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Abstract: In this paper, we show that the adaptation of distributed software compo-
nents can be performed by extending network behavior with Application-Speci�c Protocols
(ASPs). We propose to program ASPs in PLAN-P, a domain speci�c language designed
for active networks. We illustrate the application scope of ASPs with three examples: (i)
audio broadcasting with bandwidth adaptation in routers, (ii) an extensible HTTP server
with load-balancing facilities, (iii) a multipoint MPEG server derived from a point-to-point
server. To reconcile portability and e�ciency, the PLAN-P run-time system includes a JIT
compiler which is generated automatically from a portable interpreter. Measurements show
no performance degradation due to PLAN-P; an ASP can be as e�cient as a built-in C ver-
sion of the same program. Finally, we show that our implementation framework for PLAN-P
can be easily evolved, since it is based on an interpreter.
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Adaptation d'applications distribuées au moyen de

réseaux extensibles

Résumé : Dans ce papier, nous montrons que l'adaptation de composants logiciels dans
les systèmes distribués peut être réalisée par extension du comportement du réseau par
des protocoles dédiés à une application, appelés ASPs pour Application-Speci�c Protocols.
Nous proposons de programmer les ASPs en PLAN-P, un langage dédié à la conception
de réseaux actifs. Nous illustrons le domaine d'application des ASPs au moyen de trois
exemples : (i) la di�usion de données audio avec adaptation de la bande passante dans les
routeurs, (ii) un serveur HTTP extensible avec répartition de la charge, (iii) un serveur
MPEG multipoint dérivé d'un server point-à-point. A�n de reconcilier portabilité et e�ca-
cité, le système d'exécution de PLAN-P repose sur un compilateur juste-à-temps (JIT) qui
est généré automatiquement à partir d'un interprète portable. Nos mesures ne montre pas
de dégradation de performances duent à PLAN-P ; un ASP peut être aussi rapide qu'une
version du même programme résidante dans le routeur et écrite en C. Finalement, nous
montrons que le schéma de conception utilisé dans le développement de PLAN-P facilite les
évolutions futures, en raison de sa structuration reposant sur un interprète.

Mots-clé : Adaptation, Réseaux actifs, Langages dédiés, Spécialisation, Interprètes, Dif-
fusion de données audio, Serveur HTTP extensible.
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1 Introduction

For several years, the evolution of distributed computing has been in�uenced by several
factors including: (i) the diversi�cation of the type of information exchanged from numeric
data to multimedia information such as audio and video; (ii) migration of the software ar-
chitecture from the simple client-server scheme to complex n-clients/m-servers distributed
architectures with data broadcasting ; (iii) an increasing variety of hardware architectures
(i.e., laptop, PC, workstation) and networks (i.e., mobile phone, wavelan, Ethernet, Fast-
Ethernet). This diversity in software, hardware, and data raises the need for solutions
permitting the adaptation of existing distributed software components to a changing envi-
ronment.

Transparent software reuse is one of the key issues in adaptation, since todays software
components are often too complex to be easily modi�ed, and their source code is generally
unavailable to the end-user. The aim of this paper is to show that certain adaptations can be
achieved by changing the way components communicate without alterating the components
themselves. For that, we propose to extend the network behavior with Application-Speci�c
Protocols (i.e., ASPs) that can be loaded both in routers and in client/server machines.

Application Speci�c Protocols

ASPs are derived from active network protocols [16, 34]. While active networks have been
targeted toward network routing and monitoring, ASPs additionally perform various opera-
tions on packets (e.g., (un-)compression, data �ltering, string matching) that enable one to
project new behaviors onto an existing application. For instance, it is possible to compress or
degrade information, so as to reduce bandwidth consumption and avoid congestion on a high
loaded link. ASPs provide a simple way of connecting together existing components while
providing new functionalities. For instance, by designing an ASP that routes requests over
several machines, one can build an easily-scalable cluster-based server. In such applications,
the main advantage of ASPs is to provide a high degree of con�gurability.

The fact that ASPs can be downloaded into routers permits new quality of service (QoS)
functionalities to be added to multipoint applications, such as video and audio broadcasting,
as shown in section 3.1. As an example, PLAN-P provides primitives that can be used to
degrade a 16 bit stereo audio signal into an 8 bit stereo/monaural signal.

