
Deadline-Aware Scheduling for Software Transactional Memory

Walther Maldonado∗, Patrick Marlier∗, Pascal Felber∗, Julia Lawall†, Giller Muller‡, Etienne Rivière∗
∗University of Neuchâtel, Switzerland. Email: first.last@unine.ch

†DIKU, Denmark. Email: julia@diku.dk
‡INRIA/LIP6, France. Email: gilles.muller@lip6.fr

Abstract—Software Transactional Memory (STM) is an op-
timistic concurrency control mechanism that simplifies the
development of parallel programs. Still, the interest of STM
has not yet been demonstrated for reactive applications that
require bounded response time for some of their operations.
We propose to support such applications by allowing the
developer to annotate some transaction blocks with deadlines.
Based on previous execution statistics, we adjust the transaction
execution strategy by decreasing the level of optimism as the
deadlines near through two modes of conservative execution,
without overly limiting the progress of concurrent transactions.
Our implementation comprises a STM extension for gathering
statistics and implementing the execution mode strategies. We
have also extended the Linux scheduler to disable preemp-
tion or migration of threads that are executing transactions
with deadlines. Our experimental evaluation shows that our
approach significantly improves the chance of a transaction
meeting its deadline when its progress is hampered by conflicts.

Keywords-Transactional Memory, Scheduling, Contention
Management

I. INTRODUCTION

Transactional Memory (TM) is a recent paradigm for
designing parallel programs that scale with the number
of cores. In particular, Software Transactional Memory
(STM) systems have received great attention due to their
hardware-independent design [1], [2], [3], [4]. STM systems
optimistically handle synchronization through the use of
atomic blocks of code with transactional semantics: atomic
blocks are executed concurrently and, upon conflict, they
may need to roll back and restart. This approach promises
a great reduction in the complexity of both programming
and verification, by making parts of the code appear to be
sequential without the need to program fine-grained locks.

Among the applications that may benefit from the high
level of concurrency allowed by transactional memory, some
are subject to constraints on their reactivity. Examples include
live rendering (e.g., in 3D modeling applications) and video
games, where a set of modifications should result in the
updated scene being displayed in a time compatible with the
user’s perception. Another example is that of a server running
a transactional DBMS where update tasks should succeed
but still allow queries, which may refer to many objects, to
be answered in parallel within a reasonable amount of time.
Implementing such reactive applications using transactional
memory results in particular properties for the transactions
composing the application. In particular, these applications

often rely on rendering and aggregation mechanisms that
use a read-mostly transaction, whose read set is expected
to grow large as many data elements are accessed in order
to compute the aggregate (e.g., an image). The read-mostly
transaction is often a long one, executed periodically, but not
as frequently as other transactions, such as updates.

To achieve reactivity in practice, a majority of the instances
of the read-mostly transactions must succeed before a given
deadline. This majority must be quantifiable, that is, a rate
of success for committing before deadlines is set as a target,
and enforced by the system. The deadline may be expressed
by the application developer by specifying the maximum
delay until commit, or by a fixed point in time by which a
transaction must have committed [5]. To ensure that deadlines
are respected, support at the runtime level is required. So far,
the support of constraints on processing time in the context of
STMs has been achieved by executing the transactions that are
not allowed to abort in an irrevocable (also called inevitable)
mode [6], [7], [8]. However, if one transaction runs in this
mode, all other transactions are unable to perform writes
during its execution. Therefore, systematically executing the
read-mostly transaction as an irrevocable one would severely
limit parallelism and would reduce the performance of the
whole application.

In this paper, we present an approach stemming from the
practical observation that, in many cases, the read-mostly
transaction can be executed optimistically without being
aborted if the level of contention is low enough. This suggests
that irrevocability should be used only when the deadline
nears and restarting would lead to a deadline violation,
implying that aborting is no longer an option. We thus
propose to execute the read-mostly transaction under an
adaptive scheme depending on the remaining time before
the deadline. More precisely, we have designed a strategy
based on three execution modes: optimistic, visible read
and irrevocable. These execution modes differ in the way
conflicts are detected or avoided: the optimistic mode defers
the detection until commit time, the visible read mode is able
to inform the other transactions that a particular location has
been read and can be subject to a conflict, and finally the
irrevocable mode prevents the transaction from aborting upon
conflict by disabling the accesses from other transactions
that can lead to a conflict. The visible read mode differs
from the irrevocable one in that aborting is still possible; this
mode allows more transactions to run in parallel and incurs



User space

Kernel space

Scheduler

TinySTM

Transaction
support

TX length
measurement

Adaptive mode
switchingM

od
ul
es

STM 
thread
struct

Memory

Figure 1. Deadline-aware transaction scheduling framework.

less degradation of the application performance. Finally, our
runtime system ensures that a thread executing a transaction
with a deadline is not preempted by the operating system
scheduler by granting up to a few time slice extensions if
required.

