
Efficient Incremental Checkpointing of Java Programs�

Julia L. Lawally and Gilles Muller
COMPOSE group, http://www.irisa.fr/compose

IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
fjll,mullerg@irisa.fr

tel:+33.2.99.84.72.87, fax:+33.2.99.84.71.71

Abstract

This paper investigates the optimization of language-level
checkpointing of Java programs. First, we describe how
to systematically associate incremental checkpoints with
Java classes. While being safe, the genericness of this
solution induces substantial execution overhead. Second,
to solve the dilemma of genericness versus performance,
we use automatic program specialization to transform the
generic checkpointing methods into highly optimized ones.
Specialization exploits two kinds of information: (i) struc-
tural properties about the program classes, (ii) knowledge
of unmodified data structures in specific program phases.
The latter information allows us to generate phase-specific
checkpointing methods. We evaluate our approach on two
benchmarks, a realistic application which consists of a pro-
gram analysis engine, and a synthetic program which can
serve as a metric. Specialization gives a speedup propor-
tional to the complexity of the object structure and the
modification pattern. Measured speedups for the program
analysis engine are up to 1.5, and for the synthetic program
are up to 15.

1 Introduction

Checkpointing is known to introduce overhead propor-
tional to the checkpoint size [12, 28]. Traditionally, opti-
mizations of the checkpointing process are targeted toward
scientific programs written in Fortran or C. Such programs
often have good locality and large regions of read-only
data. In this environment, an effective optimization tech-
nique is incremental checkpointing, which uses system-
level facilities to identify modified virtual-memory pages
[7, 19, 25]. Each checkpoint contains only the pages that
have been modified since the previous checkpoint. Addi-
tionally, by using a mechanism such as copy-on-write, the
application need not be blocked, at the expense of deferring
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the copy task to the system.
Programs written in an object-oriented language, such

as Java, place new demands on checkpointing:

� Object-oriented programming style encourages the
creation of many small objects. Each object may have
some fields that are read-only, and others that are fre-
quently modified. Thus, object encapsulation con-
flicts with programmer-based data placement strate-
gies.

� The Java programmer has no control over the loca-
tion of objects. Thus, it is impossible to ensure that
frequently modified objects are all stored in the same
page. Furthermore, a single page may contain both
live objects and objects awaiting garbage collection.

� Java programs are run on a virtual machine which
supports simultaneous processes. Since Java encour-
ages parallelism as a software engineering method, li-
braries such as the GUI create many processes whose
states are not always useful in a checkpoint. Also, ob-
ject allocation is not usally managed on a per-process
basis, thus adding unnecessary memory to a check-
point. Finally, there is no simple solution to a trans-
parent support of native methods.

These arguments suggest that a user-driven language-
level approach may be appropriate for Java programs.
Language-level checkpointing augments the source pro-
gram with code to record the program state [16, 17, 26].
To promote safety, this checkpointing code should be in-
troduced systematically, and interfere as little as possible
with the standard behavior of the program. One approach
is to add methods to each class to save and restore the lo-
cal state. Checkpointing is then performed by a generic
checkpointmethod that invokes the checkpointing meth-
ods of each checkpointable object. Incremental check-
pointing can be implemented by associating a flag with
each object, indicating whether the object has been mod-
ified since the previous checkpoint. This checkpointing
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code can either be added manually or generated automati-
cally using a preprocessor [16, 17]. In either case, localiz-
ing the code for saving and restoring the state of an object
in its class definition respects encapsulation, thus enhanc-
ing overall program safety, and simplifies program mainte-
nance.

Nevertheless, this generic programming model intro-
duces overheads. First, because the checkpoint method
is independent of the objects being checkpointed, it must
interact with these objects using virtual calls. Virtual calls
are less efficient than direct function calls, and block tra-
ditional compiler optimizations, such as inlining. Second,
although the use of the modified flag reduces the size of
checkpoints, it does not eliminate the need to visit each
checkpointable object defined by the program.

This checkpointing strategy can be optimized by man-
ually creating specialized checkpointing functions for re-
curring object structures in the program. When some of
the objects are known not to be modified between spe-
cific checkpoints, all code relating to the checkpointing of
those objects can be removed. Nevertheless, many special-
ized checkpointing routines may be needed, to account for
the range of compound object structures used in different
phases of the program. When the program is modified,
these manually optimized routines may need to be com-
pletely rewritten. Thus, while these kinds of optimizations
can yield significant performance improvements, perform-
ing them by hand is laborious and error-prone.

