiled, relinked and rebooted. The
sixth row gives the execution time when the procedure is implemented by a system call
which uses ports: the call is translated into a stub which sends the request to a port; the
request is eventually read and processed by the kernel and the result is passed back in the
same way. Finally note that as the duration of the called DP execution increases, the e�ect
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of the TLB-optimized/non-optimized tradeo� trickles out; there is still a performance gain
since even a non-optimized PPC performs better than the traditional IPC.

5 Related Work

The ideas forwarded in this paper stem from three domains: protection, optimized IPC
systems and customization.

Protection in Operating Systems Capability systems [10], and Hydra in particular,
are probably the most achieved systems with protection features. Hydra provides capability-
based operating system support for abstract data types. Protection domains in Hydra are
heavyweight due to the complexity of the protection mechanisms. Moreover, although each
entity is uniquely named, within a domain these entities are named by their index into the
domain's capability list. Thus the system must convert names exchanged between domains
on the y. Not only do these mechanisms make inter-domain communication more costly,
but the system programming model is not used by general purpose applications.

Domains of protection have also been introduced in operating systems based on a single
64-bit virtual address space such as Opal [6]. These systems resolve the problem of unity
of addresses without compromising protection. The main advantage of single address space
operating systems is to simplify memory management. However, this approach does have
its own set of problems. Firstly, it requires processors with larger address spaces. Moreover,
compatibility with standard libraries using absolute and PC-relative addressing modes is not
ensured. In a single address space system, these modes designate a single address in a system
whereas in a multi-space operating system, these addresses denote the private data of the
modules. Notably, Unix cannot be run on these systems because of the semantics of the fork
command where one address space is copied into another [6]. Finally, address contiguity
for applications is more di�cult to achieve since an application's naming environment is
dependent upon others; this is important for data structures like records, objects and arrays
belonging to low level languages such as C.

Optimized IPC Systems The best known works on optimized RPC is by Bershad et
al. on Light-weight RPC (LRPC) [3] and L3 [11] with the latter kernel being designed from
scratch having fast IPC as its dominant objective. The LRPC model has been adopted in
several other systems. The Spring kernel [8] uses LRPC to support cross address space me-
thod invocations for an object-based system. Ford & Lepreau have integrated a migrating
thread model into Mach 3.0 [7]; like our kernel, IPC is much faster and there is no loss of
compatibility for existing OSF/1 binaries. Nevertheless, all these systems use tasks as pro-
tection units. In the DP approach, the primary goal was protection, though this eventually
led us to optimise the IPC.
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Customization in Operating Systems Customization in operating systems is currently
one of the hotter topics in operating system research [2]. One of the most interesting works is
SPIN [4]. In this kernel, application-speci�c code sequences called spindles are dynamically
linked into the kernel; the interface and implementation of spindles is left open to the
application programmer. A system allocator manages basic resources such as page frames
and communication bandwidth; user allocators, implemented as spindles, rent the resources
thus allowing applications to implement their own resource management strategies. SPIN's
bene�t relies in how to build more modular kernel. Our interest is seeing how customization
should be handled by the kernel from a protection and address space point of view.

One way for kernels to allow a system function to be rede�ned for a particular application
is to implemented the new function in the kernel. The Chorus micro-kernel [13] permits to
dynamically add servers (e.g., supervisor actors) which are able to run with a supervisor pri-
vilege and share the kernel address space. In [15], the kernel dynamically synthesizes e�cient
RPC stubs from procedure signatures and links the code to itself. The major advantage of
these two approaches is their e�ciency - the customized code is directly accessible through
a kernel trap. On the other hand, the major drawback is that they are not scalable: the size
of the kernel's address space bounds the number of procedures that can be integrated within
the kernel. Moreover, they introduce the need for a kernel space reclamation strategy and if
the customization is on a per application basis, protection problems arise since customized
code is globally accessible. The SunOS system [14] system has allowing hooks allowing users
to install their own drivers in user space (and to install kernel modules), even dynamically
without having to reboot the system. This is restricted though since user programs using
them should run with supervisor privilege and some modes of device activity (e.g., DMA)
are not possible.

6 Conclusions and Future Work

In this paper, we have discussed a method for implementing �ne-grained protection domains
within a Mach task's address space with a view to allowing modules of di�ering trust levels,
and di�erent development origins, to be integrated into a unique naming space ; this allows
a trusted application to be built from non-trusted components.

Our results show that PPC provides fast intra-application RPC (e.g., 24.2 �secs on a
PC/486 66 Mhz); PPC outperforms Mach 3.0 IPC by a factor of 4. Furthermore, it is
sometime possible to optimize PPC by selectively invalidating TLB entries, thus reducing
PPC overhead (e.g., 16.2 �secs). Concerning customization, our approach allows certain
system functions to be tailored to a particular application's needs ; we are particularly
interested in implementing application speci�c device drivers which run in supervisor DPs.
Finally, it o�ers compatibility for Mach-based applications.

INRIA



Matching Micro-Kernels to Modern Applications using Fine-Grained Memory Protection15

Our initial results indicate that protection domains can be implemented in Mach without
extensive kernel modi�cation. Though we have chosen Mach as a workbench to implement
our approach, we believe that the approach is equally applicable to other micro-kernels such
as Chorus [13]. The model is currently being developed into a complete versioning prototype
on a Chorus platform where we would also like to evaluate our approach on modern RISC
processors.
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Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
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