In order to decide which mode the read-mostly transaction
should run under at a given time, we need an oracle that
provides the execution time of each transactional block. For
this purpose, we continuously sample the distribution of the
read-mostly transaction’s duration. The sampled distribution
is then used as an indication of the expected maximum
duration for a given percentage of instances of the transaction.

Our approach has been implemented in the TinySTM
STM library [2] and the Linux OS (see Figure 1). The
implementation relies on two modules that extend TinySTM
with the adaptive transaction mode and with the measurement
of transaction lengths. A third module extends the Linux
kernel scheduler so as to control thread migration and
preemption. Communication between the STM runtime and
the kernel module is implemented using a shared memory
region to keep the overhead minimal [9].

Our achievements are as follows:

• We propose mechanisms to support deadline-aware
scheduling for reactive applications based on TM. The
developer contract on a transaction subject to a deadline
is met even when the number of concurrent update
transactions reaches high levels. Our approach is able to
achieve a constant frame rate of 30 images per second
on a 3D interactive simulation renderer application [7],
with guarantees on the rendering period regularity. On a
game server engine [10], we are able to set constraints
on the reactiveness of an expensive query accessing a
large portion of the game state.

• Thanks to the adaptive execution mode strategy and the
associated contention management mechanisms, we can
achieve the same success rate in respecting the deadlines
as an approach that systematically uses irrevocability,
while imposing a much lower overhead on the system.

Our success rate consistently lies between 98% and
100% of that observed when using only irrevocability
but our adaptive strategy reduces by 3 times the average
number of retries needed by other transactions in the
highest contention case.

• We present and evaluate how to use sampling to
effectively determine the running time of transactions
in a multi-threaded setting with the help of kernel-
level mechanisms. We show that these samples can
be used as an oracle for execution mode switching: the
deviation in the transaction length given by the oracle
is at most -4% to +12% for typical examples of long-
running transactions from the STAMP benchmarks.

• We describe and justify experimentally our claim that
using different levels of “pessimism” makes it possible
to meet deadlines while adapting to the level of difficulty
for the transaction to commit: our experiments validate
that, as contention increases, commits with optimistic
execution modes are replaced by commits by more
deterministic execution modes only as required to
meet the deadlines. For instance, for the game server
engine with 2 update threads, transactions almost always
succeed in the optimistic mode, while with 4, 8 and
12 update threads the visible read mode is necessary
to ensure committing before the deadline, respectively,
11%, 48% and 72% of the time. Finally, the irrevocable
mode only starts being needed at 16 update threads.

The rest of the paper is structured as follows. Section II
presents our sampling mechanism for accurately measuring
transaction durations. Section III describes the design and
implementation of the adaptive switching mode that allows a
transaction to commit before its deadline. Section IV focuses
on the kernel-level scheduling extensions that provide deter-
ministic support for the threads running deadline-associated
transactions. Section V presents a thorough evaluation of all
proposed mechanisms. We present related work in Section VI
and conclude in Section VII.

II. MEASURING TRANSACTION LENGTHS

The foundation of our approach is the ability to adapt
the execution mode of a transaction based on the amount of
time remaining before its deadline expires. For this, we need
to have an oracle that can provide the expected transaction
length. For the reactive applications considered in this paper,
we have observed that the uninterrupted execution time of
each atomic block statically apparent in the source code
varies very little from one execution to the next. Therefore,
the oracle can use the results of past executions.

For our solution to be transparent to developers and
users, we implement the collection and management of the
transaction lengths as a module in TinySTM. This module
instruments the start, abort and commit operations so
as to measure the execution time of a successful transaction,
between its beginning and the corresponding commit. The



13 18 19 2314 17 15 22 26

14 24 18 17 21 19
n

k k+1

P=n/(k+1)
P=n/k

?