Our approach

In this paper, we propose to use automatic program spe-
cialization to automatically optimize a generic checkpoint-
ing algorithm based on programmer-supplied information
about the fixed aspects of the object structure. Program
specialization is a technique for automatically and aggres-
sively optimizing a generic program with respect to infor-
mation about the program inputs [11, 15]. This technique
has been applied in a wide range of areas, including operat-
ing systems [20, 21, 31], and scientific programs [13, 23].

By specializing the checkpointing implementation with
respect to recurring structural and modification patterns,
we eliminate many tests, virtual calls, and traversals of un-
modified data. Because specialization is automatic, these
transformations can be performed reliably, and are simple
to modify as the program evolves.

To assess the benefits of our approach in a realistic set-
ting, we specialize the checkpointing of an implementation
of a program analysis engine, which performs the kinds
of analyses that are used in compilation or automatic pro-
gram specialization. To analyze more precisely the benefits
of our approach, we also consider a synthetic program in
which we can vary the dimensions and modification pat-

tern of the checkpointed structure. These results can be
used as a metric to predict the benefits of specializing the
checkpointing process for other applications. We have run
the specialized programs on a 300 MHz Sun Ultra2 using
the standard JIT of JDK 1.2.2, the HotSpot dynamic com-
piler, and the Harissa JVM which runs Java-to-C translated
programs. We obtain the following results:

� Specializing with respect to the structure of a com-
pound object optimizes the traversal of the sub-
objects by replacing virtual calls by inlined code.

� Specializing with respect to the modification pattern
of a compound object eliminates tests and the traver-
sal of completely unmodified objects.

� The program analysis engine example is divided into
phases, each of which reads but does not modify the
results of previous phases. We automatically generate
a specialized checkpointing routine for each phase.
Specializing with respect to both the object structure
and the modification pattern gives speedups of up to
1.5 times.

� For the synthetic example, we first specialize with re-
spect to the structure, and then with respect to both
the structure and the modification pattern. Special-
ization with respect to the structure gives speedups
up to 3. Specialization with respect to the structure
and the modification pattern gives speedups propor-
tional to the percentage of unmodified objects. When
three quarters of the objects are unmodified, we obtain
speedups up to 15.

The rest of this paper is organized as follows. We begin
with a Java implementation of checkpointing, in Section 2.
Section 3 then introduces program specialization and iden-
tifies opportunities for the specialization of the checkpoint-
ing implementation. Sections 4 and 5 assess the benefits of
specialization of the checkpointing process on the program
analysis engine and the synthetic example. Section 6 de-
scribes related work, particularly focusing on complemen-
tary approaches to language-level checkpointing. Finally,
Section 7 concludes and suggests future work.

2 Incremental Checkpointing of Java Programs

We consider the checkpointing of an object-oriented pro-
gram in which the state of the program can be recovered
from the contents of the object fields. In this context,
checkpointing amounts to recursively traversing the ob-
jects and recording the local state of each one; the stack
is omitted. Similar strategies have been proposed by oth-
ers, including Kasbekar et al. [16] and Killijian et al. [17].
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2.1 Implementation

The implementation consists of the Checkpointable in-
terface, which specifies the methods that must be provided
by each object to be checkpointed, and a Checkpoint ob-
ject, which drives the checkpointing process. These are de-
fined in Figure 1. For simplicity, we assume that the check-
pointed objects do not contain cycles. We also assume that
checkpoints are constructed using a blocking protocol, and
are written from the output stream to stable storage asyn-
chronously.

Each checkpointable object contains a unique identifier
and methods that describe how to record the state of the ob-
ject and its children. Additionally, to implement incremen-
tal checkpointing, each object contains a flag indicating
whether any fields of the object have been modified since
the previous checkpoint. This functionality is captured by
the Checkpointable interface. The unique identifier and
the modification flag, which are defined in the same way
for all checkpointable objects, are factored into a separate
CheckpointInfo object, also defined in Figure 1.

public interface Checkpointable {
public CheckpointInfo getCheckpointInfo();
public void fold(Checkpoint c);
public void record(OutputStream d);

}

public class Checkpoint {
OutputStream d;

public Checkpoint() {
d = new OutputStream();

}

public void checkpoint(Checkpointable o) {
CheckpointInfo info = o.getCheckpointInfo();
if (info.modified()) {
d.writeInt(info.getId());
o.record(d);
info.resetModified();