While QoS adaptation can be easily implemented at the end-points in a simple client-
server architecture [7, 26], directly transferring this strategy to multipoint applications re-
duces the global performance to the bandwidth of the slowest segment of the architecture.
By performing the QoS adaptation on the router, signal degradation is on a per segment
basis without a�ecting the global architecture. Also, since measurements are performed lo-
cally on the router, adaptation can occur rapidly in reaction to changes in the environment.
In contrast, feedback-driven approaches [7, 21] must wait for the results of a distributed
computation.
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4 Scott Thibault, Jérôme Marant, Gilles Muller

Extensible Network Support for Programming ASPs

The introduction of extensibility into networks, however, raises a number of issues [34]. A
�rst problem is that of safety and security; A protocol that is dynamically loaded into a
kernel could be a Trojan horse and network routers are shared resources. A second problem
is portability. Given the heterogeneity of the network, the module executing ASPs should
be highly portable. A third problem is e�ciency. The execution of ASPs must be e�cient
in order to maintain the tra�c rate of the application.

We address these issues by programming ASPs in an extended version of the PLAN-P
language [36]. PLAN-P is a Domain Speci�c Language (i.e., DSL) that we originally designed
for writing active network protocols. Using PLAN-P provides the following advantages:

� Portability without loss of e�ciency. The easiest way to o�er portability is to have
an execution scheme relying on source code download and interpretation. However,
source code interpretation generally leads to very poor performance [29]. The PLAN-
P solution to the dilemma between performance and portability is to automatically
generate a Just-In-Time (JIT) compiler from a portable interpreter written in C. JIT
compiler generation relies on a program specializer for C called Tempo [10]. From
the PLAN-P interpreter, Tempo generates a dedicated run-time specializer (the JIT
compiler) which can be embedded in the router and host kernels. Binary programs
produced by the JIT compiler are e�cient; we have shown that a PLAN-P Ethernet
bridge can be as e�cient as an in-kernel built-in C programmed bridge [36].

� Safety and security. Because of their simple semantics and restrictions, DSLs make
it possible to determine properties typically undecidable in general-purpose languages
(e.g., termination) [16, 19, 30]. PLAN-P programs can automatically be checked to
guarantee that: packets do not cycle within the network (without a run-time resource
bound), all packets are delivered, and packet duplication is linear. Each of these
properties can be automatically checked due to certain restrictions or domain-speci�c
attributes of the language, without which, automatic proof would be impossible.

Contributions of this paper

PLAN-P was initially focused toward packet routing. In order to design ASPs, we have
extended PLAN-P with new constructs and primitives that enable concise packet treatment
and higher level functionalities. To summarize, the contributions of this paper are the
following:

� Adapting distributed applications with Application-Speci�c Protocols. We
show that ASPs are a �exible, rapid and e�cient solution for adapting distributed
applications in order to enrich them with new functionalities without changing the
original application code. We illustrate this idea with three examples that demons-
trate the application scope of ASPs: (i) audio broadcasting with bandwidth adaptation
in routers, (ii) an extensible HTTP server with load-balancing facilities, (iii) a multi-
point MPEG server derived from a point-to-point server with intelligent MPEG tra�c
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Adapting Distributed Applications Using Extensible Networks 5

duplication. These examples have been tested on a LAN, with SUN workstations as
routers and the PLAN-P run-time system integrated as a Solaris kernel module.

From the performance standpoint, no tra�c rate degradation is induced by the ASP on
the audio and MPEG examples. For the virtual HTTP server example, the ASP-based
server is as e�cient as a built-in C programmed server. Also, we are able to serve up
to 1.75 the load of a single server with a cluster built from two physical servers.

For each of these examples, the average size of the ASP is about 130 lines of PLAN-P.
Such conciseness allows easy maintenance and a rapid adaptation to evolving needs.
For the audio broadcasting example, this permits testing and evaluating di�erent band-
width adaptation policies. In the case of the virtual HTTP server, the ASP can be
easily changed so as to permit the addition/removal of a physical server, or to match
a new network topology.

� Operating System Design and Domain-Speci�c Languages

We show that our DSL framework for adaptation can be easily evolved to meet chan-
ging requirements. Adaptive systems is a research area where the needs and solutions
are still rapidly evolving. Therefore, the operating system designer is faced with con�ic-
ting problems, such as how to guarantee the �exibility and performance of a system
component while still being able to easily debug it. One solution to providing extensi-
bility is to provide a DSL interface to operating system components. Our framework
based on DSL and interpreter specialization provides �exibility for an evolving DSL
while maintaining the e�ciency of a compiled DSL.