... ...samples

reservoir

now

Figure 2. Vitter’s reservoir sampling [11].

transaction length is obtained from the time stamp counter
(RDTSC instruction of the x86 processor) of the core on
which the start and commit operations are executed.

One of the challenges to address in implementing the
measurement module is to know when to discard information
about transaction executions that do not provide usable
measurements. First, during the application warm up phase
we are only interested in irrevocable mode executions in order
to bootstrap the oracle, and later we are only interested in
optimistic mode executions that are meant to be the common
case execution. Second, aborted executions are ignored as
we are interested only in successfully committed transactions.
Third, we ignore any execution in which the supporting
thread is migrated, as time stamp counters are not necessarily
synchronized across cores. Finally, we ignore executions in
which the supporting thread is preempted, as this artificially
increases the transaction execution time.

We keep separate statistics for each atomic block that
is subject to deadlines. To keep the memory overhead
reasonable, these statistics are based on a subset of size
at most n of all valid samples obtained during execution. The
set is managed so that, at each point in time, it contains a
uniform sample of elements from all measurements since the
beginning of the program execution. Inline uniform sampling
over a stream of events is achieved by using Vitter’s reservoir
sampling method [11]. This randomized algorithm maintains
a set—or reservoir—of n elements. It systematically inserts
the first n elements so as to fill the reservoir. Thereafter,
each kth sample from the stream of all valid samples is
inserted in the reservoir with a probability n/k, replacing
a randomly chosen element (see Figure 2). This strategy
effectively maintains a uniform random sample subset of
all values in the stream of observations. The warmup phase
fills the reservoir with 1% of its capacity by systematically
running the transaction in the most conservative execution
mode (irrevocable).

We can obtain an estimate of a given quantile of the
distribution represented by the reservoir by simply sorting
the values and reading the corresponding position in the
reservoir. For instance, the 99th percentile is an upper bound
on the execution time of 99% of the transactions that were
sampled in the reservoir. In the applications considered in
this paper, there is little to no variation in the distribution of

transaction length over time. We can therefore use a single
reservoir from the beginning of the execution. Applications
for which the distribution changes over time may use a
biased sampling strategy, e.g., that increases the likelihood of
keeping recent samples, or at the extreme by using a simple
sliding window.

III. TRANSACTION EXECUTION MODES

Our approach provides three different modes for running
transactions: optimistic, visible read and irrevocable. These
modes allow us to implement different levels of predictability
for committing within a bounded amount of time, but have
increasing costs in terms of overall throughput and contention.
In this section we present their implementation in TinySTM.

A. Design choices

TinySTM, like several other state-of-the-art STM libraries
(e.g., [1], [3]), relies on an optimistic execution mode
with invisible reads and a timestamp-based algorithm for
detecting conflicts. While this approach is very efficient in
situations that induce few conflicts, it does not provide the
predictability guarantees expected from applications with
reactivity requirements:

1) As transactions use invisible reads, read/write1 conflicts
are not detected when they happen. A transaction might
thus have to abort when discovering upon validation
that it has read a memory location that has since been
overwritten by another committed transaction.

2) Even without considering invisible reads, a transaction
may abort an unbounded number of times because its
writes conflict with those of other update transactions.

Both issues are problematic because, as transactions may
repeatedly abort, one cannot easily bound their execution
time. Priority-based contention managers [12] would not
solve the problem because, with invisible reads, read/write
conflicts are not detected as they occur.

By extending TinySTM with the visible read (VR) and
irrevocable (IVC) modes, we make it possible to reduce the
level of optimism of transaction execution and to increase
its predictability. These modes, however, also reduce the
level of concurrency achievable by other transactions. This is
illustrated in Figure 3, which shows the compatibility of the
different execution modes of transactions. Only the read-only
part of an optimistic transaction can execute concurrently
with an irrevocable transaction. Visible reads allow other non-
conflicting transactions executing in visible read or optimistic
mode to execute concurrently. Finally, the highest level of
concurrency is achieved by optimistic transactions. Table I
summarizes the main properties of the three execution modes,
which are described in the rest of the section.

1We denote by “read/write” (or simply R/W) a conflict with the read
happening before the write. W/R conflicts happen in the reverse order.