}
o.fold(this);

}
}

public class CheckpointInfo {
private int id;
private boolean modified;
public CheckpointInfo() {

id = newId();
modified = true;

}

// unique identifier
public int getId() { return id; }
private static int newId() { ... }

// modification flag
public boolean modified() { return modified; }
public void setModified() { modified=true; }
public void resetModified() { modified=false; }

}

Figure 1: Incremental checkpointing in Java

The Checkpointable interface specifies that each

checkpointable object must define the methods get-

CheckpointInfo(), record(), and fold(). The
method getCheckpointInfo() accesses the as-
sociated CheckpointInfo structure. The method
record(OutputStream d) records the complete local
state of the checkpointable object in the output stream
d.1 A value of base type is written directly, while a
sub-object is represented by its unique identifier. The
method fold(Checkpoint c) recursively applies the
checkpointing object c to each of the checkpointable
sub-objects.

Checkpointing is initiated by creating a Checkpoint

object, which initializes the output stream. The user pro-
gram then applies the checkpoint method to the root of
each compound structure to record in the checkpoint. To
implement incremental checkpointing, checkpointing of an
object is divided into two steps. First, if the object has
been modified, its unique identifier is recorded in the out-
put stream, and its record() method is invoked to record
its local state. The modified field is also reset. Then,
regardless of whether the object has been modified since
the previous checkpoint, the fold method of the object is
invoked to recursively apply the checkpointing process to
the children.

As in other approaches to checkpointing of object-
oriented programs, the state of each object is restored from
a checkpoint using a restore method local to the object. The
definition of such a method is the inverse of the definition
of record. The unique identifiers associated with each
object are used to reconstruct the state from a sequence of
incremental checkpoints. Because restoration is performed
rarely, specialization seems unlikely to be interesting here.

2.2 Defining checkpointable objects

The methods required by the Checkpointable interface
can be systematically defined either manually or auto-
matically, as follows. A class implementing the Check-

pointable interface creates a CheckpointInfo struc-
ture and defines the associated getCheckpointInfo()

accessor function. Such a class also defines record and
fold methods to record its local state and traverse its chil-
dren, respectively. A class that extends a checkpointable
class defines record and fold methods corresponding
to its own local state. These methods invoke the respec-
tive methods of the parent class to checkpoint the inherited
fields.

As an example, we use part of the implementation of
the program analysis engine, presented in Section 4. Each
phase of the program analysis engine stores its result in

1In practice, we instantiate OutputStream as a DataOutput-
Stream composed with a ByteArrayOutputStream, as defined in
the java.io package.
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public abstract class Entry
implements Checkpoint.Checkpointable {
CheckpointInfo checkpointInfo =

new Checkpoint.CheckpointInfo();

public CheckpointInfo getCheckpointInfo() {
return checkpointInfo;

}
public void record(OutputStream d) { }
public void fold(Checkpoint c) { }

}

public class BTEntry extends Entry {
BT bt;

public void record(OutputStream d) {
super.record(d);
d.writeInt(bt.getCheckpointInfo().getId());

}

public void fold(Checkpoint c) {
super.fold(c);
c.checkpoint(bt);

}

// Other methods for manipulating the
// BTEntry object
...

}

Figure 2: The Entry and BTEntry classes

a corresponding object. To capture the commonality be-
tween these objects, the class of each such object extends
an abstract class Entry. The class Entry and an exten-
sion BTEntry are shown in Figure 2. The Entry class ex-
plicitly implements the Checkpointable interface. Thus,
it creates the CheckpointInfo structure and defines the
getCheckpointInfo() method. The Entry class also
defines record() and fold() methods. These methods
are trivial, because the Entry class has no local state. The
BTEntry class inherits the CheckpointInfo structure of
the Entry class. It defines its own record() and fold()
methods, to carry out the checkpointing of its child bt. The
record() method first invokes the record() method of
the superclass, and then accesses the CheckpointInfo

structure of the child to record the child’s unique identi-
fier. The fold() method first invokes the fold() method
of the superclass, and then recursively applies the check-
point method to the child.

3 Program Specialization
Program specialization is the optimization of a program
based on supplementary information about its input. We
first describe this technique, and then consider how to use
it to optimize the checkpointing process.