The advantage of our framework is that an interpreter is simple to extend compared
to a compiler. Because the language is small, an interpreter for a DSL such as PLAN-
P is also small (about 8000 lines of C); that makes even easier its modi�cation. A
second advantage of our framework is that new functionalities can be tested within
the interpreter, as long as good performance is not required. Therefore, generation of
the JIT compiler from the interpreter can be delayed until functionalities are debugged.
Due to this high degree of �exibility, evolving PLAN-P from packet routing to ASPs
was easy, and did not require major restructuring.

The rest of the paper is organized as follows. Section 2 presents the PLAN-P language,
safety properties that can be veri�ed for PLAN-P programs and the execution scheme relying
on an automatically generated JIT compiler. Section 3 describes the three applications we
have developed with ASPs. Section 4 details related work. Section 5 describes our future
plans for enriching PLAN-P and addressing other applications. Section 6 concludes with
assessments.

2 Overview of PLAN-P

The PLAN-P language is originally based on PLAN, a Programming Language for Active
Networks [16]. While PLAN-P retains most of the SML-like syntax of PLAN, the semantics
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6 Scott Thibault, Jérôme Marant, Gilles Muller

are signi�cantly di�erent in order to treat a larger scope of applications, ranging from pure
active network protocols to ASPs.

Application Component

OSPLAN-P RouterOS

HostHost

IP / PLAN-P

UDPTCP

IP

Application Component

IP / PLAN-P IP / PLAN-P

Standard Router

UDPTCP

Figure 1: PLAN-P software architecture

Figure 1 depicts the PLAN-P architecture. This architecture is based on IP and allows
PLAN-P programs to be used to build applications based on IP, UDP, or TCP. The PLAN-P
system does not require any changes to existing packet formats, and thus, PLAN-P routers
operate seamlessly within existing networks. PLAN-P programs are downloaded into the
IP/PLAN-P layer on the end-host machines and/or any number of routers in the network.
These programs replace the standard packet processing behavior of the IP layer in order to
perform application-speci�c processing. A PLAN-P program can specify new behavior for
all packets or only packets belonging to a given application.

The de�nition of a PLAN-P protocol consists of a set of channel speci�cations. Each
channel represents a stream of packets that are treated with the same behavior. Channels
are described by a channel function, which de�nes the name of the channel, the type of the
channel state, the type of packets the channel applies to, and the behavior of the channel
on these packets. Figure 2 shows an example channel de�nition. Each channel function has
three parameters: the protocol state, the channel state, and the packet. The protocol state
is shared between all channels, whereas the channel state is local to the channel. When
packets are sent on a user-de�ned channel, the packet is tagged for identi�cation. However,
in order to treat packets from existing applications, channels given the distinguished name
network speci�es behavior that is applied to all packets that match the type speci�ed for
the packet argument. For example, the packet type in �gure 2 is ip*tcp*blob1, and thus
speci�es the behavior to be applied to all TCP packets.

The execution model of a network channel is as follows. When a packet arrives, its type
is determined from the packet headers. If the type matches the type speci�ed in the channel
declaration then the channel function will be invoked to process the packet. The function is
passed as arguments the current protocol state, the current channel state, and the packet.

1This is a tuple type in ML notation. The #n operator extracts the n th element.
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Adapting Distributed Applications Using Extensible Networks 7

After processing the packet, the channel function can forward the packet or a new packet
using the OnRemote primitive. Finally, the function must return new values for the protocol
and channel state.

The PLAN-P fragment in �gure 2 is taken from the load balancing HTTP server protocol
(see section 3.2). The fragment detects incoming requests and forwards them to one of two
physical servers. The getSetS function, not shown, picks a physical server and records the
chosen server in a hash table in order to forward future packets on the new connection. All
other functions calls shown are to built-in PLAN-P primitives.

...

channel network(ps : int, ss : (int*host*host) hash_table, p : ip*tcp*blob)

initstate mkTable(256) is

let

val iph : ip = #1 p

val tcph : tcp = #2 p

val body : blob = #3 p

in

if (tcpDst(tcph) = 80) then

-- incoming HTTP requests

let

val con : int = getSetS(ipSrc(iph), ipDst(iph), (tcph), ss, ps)

in

if (con = 0 ) then

-- replace the logical server by server 0

(OnRemote(network, (ipDstSet(iph, 131.254.60.81), tcph, body));

(con,ss))

else

-- replace the logical server by server 1

(OnRemote(network, (ipDstSet(iph, 131.254.60.109), tcph, body));

(con,ss))

end

else

...