Name Strategy Execution Conflicts detected Abort on Notes
OPT Invisible reads Optimistic W/W, W/R Access conflict Minimal runtime overhead

Failed validation Transactions may repeatedly abort despite CM
VR Visible reads Semi-optimistic W/W, W/R, R/W Access conflict Limited runtime overhead (1 bit/orec, 1 CAS/VR)

OPT- and VR-transactions can execute concurrently
IVC Irrevocable Pessimistic W/W, W/R, R/W — OPT- and VR-transactions can execute concurrently,

but their commit is delayed if they write to memory
Table I

SUMMARY OF THE THREE EXECUTION MODES FOR CONTROLLING THE DEGREE OF OPTIMISM OF TRANSACTIONS.

r/w
r r/w

r/w
r

r/w

r/w

IVC
OPT

IVC
OPT

VR

VR

r/w

r/w

VR

OPT

r

r/w

OPT

IVC

r/w

r/w

OPT

VR

r/w

r/w

OPT

OPT

Figure 3. Compatibility of the three execution modes supported by
TinySTM: irrevocable/IVC (top), visible reads/VR (middle), and opti-
mistic/OPT (bottom). Rectangles represent transactions preforming reads (r)
or arbitrary memory accesses (r/w). Each row corresponds to one thread and
time flows to the right. Overlapping transactions can execute concurrently
if they do not conflict.

B. Optimistic mode

To explain the new execution modes, we first recall
TinySTM’s basic optimistic mode [2]. TinySTM uses a global
time base to build a consistent snapshot of the values accessed
by a transaction. Transaction stores are buffered until commit.
The consistency of the snapshot read by a transaction is
checked based on versioned locks (ownership records, or
orecs for short) and a global time base, which is typically
implemented using a shared counter. The orec protecting a
given memory location is determined by hashing the address
and looking up the associated entry in a global array of orecs.
A single orec may protect multiple memory locations.

Upon write, a transaction first acquires the locks that cover
the updated memory locations by atomically setting a bit in
the orec with a compare-and-set operation (CAS). In contrast,
no update of the orec occurs upon read. At commit time, an
update transaction obtains a new timestamp from the global
time base by incrementing it atomically, validates that the
values it has read have not changed and, if so, writes back its
updates to shared memory. Finally, when releasing the locks,
the versions of the orecs are set to the commit timestamp.
Reading transactions can thus see the virtual commit time
of the updated memory locations and use it to check the
consistency of their read set. If all loads did not virtually
happen at the same time, the snapshot is inconsistent.

Read-only transactions do not need to modify the global
time base and can commit without updating any of the shared
metadata (orecs). Therefore, read-only transactions execute
very efficiently when there are no conflicts and do not slow
down concurrent transactions. They can, however, abort at

commit time because they have read values that have since
been overwritten by another committed transaction. Note that
the same problem arises with writes when using commit-time
locking (lazy conflict detection), as implemented for instance
by TL2 [1], because write-write conflicts are only discovered
at commit time.

C. Visible read mode

Visible read mode (VR) allows an update transaction to
detect read-write conflicts with a reader transaction. The
motivation is to detect R/W conflicts as they happen, and
thus to favor the reader in VR mode over other transactions
executing in the optimistic mode. This allows any conflicting
writer to back off and let the reader complete its execution.
In our framework, this mode enable a read-mostly transaction
to make progress while reducing the probability of an abort.

To implement visible reads, one may consider simulating a
visible read by a write. This solution however would trigger
R/R conflicts with OPT-transactions, and a VR-transaction
would thus prevent OPT-transactions from committing and
vice versa. Some STMs (e.g., SXM [13]) implement visible
reads by maintaining a list of readers for each shared
object. With such an approach, one can keep track at each
point in time of the number and identity of the readers,
and allow multiple readers or a single writer to access
the object. Writer starvation can be prevented by letting
readers “drain” as soon as a writer requests ownership of
the orec. The main drawback of this approach is that it
imposes a significant overhead for the management of the
reader list and creates additional contention. To address these
problems, SkySTM [14] implements “semi-visible” reads by
just keeping a counter of readers for each memory location.