3.1 Overview of program specialization
Program specialization optimizes a program to a specific
usage context. This technique restricts the applicability
of a program, in exchange for a more efficient implemen-

X-specialized.c

Harissa run-time

Binary
application

gcc

javac

Java bytecode
application

Tempo

JSCC

Assirah

javac+Harissa

X.java X.sc

C files
Specialization
directives

Java files

Figure 3: Structure of JSpec, specialization of class X

tation. Specialization of programs written in imperative
languages, such as C and Fortran, achieves optimizations
such as constant folding and loop unrolling [2, 3, 11]. Spe-
cialization of Java programs has been shown to reduce the
overhead of data encapsulation, virtual calls, and run-time
type and array-bounds checks [27]. Our implementation of
checkpointing benefits from these optimizations.

In the context of an object-oriented language, such as
Java, the usage context can be described by specialization
classes [32]. A specialization class describes how a class
should be specialized, by declaring properties of the fields
and methods of the specialized class. The declared meth-
ods are then specialized with respect to this information.
Specialization classes are compiled by the Java Special-
ization Class Compiler (JSCC) into directives for the pro-
gram specializer, and are thus not part of the program ex-
ecution. We rely on the programmer to specify specializa-
tion classes that safely describe the execution context, just
as we rely on the programmer to identify points at which
specialized checkpointing can be useful.

We specialize the checkpointing process using the
JSpec program specializer [27], illustrated in Figure 3.
JSpec is based on Tempo, a program specializer for C [11].
To perform specialization of Java programs, the Java byte-
code is first translated into C using the Harissa bytecode-
to-C compiler [22]. The specialized C code can be com-
piled using any C compiler, and then executed in the
Harissa JVM. At the C level, the specialized code can
express optimizations of the virtual machine, such as the
elimination of array-bounds checks, that cannot be ex-
pressed in Java. Alternatively, for portability, the special-
ized C code can be converted back to an ordinary Java pro-
gram using the Harissa tool Assirah.

3.2 Specialization opportunities

The implementation of checkpointing offers two signifi-
cant opportunities for specialization: specialization with
respect to the structure of the checkpointed data and spe-
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cialization with respect to the data modification pattern of
the program. We now describe the benefits of these two
kinds of specialization for the checkpointing process.

When there are recurring compound objects having the
same structure, we can specialize the checkpointmethod
for this structure. Specialization replaces the virtual calls
to the methods of the Checkpointable interface by di-
rect calls. These direct calls can be inlined, or otherwise
optimized by the compiler. Concretely, inlining generates
a monolithic specialized checkpointing implementation for
each compound object.

The use of the modified field can also be optimized
by specialization. Suppose a program initializes a set of
objects in one phase, and subsequently only reads their
values. When this behavior can be determined before ex-
ecution, the checkpointing process can be specialized to
the fact that in the later phases the modified field of
such objects is always false. This optimization elimi-
nates the test in the checkpoint method, which in turn
eliminates all reference to the CheckpointInfo struc-
ture. When combined with specialization to the structure of
complex objects, this optimization can eliminate all traver-
sal of compound objects that are completely unmodified
between checkpoints.

4 A Realistic Application

Our approach to the optimization of checkpointing is tar-
geted towards complex, long-running programs that ma-
nipulate many instances of similar compound structures.
We achieve additional benefits when the program is orga-
nized in phases, each of which is known to modify only
specific kinds of structures. We now describe such a pro-
gram, a Java implementation of the analyses performed by
the program specializer Tempo, and assess the benefits of
specialization of the checkpointing process.

4.1 Overview of the program analysis engine

Effective program specialization demands precise, and of-
ten time-consuming, analyses. Following the structure
of many compilers [1], these analyses are organized in
phases, each of which uses, but does not modify, the re-
sults of the previous analyses. This kind of program can
benefit from specialization of incremental checkpointing.

Concretely, we consider three of the analyses performed
by Tempo: side-effect analysis, binding-time analysis, and
evaluation-time analysis. Side-effect analysis determines
the set of global variables read and written by each program
statement. Binding-time analysis identifies expressions
that can be evaluated using only the information available
to the specializer [15]. Evaluation-time analysis ensures
that variables referenced by the specialized program are

Attributes

BTEntry ETEntrySEEntry

Id

Id

Id

Id ETBT

Figure 4: Organization of the Attributes structure

properly initialized [14]. Our prototype implementation in
Java of these analyses treats a simplified version of C.