Figure 2: PLAN-P fragment of a load balancing protocol for an HTTP server

2.1 Safety and Security

One of the most important advantages of using a DSL for extensible systems is the possibility
of automatic veri�cation for safety and security. This is particularly important for system
software that operates within the kernel. Security is important because the kernel is shared
among users. Safety is important because of the di�culty of debugging code within the
kernel. Also, in the case of PLAN-P, applications are distributed, further increasing the
di�culty of debugging. In this section, we present several properties that are inherent in
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8 Scott Thibault, Jérôme Marant, Gilles Muller

or can be veri�ed for PLAN-P programs due to the fact that PLAN-P is a DSL. These
properties are described in more detail in a previous paper [36].

Local termination. Local termination means that the local processing of a packet on a
given node is guaranteed to terminate. PLAN-P programs, by construction, are guaranteed
to locally terminate. This is a direct result of restricting the language to not allow recursion
or unbounded loops.

Global termination. Calls to the OnRemote primitive represent a recursive call on a
remote machine. If this recursion does not terminate, a packet may cycle forever on the
network. Thus, although restrictions on the language guarantee local termination, they are
not su�cient to guarantee global termination. One solution is to introduce a resource bound,
which is decremented on each hop, similar to the time-to-live �eld of IP [28]. This is not
entirely satisfying because it introduces a safety problem of unintended program termination.
However, by making an assumption that the IP routing tables do not contain cycles, we can
prove that PLAN-P programs do not cycle.

Guaranteed packet delivery. It is also possible to statically check that all packets are
delivered. To prove this safety property, we assume that the underlying network is reliable
(i.e., it does not lose packets)2. The basis of the proof is as follows. If packets are guaranteed
not to cycle (as proven above), the program handles all exceptions (i.e., it can not terminate
due to an unhandled exception), and packets are forwarded (or delivered) for all execution
paths (i.e., the program does not intentionally drop packets), then we are guaranteed that
the packet will be delivered.

Safe packet duplication. Finally, it is possible to verify that packets are not duplicated
in an exponential manner. This property is veri�ed by checking that for all execution paths
there exists at most one OnRemote or OnNeighbor statement whose channel argument might
create copies of a packet. This property is proved using a standard �x-point induction [2].

It is desirable to verify security properties within the PLAN-P run-time system in order
to prevent denial of service due to erroneous or malicious programs. Thus, when programs
are downloaded into the network layer, programs should be analyzed and rejected if they can
not be shown to terminate or to exhibit non-exponential packet duplication. Although the
global termination and packet duplication analyses developed for PLAN-P are conservative,
they cover a su�cient number of cases. Even in cases where a �good� protocol is rejected,
it is sometimes possible to alter the protocol such that it will pass the analyses. Of course,
there are also some legitimate protocols that can not be proven to terminate (e.g., packet
forwarding for mobile computing) or may duplicate packets exponentially (e.g., multicast).
In this case, authentication should be used to allow privileged users to download protocols
that are not veri�ed.

2Since we are interested in the reliability of the program and not the network, this assumption is appro-
priate.
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Adapting Distributed Applications Using Extensible Networks 9

The program veri�cation/authentication system has not yet been implemented. However,
the analyses are not complicated and could be implemented with existing tools for generating
program analyses and model checking. The veri�cation of termination is based on exhaustive
state exploration while that of packet duplication is based on a �x-point computation. The
size of the state space that must be explored for termination is on the order of rd2d, where r

is the number of calls to OnRemote or OnNeighbor and d is the number of possible end-host
destinations. Both of these numbers are typically small. For most protocols, the only two IP
addresses available to the program are the source and destination address of the IP header,
and thus, d = 2. The �x-point analysis to check for packet duplications assigns a boolean
value to each protocol channel on each iteration. Thus, the number iterations required to
reach a �x-point are at most 2c, where c is the number of channels.

2.2 Automatic Generation of a JIT Compiler

While the use of a DSL can allow automatic veri�cation of important program properties,
these analyses require the program source in order to perfrom late checking. Consequently,
the DSL program must be interpreted or compiled at run time when the program is received.
While interpreters are simpler to write than compilers, they are also slower. We have pre-
viously shown that, using a technique called partial evaluation, an e�cient implementation
of a PLAN-P program can be automatically generated from an interpreter [35, 36]. Further-
more, this can be done at run time, providing the functionality of a just-in-time compiler
(JIT).