We propose an even more extreme approach relying on a
single additional bit in the orecs to indicate that associated
memory locations are being read by some transaction(s).
The bit is atomically CAS’ed when reading the associated
memory location for the first time. A single visible reader is
allowed at a given time, and only if there is no writer—unless
the writer is the same transaction that performs the visible
read. Therefore, a visible reader behaves almost identically
to a writer, with one major difference: there is no conflict
between a visible reader and a transaction accessing the
same memory location optimistically, i.e., with optimistic
transactions (OPT) using invisible reads.



The rationale behind this design choice is that transactions
will seldom use visible reads. In fact, in the applications
considered in the paper, only the read-mostly transaction may
be in the VR mode if it fails to commit in the optimistic mode.
Still, our implementation supports concurrent executions of
VR-transactions, even though the considered applications do
not currently take advantage of it.

D. Irrevocable mode

In irrevocable (also called inevitable [7]) mode, a trans-
action is protected from aborts and will eventually commit.
A simple implementation of irrevocable mode is to execute
an irrevocable transaction alone once no other transaction
is in progress (serial mode). While this approach is safe, it
does not provide any concurrency and should be reserved as
a fallback mechanism for special situations, e.g., for system
calls that cannot execute safely inside a transaction.

A more promising approach is to allow an irrevocable
transaction to execute concurrently with other non-irrevocable
transactions. Several such algorithms have previously been
discussed and evaluated [6], [7]. We propose a new variant.

First, as with visible read, our hypothesis is that irrevoca-
bility (IVC) will be used rarely and, hence, should coexist
as well as possible with OPT-transactions. Our approach is
limited in that it allows only one irrevocable transaction
to execute at a time. Again, in our context, we do not
anticipate that multiple IVC-transactions will need to execute
concurrently.2

Our implementation follows the general design of previous
approaches [6], [7], by using a global token that a transaction
must acquire before it becomes irrevocable. Once the token
has been acquired, no other update transaction may commit,
independent of its execution mode. A transaction can request
to enter irrevocable mode at any point in its execution. If
the transaction has already accessed some shared object,
it must validate its read set before irrevocability can be
granted. Failed validation triggers an abort and the transaction
directly restarts in the irrevocable mode. In the context of
deadline-aware scheduling, we only enter irrevocable mode
upon restart after a conflict is detected and when nearing a
deadline.

Since an irrevocable transaction is guaranteed to never
abort, in case of a conflict the other non-IVC transaction will
systematically abort. To keep the implementation lightweight,
we allow a read-only non-IVC transaction to commit while
an IVC-transaction is in progress, but delay the committing
of concurrent update non-IVC transactions until after the
completion of the IVC-transaction. This approach permits
non-conflicting transactions to execute concurrently while
allowing for interesting optimizations in IVC-transactions:

2Supporting multiple concurrent irrevocable transactions would require
advance knowledge of the memory locations read and written by all
irrevocable transactions. Otherwise, one can trivially construct an interleaving
with just two transactions that leads to a deadlock.

they do not need to use visible reads or to validate the
timestamp of read values, or even to maintain a read set,
resulting in a reduced overhead.

IV. DEADLINE-BASED TRANSACTION SCHEDULING

Our runtime system for achieving deadline-based trans-
action scheduling relies on a dynamic adaptation of the
execution mode. This section presents how deadlines can
be expressed by the developer and how the STM library
chooses the execution mode for some atomic block. Finally,
we describe two extensions to the contention manager and
to the Linux scheduler to provide efficient deadline-based
transaction support.

A. Setting deadlines

The deadline associated with an atomic block is a contract
between the programmer and the STM library. As such, a
deadline is a pair: a time relative to the beginning of the
transaction and an associated guarantee level expected by
the programmer. This level is expressed as a quantile of the
distribution of transactions based on their execution length.
For instance, the programmer may desire that 99% of the
transactions for that particular atomic block commit in less
than 1ms: in this case the deadline will be expressed as the
pair (1ms, 99). The programmer can specify the deadline
associated with a given atomic block as an optional parameter
to the start API call or, when using compiler support, as
an attribute of the __transaction statement. A deadline
can be set at runtime and therefore an atomic block may
have a different deadline for each execution.