Each statement of the analyzed program is associated
with an Attributes structure, which contains a field for
the results of each phase of the analysis. Side-effect anal-
ysis collects sets of variables, while binding-time analysis
and evaluation-time analysis each record only a single an-
notation. Thus, most of the information recorded in the
Attributes structure comes from the side-effect analy-
sis, and is fixed during subsequent phases. Consequently,
specialization of the checkpointing process to eliminate
the traversal of unmodified objects is most useful for the
binding-time and evaluation-time analyses. These analyses
are also typically longer than side-effect analysis, making
checkpointing more desirable for these phases.

To treat loops, each analysis phase performs repeated it-
erations over the abstract syntax tree. At the end of each it-
eration, the local state is captured by the annotations stored
at each node. Thus, the end of an iteration is a natural time
at which to take a checkpoint.

4.2 Specialization opportunities
We now illustrate the specialization opportunities identi-
fied in Section 3.2 in the context of the program analysis
engine. We specialize with respect to information about
the Attributes structure, illustrated in Figure 4. Note
that the BTEntry class was defined in Figure 2.

We first specialize the checkpointing implementation
to the structure of an Attributes object. The spe-
cialization class Checkpoint Attributes shown below
declares that a specialized variant of the checkpoint

method should be created for the Attributes class.

specclass Checkpoint_Attributes
specializes Checkpoint {
public void checkpoint(Checkpointable o),

Attributes o;
}

Declaring such a specialization of the Checkpoint class
for each class used in the program makes the types of the
checkpointed objects explicit. Specialization replaces vir-
tual calls by direct calls and field references. Virtual calls
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checkpoint_attr(Checkpointable o) {
Attributes attr = (Attributes)o;
CheckpointInfo attrInfo = attr.getCheckpointInfo();
if (attrInfo.modified()) {
d.writeInt(attrInfo.getId());
attr.record(d);
attrInfo.resetModified();

}
SEEntry seEntry = attr.se;
CheckpointInfo seEntryInfo = SEEntry.getCheckpointInfo();
if (seEntryInfo.modified()) {
d.writeInt(seEntryInfo.getId());
seEntry.record(d); /* records both lists */
seEntryInfo.resetModified();

}
BTEntry btEntry = attr.bt;
CheckpointInfo btEntryInfo = btEntry.getCheckpointInfo();
if (btEntryInfo.modified()) {
d.writeInt(btEntryInfo.getId());
btEntry.record(d);
btEntryInfo.resetModified();

}
BT bt = btEntry.bt;
CheckpointInfo btInfo = bt.getCheckpointInfo();
if (btInfo.modified()) {
d.writeInt(btInfo.getId());
bt.record(d); /* virtual call */
btInfo.resetModified();

}
ETEntry etEntry = attr.et;
CheckpointInfo etEntryInfo = etEntry.getCheckpointInfo();
if (etEntryInfo.modified()) {
d.writeInt(etEntryInfo.getId());
etEntry.record(d);
etEntryInfo.resetModified();

}
ET et = etEntry.et;
CheckpointInfo etInfo = et.getCheckpointInfo();
if (etInfo.modified()) {
d.writeInt(etInfo.getId());
et.record(d); /* virtual call */
etInfo.resetModified();

}
}

Figure 5: Specialization of checkpoint w.r.t. the struc-
ture of an Attributes object

checkpoint_attr_btmodif(Checkpointable o) {
Attributes attr = (Attributes)o;
CheckpointInfo attrInfo = attr.getCheckpointInfo();
if (info.modified()) {
d.writeInt(attrInfo.getId());
attr.record(d);
attrInfo.resetModified();

}
BTEntry btEntry = attr.bt;
CheckpointInfo btEntryInfo = btEntry.getCheckpointInfo();
if (btEntryInfo.modified()) {
d.writeInt(btEntryInfo.getId());
btEntry.record(d);
btEntryInfo.resetModified();

}
BT bt = btEntry.bt;
CheckpointInfo btInfo = bt.getCheckpointInfo();
if (btInfo.modified()) {
d.writeInt(btInfo.getId());
bt.record(d); /* virtual call */
btInfo.resetModified();

}
}

Figure 6: Specialization of checkpoint w.r.t. the modifi-
cation properties of an Attributes object for the binding-
time analysis

only remain for the methods of the bt (binding time) and
et (evaluation time) objects, whose values are not known
during specialization. Subsequent inlining and translation
of the specialized C code back to Java produces the opti-
mized implementation shown in Figure 5.