Partial evaluation is an automatic program transformation that, when applied to in-
terpreters, transforms a language interpreter into a program generator for that language
[17]. Traditionally, this program generator generates programs in source code form. Consel
and Noël have developed a technique, called run-time specialization, which permits partial
evaluation to be performed at run time [11]. When applied to interpreters, the result is a
program generator that generates programs in machine code. Therefore, by using run-time
specialization, a partial evaluator can be used to automatically generate a PLAN-P JIT
from a PLAN-P interpreter.

Audio Broadcasting Audio Broadcasting Extensible MPEG MPEG
(router) (client) Web Server (monitor) (client)

Number of lines 68 28 91 161 33

Code generation 11.6 6.2 15.3 53.9 6.1
time (ms)

Figure 3: Code generation time (ms) for PLAN-P programs)

The approach proposed by Consel and Noël performs run time code generation by assem-
bling and patching machine code templates at run time. These templates, and the program
that assembles and patches them are automatically generated and compiled at compile time.
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10 Scott Thibault, Jérôme Marant, Gilles Muller

This approach is very portable because the machine code templates are generated using a
standard C compiler (i.e., gcc). Since this approach only assembles and patches templates
at run time, it is very e�cient. Figure 3 shows the time required to generate code for the
PLAN-P programs used in the experiments described in section 3.

2.3 Extending PLAN-P for ASPs

In order to facilitate the development of ASPs, we have made some extensions to PLAN-P.
These changes include the addition of some language primitives and the ability to de�ne
multiple channels of the same name (overloaded channels).

Since ASPs represent a slightly di�erent domain than active network applications, it
is normal that some new primitives would be required. Extending the interpreter with a
new primitive involves de�ning two C functions. One function performs the calculation of
the primitive, while the second function computes the return type of the primitive given
the types of its arguments. Since the implementation framework is based on the partial
evaluation of an interpreter, after extending the interpreter, one need only regenerate the
specializer.

val CmdA : int = 1

val CmdB : int = 2

channel network(ps : unit, ss : unit, p : ip*tcp*char*int) is

if charPos(#3 p)=CmdA then

(print("CmdA: "); println(#4 p); (ps,ss))

else

(ps,ss)

channel network(ps : unit, ss : unit, p : ip*tcp*char*bool) is

if charPos(#3 p)=CmdB then

(print("CmdB: "); println(#4 p); (ps,ss))

else

(ps,ss)

Figure 4: Overloaded channel example

The ability to have overloaded channels was introduced to facilitate the description of
protocols for existing applications. When writing new PLAN-P applications, the application
sends di�erently typed packets on di�erent user-de�ned channels. The channel identi�er is
stored in the packet. However, when writing protocols for existing applications, packets do
not contain explicit type information, and a special PLAN-P channel must be used which
treats all packets. In this case it is up to the programmer to �lter out the packets that
correspond to the application. For example, in the PLAN-P fragment shown in �gure 2,
the �rst statement uses the TCP destination port to test whether the packet is an HTTP
packet. A �ltering problem arises when the same application sends di�erent types of packets

INRIA



Adapting Distributed Applications Using Extensible Networks 11

on the same connection. For example, an application might send packets whose �rst byte
speci�es the type of the packet, and the data which follows depends on the value of this
�rst byte. Since channel packets are typed, multiple channels are required for the di�erent
types of packets. The example in �gure 4 shows how overloaded channels can treat these
applications.

2.4 Current Status and Availability

The PLAN-P run-time system has been implemented as a Solaris loadable kernel module.
This module includes both an interpreter for PLAN-P and the PLAN-P JIT generated using
partial evaluation. The JIT was generated using Tempo, a partial evaluator for C which
performs both compile-time and run-time specialization [9, 10, 22]. Our experiments with
this module have shown that a PLAN-P program compiled with this JIT incurs no overhead
in overall system performance in comparison to the same program written in C and compiled
o�-line with gcc [36]. Furthermore, in comparison to Java, which is another mobile code
approach, the generated program is twice as fast as an equivalent Java program compiled
with Harissa [23], an optimizing o�-line byte-code compiler.

The size of the interpreter is about 8000 lines of C, excluding the lexer and parser which
are automatically generated. The size of the Solaris module is about 1Mb and includes the
lexer, parser, PLAN-P interpreter, and PLAN-P JIT. One third of this size is due to the
lexer and parser. These could be removed by downloading a binary abstract syntax tree
rather than program text.

Tempo is currently available for Sparc and Intel architecture. It can be retrieved from
http://www.irisa.fr/compose/tempo. The PLAN-P run-time system and all experiments
described in the next section are available from http://www.irisa.fr/compose/plan-p.