B. Dynamically adapting the transaction execution mode

Adaptation of the execution mode of a transaction with a
deadline is performed by a module that extends TinySTM.
The adaption is done at transaction restart after detecting a
conflict and aborting. The goal here is to satisfy the quantile
of success q expressed by the developer when setting the
deadline contract. The new running mode is chosen based on
the transaction length estimation L and the time remaining
before the deadline.

The transaction estimation length L for a quantile q is
obtained from the transaction length distribution gathered in
the reservoir by the measurement module (see Section II).
The higher the quantile is, the longer is L. For instance, if
the objective is that 99% of the transactions for an atomic
block should commit in less than t milliseconds, L will be
the 99th percentile value of the transaction length distribution
as recorded in the reservoir. Using a higher value for q will
result in more transactions committing by the deadline but
will also result in using the visible read (VR) and irrevocable
(IVC) execution modes more often. Conversely, using a lower
value for q, such as the median of the reservoir, can result
in deadlines being missed.



time
deadline

measured 
transaction

length in OPT

Optimistic (OPT) Irrevocable (IVC)Visible Reads (VR)
evolution of the preferred mode for transaction retry:

C
OPT

S
execution 1

(low contention)

A R A R A
OPT

S
execution 2

(med. contention)

A R A R A R A
OPT VR

S
execution 3

(high contention) R A R C
IVCVR

IVC start may
be delayed

STVR STIVC

L

R A
VR

Figure 4. Transaction execution mode switching for a transaction under increasing levels of contention, and times for changing execution mode before the
deadline. S, A, R and C respectively denote start, abort, retry/failed commit, and successful commit operations.

Depending on the remaining time before the deadline, the
transaction execution mode is set as follows (see Figure 4):

• after time STVR and before STIVC, the transaction
switches from optimistic mode to VR mode;

• after time STIVC, the transaction is executed in IVC
mode. However, if another transaction is running in IVC
mode, the restart will be delayed until that transaction
commits.

To simplify the computation of the STVR and STIVC
deadlines, we consider that the running time in IVC mode
is of the same order as for optimistic mode. We also
conservatively consider that the time allotted for running in
the VR mode is twice the time for running in the optimistic
mode. The validity of these simplifying assumptions is
experimentally verified in Section V. The choices for these
times are based on the following rationales:

• In order to ensure that the transaction gets at least one
chance to commit in VR mode before switching to
IVC mode, even when the transaction restarts in OPT
just before STVR, we set STIVC −STVR = 2×L. This
scenario is illustrated by execution 2 in Figure 4: a
restart in OPT mode just before STVR still gives the
transaction the opportunity to restart—and commit—in
VR mode.

• Similarly, a transaction starting in VR mode just before
STIVC must be allowed to restart and commit in IVC
mode. Based on our assumption on the length of the
execution time in VR mode, this transaction can restart at
STIVC +2×L. We also take into account a possible delay
of at most L due to another pending IVC transaction.
We thus set STIVC such that deadline−STIVC = 4×L
(2×L for a VR execution, and 1×L for the delay).

When the reservoir is empty or contains too few elements,
we must make a conservative estimate for the value of L.
As long as less than 10% of the reservoir is populated, we
systematically switch the transaction to the IVC execution
mode, so that the best time guarantee possible is achieved
and the reservoir fills in rapidly. Once the number of samples
in the reservoir grows to f >10% of its total capacity, we
start selecting the value of L based on the reservoir’s content,
while conservatively considering that empty entries contain

larger values than the ones already present. We consider
two cases, depending on the quantile q associated with the
deadline. If q < f we select the q ′ th percentile value of all
the samples present in the reservoir, with q ′ = (q×100)/ f .
Otherwise we use the maximum value (i.e., q ′ = 100).

C. Contention manager support

The default contention manager (CM) in TinySTM uses
the suicide strategy, which is simple and effective in low-
contention cases: a transaction that detects a conflict during
execution or upon validation simply aborts and restarts. This
strategy can be problematic for a long-running read-mostly
transaction associated with a deadline. As the deadline nears,
the transaction will switch to the VR execution mode, where
read/write conflicts can be detected as they happen. If other
updates transactions are running at the same time, using
the suicide CM results in the read-mostly transaction being
aborted with a high probability, eventually switching to the
more costly IVC execution mode. We therefore extend the
contention manager so that it gives priority to a transaction
associated with a deadline and running in the VR mode,
before resorting to the default suicide contention management
strategy. We call this extended CM deadline-aware.