The program analysis engine also has the property that
each phase only modifies its corresponding field of the At-
tributes structure. To describe this property, we de-
fine a specialization class indicating that the modified()
method of the CheckpointInfo class should be special-
ized for the case where the modified flag has not been set
to true. To create a specialized checkpointing implemen-
tation for use during the binding-time analysis phase, we
define a specialization classes for the Attributes, SEEn-
try, and ETEntry classes indicating that the specialized
modified() method should be used. The result of spe-
cializing according to these declarations is shown in Fig-
ure 6. The specialized checkpointing implementation for
the evaluation-time analysis phase is specified similarly.

4.3 Performance assessment

Table 1 summarizes the performance of the checkpoint-
ing of the binding-time analysis and evaluation-time analy-
sis phases. In a program specializer that treats full C, such
as Tempo, these analyses can take up to several hours, de-
pending on the complexity of the analyzed program. Since
we treat a simplified version of C, the analyses are con-
siderably faster. We have analyzed a 750-line image ma-
nipulation program: without checkpointing, binding-time
analysis runs for 62.2 seconds and evaluation-time anal-
ysis runs for 6.4 seconds. We compare full checkpoint-
ing, incremental checkpointing, and specialized incremen-
tal checkpointing. A checkpoint is taken for each iteration
of the analyses. The binding-time analysis requires nine
iterations, while the evaluation-time analysis requires only
three. For full checkpointing, we show the performance
for the iterations with the minimum and maximum check-
point sizes. For unspecialized and specialized incremental
checkpointing, the checkpoints all have roughly the same
size, so we give average figures. For the binding-time anal-
ysis phase, specialization gives speedups of over 1.3, and
for the evaluation-time analysis phase specialization gives
speedups of almost 1.5 over incremental checkpointing.

We have noted that specialization eliminates the traver-
sal of unmodified objects. Thus, the traversal time repre-
sents the limit of the cost that can be eliminated by special-
ization. The last line of the table compares the traversal
time for incremental and specialized incremental check-
pointing. For the binding-time analysis phase, specializa-
tion reduces the traversal time by 1.8 times, and for the
evaluation-time analysis phase specialization reduces the
traversal time by over 2 times.
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Binding-time analysis (BTA) Evaluation-time analysis (ETA)
full ckp. full ckp. incremental specialized incremental full ckp. full ckp. incremental specialized incremental
min. size max. size (speedup) min. size max. size (speedup)

Ckp. size (Mb) 12.52 21.88 1.40 1.40 11.04 11.17 0.55 0.55
Ckp. time (s) 5.3 9.08 1.34 1.00 (1.34) 4.56 4.65 0.71 0.48 (1.49)
Traversal time (s) - - 0.74 0.40 (1.85) - - 0.46 0.23 (2.03)

Table 1: Checkpoint size (in Mb) and execution time (in seconds). (JDK 1.2.2 JVM, Sun Ultra2 300MHz)

5 A synthetic application
To assess the benefits of our approach independent of a
particular application, we consider a synthetic example, in
which we can vary the structure of the checkpointed ob-
jects. The goal of these tests is to provide a metric for
determining to what degree other applications can bene-
fit from our approach. We consider checkpointing a set
of compound structures, each containing five linked lists.
We vary properties of these structures such as the length of
the lists, the percentage of modified list elements, and the
number of integer-typed fields stored in each list element.

The test program constructs 20,000 compound struc-
tures, randomly chooses constituent list elements to be
modified according to the constraints of the experiment,
and performs a single checkpoint. Our benchmarks present
the time to construct the checkpoint. Unless otherwise
stated, the Java programs were translated to C before spe-
cialization and then run in the Harissa JVM.

We first compare incremental checkpointing to full
checkpointing. When some objects are not modified, in-
cremental checkpointing reduces the cost of recording the
current state. Nevertheless, incremental checkpointing also
introduces tests into the traversal of the compound struc-
tures. Figure 7 shows that even when all of the objects
are modified the added cost is negligible. The speedup ob-
tained by incremental checkpointing increases as the num-
ber of modified objects decreases, and as the cost of record-
ing the state of each object increases. When only a quar-
ter of the objects are modified, and when 10 integers are
recorded for each modified object, incremental checkpoint-
ing is over 3 times faster than full checkpointing.
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Figure 7: Incremental checkpointing (Harissa JVM)

Incremental checkpointing reduces the number of ob-
jects recorded in the checkpoint, but still requires a com-

plete traversal of the compound structures to identify mod-
ified objects. Specialization with respect to properties of
the object structure optimizes the traversal. In particular,
we specialize with respect to the following structural in-
formation.