3 Experiments

In this section, we illustrate the application scope of ASPs with three experiments. The
�rst experiment describes how to add Qos adaptation to an existing audio broadcasting
application. The second experiment shows how to build an extensible HTTP server. The
third experiment presents how to transform a point-to-point MPEG server into a multipoint
one.

3.1 Audio Broadcasting

This section presents an experiment with a distributed audio broadcasting application. The
experiment demonstrates the use of PLAN-P to add new QoS functionality to an existing
application, without changing the application. Additionally, this new functionality provides
�ner-grain adaptation than that possible by modifying the application to use software feed-
back as in end-to-end approaches [6]. The audio broadcasting application is a simple utility
that broadcasts CD quality audio from an audio CD or radio card using IP multicast.

RR n�3484



12 Scott Thibault, Jérôme Marant, Gilles Muller

PC with
Radio card

IRISA

Load
generator

Client

PLAN-P
router

Figure 5: Audio broadcasting network architecture

The goal of the experiment was to use PLAN-P to add network adaptation to the audio
application. The adaptation strategy chosen for the experiment is to adapt the audio quality
in order to control the bandwidth consumed by the audio tra�c. When bandwidth is
limited, the audio quality is reduced, and thus, audio tra�c is reduced. Although, the client
receives lower quality sound (e.g., 8 bit instead of 16 bit), this leads to reduced delays and
packet loss which otherwise would result in more unpleasant, choppy sound. The current
implementation has three levels of audio quality: 16 bit stereo, 16 bit monaural, and 8 bit
monaural. Of course, there are many other strategies, such as layered multicast [21], that one
could envision to adapt to network conditions. The advantage of PLAN-P is that strategies
can be quickly developed and experimented with. For example, the PLAN-P program in
this experiment was written in one day.

The adaptation protocol consists of two PLAN-P programs: one for the network routers
and the other for the audio clients. The router program monitors the bandwidth of outgoing
links and degrades the audio quality when bandwidth becomes limited. There are two ad-
vantages to performing adaptation within the routers. The �rst advantage is that clients on
di�erent paths in the network can receive di�erent levels of quality depending only on the
tra�c on that path. The second advantage is that adaptation does not require a feedback
loop and can adapt to changes immediately. The client PLAN-P program transforms de-
graded packets into their original format. This approach has the advantage that the audio
client does not need to be changed.

We have performed two experiments using the PLAN-P adaptation protocol. These
experiments demonstrate rapid adaptation within the router, and that packet delays and
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losses are reduced. Figure 5 depicts the network architecture used for the experiments. The
load generator and audio client are connected to the same Ethernet segment and the load
generator was used to generate a given load on the segment in order to measure the e�ect
on the audio quality and tra�c received by the client. Since adaptation is performed on an
per segment basis, audio clients in IRISA may still receive high-quality audio.

Figure 6 shows the measured bandwidth used by the audio tra�c for the various loads
generated by the load generator. When there is no tra�c on the segment, audio is sent
in 16 bit stereo, requiring 176kb/s. At 100s, a large load is introduced and the protocol
immediately switches to 8 bit monaural audio, requiring only 44kb/s. At 220s, a smaller
load is introduced resulting in audio quality that varies between 8 and 16 bit monaural.
Finally, at 340s, a small load is introduced and the audio quality is adjusted to 16 bit
monaural, requiring 88kb/s. As can be seen in this �gure, the adaptation is immediate since
the protocol executes directly on the router, avoiding the need for software feedback.

The graphs shown in �gure 7 depict the e�ect of the network load on the received audio
signal with and without adaptation. The graphs show the number of silent periods that
occur during audio playback in various con�gurations. This shows that the adaptation
does, in fact, reduces the number of gaps in audio playback.

3.2 Extensible HTTP Server with Load-balancing Capability

Network Of Workstations (i.e., NOW) has been demonstrated to be a convenient approach
for building services that can scale easily and o�er better availability by tolerating failures [3,
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Figure 7: Sound perturbations at the client level

14]. Since balancing requests among servers relies on re-routing messages, PLAN-P o�ers
adequate support for the programming of clustered services.

The basic scheme for implementing load-balancing with ASPs relies on a gateway that
associates a physical server, determined by the load-balancing algorithm, with a request
when establishing the TCP connection which supports the HTTP request; all further packets
will be routed to this physical server. To do this, the gateway replaces the IP server (i.e.,
the virtual server) address given by the client by the address of the physical server. When
sending back results to the client, the gateway replaces the IP address of the physical server
by the address of the virtual server. In practice, the gateway function can be implemented
either by a single ASP treating both requests and results, or by one ASP treating requests
and several treating results, so as to minimize contention induced by a single gateway.