D. Scheduler support

We extend the Linux scheduler in two ways to ensure that
the execution mode policy will be successful in ensuring
transactions commit before their deadline.

First, threads supporting on-going transactions for which a
deadline is set may reach the end of their execution slice, in
which case they are at risk of being timed out and rescheduled
much later in the future. This results in a likely abort of the
OPT and VR modes, and a large increase in retry rate and
thus execution time, as the risk of conflict grows during the
interruption. For the IVC execution mode, this may cause
other transactions to repeatedly abort because they cannot
progress until the irrevocable transaction has completed. To
accommodate deadlines, we need to make sure that the
corresponding transactions are given enough time to commit
even if they were started just before the end of a time slice.
We implement time slice extension at the kernel scheduler



level to deal with this issue: a thread running a transaction
with a deadline can be granted up to three additional time
slices to finish its execution. In this case, in order to be
fair to other threads running on the system, the transactional
library automatically detects the time slice extension and
yields back the processor as soon as the transaction commits.
In practice, only in a very few cases does a transaction need
more than one extension to be able to commit.

Second, the load balancing mechanisms in the kernel may
decide to migrate the thread from one core to the other
while it is executing a deadline based transaction. This
would induce a wrong time measurement since timestamp
counters are not synchronized across cores, and prevent from
implementing the execution mode change policy as we could
not rely anymore on the elapsed time measurement after a
core migration. In order to avoid this problem, the scheduler
extension module forbids the migration of a thread running
a deadline based transaction.

V. EXPERIMENTAL EVALUATION

In this section, we perform a thorough evaluation of all
components of the system. We demonstrate their ability
to achieve the desired success rate for committing before
deadlines, while keeping the overhead and impact on the
overall throughput minimal. We first evaluate the transaction
length measurement module and then illustrate the tradeoffs
between the overall and individual throughput using each
of the three different modes for a privileged transaction.
We demonstrate our claim that the execution length of a
transaction can be safely estimated based on the continuous
sampling. Finally, we evaluate the ability of the adaptive
mode switching module to make transactions commit before
their deadline and the corresponding impact on the other
transactions’ throughput, using two realistic applications:
swarm [7] and synquake [10].

A. Experimental setup and benchmarks

All tests have been carried out on an AMD Opteron server
with four 2.3 GHz quad-core CPUs (16 cores in total) and
8GB RAM running Linux 2.6.34. Where applicable, we
consider a reservoir size of 10,000 elements. All results in
this section are averaged/aggregated over 10 runs of the
following applications.

The bank micro-benchmark models a simple bank appli-
cation performing various operations on accounts (transfers,
aggregate balance, etc.). We consider a variant in which all
transactions are read-mostly aggregations that consult the
balance of 50 random accounts out of 10,000 and update one
random account. We use this benchmark only for illustrating
the inherent tradeoffs of our three execution modes in the
presence of read-mostly transactions.

We also consider the STAMP [15] benchmark suite, one of
the most widely used STM benchmarks. STAMP benchmarks
present a large variety of transaction lengths and read/write

set sizes. Henceforth, we use them to evaluate the correctness
of our transaction length measurement module. bayes uses a
hill-climbing algorithm that combines local and global search
to learn the structure of Bayesian networks from observed
data; genome matches a large number of DNA segments
to reconstruct the original source genome; intruder emu-
lates a signature-based network intrusion detection system;
kmeans partitions objects in a multi-dimensional space
into a given number of clusters; labyrinth executes a
parallel routing algorithm in a 3-dimensional grid; ssca2
constructs a graph data structure using adjacency arrays and
auxiliary arrays; vacation implements an online travel
reservation system; yada executes a Delaunay mesh refine-
ment algorithm. Two sets of parameters are recommended
by the STAMP developers for vacation and kmeans, to
produce executions with low and high contention. We only
consider the ones yielding a high contention. The single-
threaded execution time of the STAMP applications ranges
from a few seconds to several minutes.