� The shape of the compound structures.

� The set of lists that may contain modified objects.

� The positions in these lists where a modified object
may occur.

The speedups with respect to incremental checkpointing
achieved by these specialization opportunities are summa-
rized in Figures 8 through 11. The percentages in each
figure indicate the percentage of possibly modified objects
that are actually modified. For example, in Figure 9, in
which the number of lists that contain modified objects is
constrained, the case labelled “50%” where there are three
modified lists means that among those three lists, half of
the objects have been modified since the previous check-
point.

Specialization with respect to the shape of each com-
pound structure eliminates virtual calls and permits inlin-
ing. These optimizations give the most speedup when there
are few modified objects, and thus the cost of the struc-
ture traversal dominates. Figure 8 shows that the speedup
as compared to unspecialized incremental checkpointing
ranges from 1.5 when all objects are modified and 10 inte-
gers are written for each modified object, to over 3 when
each list has length 5, only 25% of the objects are modified,
and only one integer is written for each modified object.

When some lists are known to be completely unmodi-
fied, specialization with respect to this information elimi-
nates the traversal of such lists. Here, the greatest speedup
is obtained when there are long lists, of which few may
contain modified objects (see Figure 9). For lists of length
5, when only one value is recorded for each modified ob-
ject, the speedup ranges from 2 to 9, as the number of lists
that may contain modified objects decreases. When 10 in-
tegers are recorded for each modified object, the speedup
is reduced by up to half.

Specializing with respect to the specific positions within
each list at which modified objects can occur eliminates the
need to test the other objects. We consider the case where a
modified object can only occur as the last element of each
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list. This is the worst case, because only tests, but not ob-
ject traversals, are eliminated. Because the number of elim-
inated tests depends on the length of the lists, we achieve
the best speedup for long lists. Figure 10 shows that for
lists of length 5, when only one value is recorded for each
modified object, the speedup over unspecialized incremen-
tal checkpointing ranges from 5 to 15, depending on the
number of lists that may contain modified objects. When
10 integers are recorded for each object, these speedups
range from 2 to 11.

So far, we have assessed the performance of specialized
C code. For portability, we can also translate the special-
ized C code back to Java using the Assirah tool. In our
third specialization experiment above (c.f. Figure 10), we
specialize with respect to both the number of lists that may
contain a modified object and the position at which a mod-
ified object may occur in each list. Figure 11 compares the
performance of the Java specialized code with the perfor-
mance of the unspecialized Java implementation of incre-
mental checkpointing, for lists of length 5. As shown in
Figure 11a, using the JDK 1.2.2 JIT compiler, we obtain
speedups of up to 12. As shown in Figure 11b, combin-
ing JDK 1.2.2 with the state-of-the art dynamic compiler
HotSpot, we obtain speedups of up to 6 over the perfor-
mance of the unspecialized code, also running on HotSpot.
As shown in Table 2, the Harissa code is significantly faster
than the code produced by the JDK 1.2.2 JIT compiler or
HotSpot. Table 2 also shows that the unspecialized code
run with HotSpot can be faster than the specialized code
run without HotSpot. Thus, one may wonder whether
HotSpot subsumes program specialization. Nevertheless,
Figure 11b shows that the specialization further improves
performance under HotSpot, demonstrating that special-
ization and dynamic compilation are complementary.

6 Related work

Automatic program-transformation techniques have al-
ready been used to improve the reliability and perfor-
mance of source-level checkpointing. The C-to-C com-
pilers c2ftc and porch, developed by Ramkumar and
Strumpen [26, 30] and by Strumpen [29], respectively, add
code around each procedure call to enable a program to
manage the checkpointing and recovery of its control stack.
A preprocessor in the Dome system provides a similar fa-
cility for parallel C++ programs [5, 6]. Plank et al. propose
to use data-flow analysis to determine automatically, based
on hints from the user, the regions of memory that are not
modified between checkpoints [4, 24]. Calls to functions in
a checkpointing library (libckpt for Sparc or CLIP for In-
tel Paragon) are then automatically inserted into the source
program. Killijian et al. and Kasbekar et al. use compile-
time reflection provided by OpenC++ [10] to add check-
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Possibly Harissa JDK 1.2.2 JDK 1.2.2 + HotSpot
mod. lists 100% 50% 25% 100% 50% 25% 100% 50% 25%

Unspecialized code 1 1.05 0.98 0.95 3.99 1.98 1.76 1.80 1.56 1.32
5 1.80 1.36 1.14 10.92 7.05 4.03 4.51 2.41 1.71

Specialized code 1 0.17 0.10 0.08 0.95 0.54 0.30 0.46 0.31 0.24
5 0.70 0.42 0.27 4.39 2.33 1.27 1.70 1.23 0.76

Table 2: Checkpoint execution time (in seconds), 10 integers written for each element

pointing code at the source level to the definitions of C++
objects [16, 17]. The reflection-based approaches are most
closely related to ours. Essentially, we use program spe-
cialization to optimize checkpointing methods of the form
generated by reflection.