In addition to simplicity, using ASPs to build a cluster based server o�ers several other
advantages that provide a high degree of con�gurability:

� maintenance of the cluster architecture. ASPs can be easily modi�ed to re�ect a
change in the number physical servers or the topology of the cluster network. Also, an
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ASP can be easily moved to any of the cluster machines, depending on administrator's
need.

� transparency of heterogeneity. Mixing machines with di�erent architectures and
systems improves robustness of the whole service by avoiding failures on all systems
at the same time. Thanks to JIT compilation, gateway ASPs can be widespreaded on
servers regardless of the type of the machine.

� evaluation of load-balancing strategies. Di�erent load-balancing strategies can
be evaluated by changing the gateway ASP. This allows the server developer to qui-
ckly test new strategies, and is also helpful for the administrator in managing service
con�guration. For instance, the administrator can choose to replicate only a subpart
of the web server content on all physical servers.

The main challenge for using ASPs in building clustered services is performance. Since
using a gateway introduces a contention point that increases response time, packet treatment
should be kept as short as possible. In order to measure the e�ciency of ASPs, we have
compared an ASP-based clustered HTTP server with a built-in C version.

The con�guration used for our tests is the following. The cluster is made from three Sun
Ultra-1 170Mhz workstations connected by a 100Mbits Ethernet network. HTTP servers
are running Apache version 1.2.6 [1] with 5 to 10 child processes. The client machines
are also Sun Ultra-1 170Mhz workstations connected to the cluster by a 10Mbits Ethernet
network. In our experiments, we replicated the content of the IRISA web server on all three
physical servers. Measurements were done by replaying a real trace of 80000 accesses, so
as to minimize server cache impact on measurements. Finally, clients continuously issue
requests so as to measure the maximum load the clustered server can handle.

We have tested a con�guration made from two physical servers and the ASP gateway on
the third cluster machine, so as to separate the cost of routing from the cost of balancing
HTTP requests. The load-balancing strategy used for our experiments relies on a modulo
on the number of requests. Results are presented in Figure 8. As shown by curves b and
c, there is little or no di�erence in performance between the ASP-based version and the
C-based built-in version of the load-balancing server. The ASP-based load-balancing server
treats up to 85% of the load of two servers with disjoint sets of clients and 1.75 times the
load of a single server. Since both servers are saturated, this shows the impact of introducing
a gateway as a contention point.

3.3 Point-to-point to Multipoint MPEG Server

This experiment involves the development of a PLAN-P protocol that permits live video
packets to be shared between multiple clients on the same segment using a point-to-point
application. Thus, by using PLAN-P, we are able to provide multipoint video delivery with
a point-to-point video server.

This protocol was implemented by extending a distributed MPEG player designed at
OGI [7] with two ASPs. The �rst ASP executes on any one of the machines on the segment
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Figure 8: HTTP server performance

and maintains a list of all open connections to the video server. This ASP monitors packets
sent to the server's TCP port and records the �les being served, the address the video is
being served to, and the setup information returned to the client for initialization. When a
client makes a request, the client program �rst makes a request to the monitor ASP to see
if the request can be �lled by an existing connection. If there are no open connections, the
client proceeds normally by connecting to the server, and the monitor automatically tracks
the new connection. Otherwise, if an existing connection can be used, the monitor returns
the IP and port address the video is being sent to, and the setup information required for
decoding the MPEG stream. The second ASP executes on each client. When a client wants
to receive video from an existing connection, it captures packets sent to the original address
and port and delivers them to the client.

Although the video client was modi�ed to make the additional request to the monitor
ASP, the server was not changed. The client could have been reused without modi�cation,
if the monitor ASP emulated the connection responses of the server. However, since the
video application uses TCP for control packets, this would be di�cult to emulate in the
current PLAN-P version, as the ASP would have to account for windowing, packet loss, etc.
Future work on PLAN-P will be to consider extensions that would make it easier to emulate
connections based on TCP.
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4 Related Work

The idea that is most related to con�guring distributed systems is the use of coordination
languages [15]. These languages separate the speci�cation of component behavior from
component communication (connectors) and topology in a distributed system. One might
consider PLAN-P to be a language for specifying the behavior of the connectors. However,
current research on coordination languages considers connectors to perform communication
only, and do not address the implementation of connector behaviors.