Several of these source-level approaches address the
problem of incremental checkpointing. The analysis pro-
posed by Plank et al. to detect unmodified regions of mem-
ory is performed at compile time, and is thus necessarily
approximate. The reflective approach of Killijian et al. as-
sociates a modification flag with each object field. Main-
taining and testing these flags at run time adds substantial
overhead: extra space to store the modification flags, ex-
tra time on every assignment to update the associated flag,
and extra time during checkpointing to test the flags. Our
approach exploits both compile-time and run-time infor-
mation. When it is possible to determine at compile time
that an object is not modified between checkpoints, spe-
cialization eliminates the code to save the state of the ob-
ject. When it is not possible to determine this information
at compile time, the modified flag is retained in the special-
ized program and tested at run time. Because specialization
is automatic, it is feasible to create many implementations,
to account for the modification patterns of each phase of
the program, without changing the source code.

Language-level checkpointing for Java provides inde-
pendence from the virtual machine. Other approaches have
simplified the checkpointing process and reduced check-
point size by omitting aspects of the underlying language
implementation. The Stardust [9] and Dome [5, 6] systems
for SIMD parallelism in heterogeneous environments re-
strict checkpointing to synchronization points in the main
function, eliminating the need to record the stack. In the
context of Java, Killijian et al. also record only object
fields, and thus omit the stack [17].

Checkpointing is conceptually similar to serialization,
the conversion of an object structure into a flat representa-
tion. In Java, serialization is implemented using run-time
reflection. Reflection is used both to determine the static
structure of each object (its type, field names, etc.), and to
access the recorded field values. The structure of an ob-
ject, however, does not change during execution. Thus,
repetitively determining this information at run time is in-
efficient. Braux and Noyé propose to eliminate the over-

heads of Java reflection using program specialization [8].
These techniques could useful in extending our approach
to a checkpointing implementation based on reflection.

Several Java-based mobile agent systems use serial-
ization to transmit the state of an agent to another host
[18, 33]. The Concordia system also provides exten-
sive checkpointing facilities based on serialization to re-
cover from transmission failures [33]. Specialization of the
checkpointing process could improve the performance of
these systems as well.

7 Conclusion and future work

We have shown that automatic program specialization can
significantly improve the incremental checkpointing of
Java programs. Because specialization is automatic, the
generated code is correct. This approach has several ad-
vantages: (i) multiple checkpoint procedures can be gener-
ated for a single program, permitting to exploit per-phase
modification patterns, and (ii) checkpointing can be imple-
mented straightforwardly to facilitate program evolution
and maintenance, without sacrificing performance.

This work can fit into a series of automated tools to
improve the performance of language-level checkpointing.
In the approach we have presented, the user must identify
which compound structures are used frequently in the pro-
gram, and the regions in which such structures are not mod-
ified. To automate this process, we propose to automati-
cally construct specialization classes based on an analysis
of the data modification pattern of the program. If we ad-
ditionally use reflection as proposed by Kasbekar et al. and
by Killijian et al. to automatically generate the checkpoint-
ing methods for each class [16, 17] and automatically mod-
ify the source code as proposed in the c2ftc and porch

systems to save and restore the stack [26, 29, 30], we obtain
an efficient and transparent language-level implementation
of checkpointing for Java programs.

Acknowledgments

We thank Ulrik Pagh Schultz and Miroslav Malek for help-
ful comments, and James Plank for shepherding the final
version of this paper. We also thank the other members of
the Compose group who participated in the design and the
implementation of JSpec.

0-7695-0707-7/00 $10.00 � 2000 IEEE 



Availability
Examples described in this paper are available at
http://www.irisa.fr/compose/jspec/checkpoint.
Tempo, Harissa, JSpec and the Java Specialization Class
Compiler are available at the Compose web page
http://www.irisa.fr/compose/.
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