The PLAN-P language evolves directly from previous research in active networks [16, 34].
With respect to these studies, our contribution is to address a new application domain, the
adaptation of distributed software components.

The PLAN-P run-time system provides the system with extensibility by permiting DSL
programs to be downloaded at run time. Many other approaches to extensible operating
systems have been proposed, such as SPIN [5], Vino [31] and Exokernels [12, 18]. One of the
main issues that must be addressed by an extensible system is safety and security. Existing
solutions rely on the use of safely typed languages, such as MODULA-3 or Java and software
fault-isolation [38]; PLAN-P is also type-safe. In addition, it ensures strong properties like
termination that cannot generally be veri�ed for general purpose languages. These properties
are veri�ed using late program checking in the router (section 2.2). An alternative to the
late program checking approach of PLAN-P is proof-carrying code (PCC) [25, 24]. However,
in the PCC approach, the burden of proof is on the user and all systems must standardize
on the properties that must be veri�ed. In our late checking approach, properties may easily
evolve with the DSL, and network providers may require di�erent properties.

DSLs have already been used in OS design so as to permit an user to specify a certain
policy. Examples are TEAPOT [8], for writing DSM coherence protocols, and HiPEC [20],
for writing page-replacement policies. While HiPEC relies on a bytecode interpreter, which
is less e�cient than a compiler, TEAPOT is implemented with a compiler which is more
di�cult to maintain. In earlier work, we have proposed GAL [37], a language for designing
device drivers. GAL was implemented using the same interpreter/specialization framework
as PLAN-P, but specialization was not done at run time.

One particularly interesting application of PLAN-P is the use of ASPs to create adaptive
systems, as in the audio broadcasting experiment of section 3.1. Odyssey [26] is one of the
most recent systems for adaptation which is aimed mainly toward mobility. They de�ne
wardens which are application-speci�c components that implement adaptation for a speci�c
data type. ASPs can been seen as DSL for wardens that can be spread over the net, not
only in the client as used in Odyssey.

5 Future work

Until now, most of our e�orts have been targeted toward having Tempo generating an
e�cient PLAN-P JIT compiler, and the design of a primitive library for adapting the ap-
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plications described in the paper. The results presented in this paper open many new
perspectives:

� As for the runtime system, our current and short-term plans are to enrich it with new
functionalities. In particular, we are implementing a veri�er which can be embedded
in routers. Also, we plan to port the kernel module that runs ASPs from Solaris
to Linux, so as be able to perform experiments on heterogeneous platforms. Since
Tempo already supports the Intel processor, most of this work is related to OS module
adaptation. We also plan to implement protocol management functionalities, such as
ASP deployment.

� As for applications, our medium term goal is to do adaptation of data tra�c such as
images and MPEG video over low bandwidth networks. One possible solution is the
integration of image distillation support [13] into PLAN-P. Also, we want to enrich
the HTTP cluster server experiment with fault-tolerance capabilities and several load-
balancing algorithms. This can lead to the development of a toolkit that helps the
building and con�guration of extensible cluster servers.

� As for the PLAN-P language, our interest is in understanding the constructs that are
fundamental to adaptation and the design of ASPs. The interest in experimenting
with diverse applications is to acquire knowledge of the needs. As an example, we
plan to provide a better language support for TCP connections so as to simplify the
task of ASP programmers.

6 Conclusion

Adapting existing distributed software components so as to reuse them in changing envi-
ronments is one of the challenges of modern distributed computing. In this paper, we have
proposed to perform adaptation by the means of Application-Speci�c Protocols that extend
the standard behavior of the network. ASPs can be dynamically loaded both in routers and
client/servers. This feature enables the design of original solutions for the adaptation of
multipoint applications with both bandwidth preservation and a rapid reaction to environ-
ment changes. In addition, we argue that the application scope of ASPs is not only limited
to quality of service adaptation; they can be used to add new functionalities to existing
components. As an example, we have shown the building of an extensible HTTP server
with load-balancing capabilities from standard Apache servers.

To reconcile portability and e�ciency issues raised by network extensibility, we have
developed a framework based on Domain-Speci�c Languages and automatic JIT compiler
generation from a portable interpreter. From the operating system designer standpoint, this
framework proved to be highly �exible, allowing the ASP run-time system to evolve easily
with the application needs. Thus, we believe that our framework is a valuable approach for
the design of operating components in areas with rapid evolution.
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