We then consider two realistic applications, swarm and
synquake, that are representative of the class of reactive
applications targeted by our approach. swarm is a realistic
rendering application from the RSTM distribution [7]. It per-
forms asynchronous rendering and updates of a 3-dimensional
scene graph. One thread is responsible for the rendering while
the other threads are moving collection of objects from the
shared state and detecting their collisions in the scene. In
order to obtain a given number of frames per second, we
have performed one slight modification to swarm so that all
the rendering is performed in a single periodic transaction
that is assigned a deadline. In our instances of swarm, the
renderer always reads the whole set of 26,856 objects from
the scene. synquake emulates a game server with multiple
clients, interacting over a 2D map [10]. The execution is
split into cycles, during which each thread applies a set of
actions on behalf of the clients. Each action is associated
with a scope and range, which respectively translate into
an amount of transactional reads and writes. In order to
generate a high level of contention that does not allow a
majority of OPT transactions to commit directly, we use the
following parameters. We use the “quest” (bias of players’
moves towards a point of attraction) that yields the highest
contention. We further increase contention by using 128
players, each being a 2x2 tile in a 64×64 tile map. We
remove the map “walls” that could prevent interactions and
thus reduce contention. We also increase the range of all
actions. In particular, the longest transaction action (attack)
operates on read and write sets of respectively 1,490 and 62
elements on average. This is the action for which we set a
deadline in our experiment.

B. Measuring Transaction Lengths

We evaluate the ability of the transaction length mea-
surement module to evaluate the duration of transactions,



 0

 20

 40

 60

 80

 100

101 102 103 104 105 106 107 108 109 1010

D
is

tr
ib

ut
io

n 
(C

D
F

)

Single thread execution

bayes

labyrinth

ssca2

yada

intruder genome

kmeans

vacation

 0

 20

 40

 60

 80

 100

101 102 103 104 105 106 107 108 109 1010

D
is

tr
ib

ut
io

n 
(C

D
F

)

Transaction length (CPU cycles)

32 threads on 4 cores, with kernel support

bayes

labyrinth

ssca2

yada

intruder

genome

kmeans

vacation

application variation application variation
genome +5.30% ssca2 +0.88%
intruder +6.05% vacation +29,841%
kmeans +3.01% yada +44,497%

labyrinth +3,465% bayes +370,45%

Figure 5. Transaction lengths measurements in a single thread execution
and content of the reservoirs for a 32 threads execution on 4 cores. The
table lists the variations of the value of the 99th percentile of the distribution
when no pruning of invalid samples due to migrations and preemptions is
used.

while pruning out invalid measurements due to migration
and preemption in a multithreaded setting. We consider all
STAMP applications and build a reservoir for each atomic
block of the application.

We first consider the accuracy of our mechanism for single-
threaded runs. In this case, there is no contention as there is
only at most one transaction at a time. Additionally, there
are no interruptions of the thread as we use only one core
out of 16. We show the cumulative distribution of transaction
lengths in the uppermost plot of Figure 5. The other plot
presents the contents of the reservoirs for all transactions,
in a multithreaded setting. We use 32 threads on 4 cores in
order to generate high levels of migrations and preemptions
of the threads supporting the transactions. Unused cores are
disabled and cannot be used by the operating system. Apart
from the natural shift to longer transaction lengths due to
cache misses and contention, we observe that the distribution
of lengths follow the same trends as for a single threaded
execution, and that potentially outlying measurements due
to migration and preemption do not appear in the reservoirs.
Note that disabling the pruning of invalid samples can result
in a major shift towards extreme values for the last percentiles,
making these values unusable for predicting the transaction
length when not interrupted. This effect is shown by the
relative difference for the 99th percentile value in the table
at the bottom of Figure 5.

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 12 16

T
ra

ns
ac

tio
ns

 p
er

se
co

nd
 (

M
ill

io
ns

)

Threads

OPT: all
OPT: first

VR: all
VR: first
IVC: all

IVC: first

Figure 6. Illustration of the individual throughput of bank with a special
thread (“first”) running a transaction in OPT, VR, or IVC mode while other
threads run transactions only in OPT mode, and impact on the application
global throughput (“all”).

C. Adaptive Transaction Execution Modes

We evaluate the different adaptive execution modes in
two ways. First, we demonstrate the tradeoff between the
gain in execution determinism for the transactions running in
each mode and the relative impact on throughput. Then, we
show that using transaction length predictions based on OPT
execution for the other modes is accurate for read-mostly
long-running transactions.

Determinism/throughput tradeoff: Figure 6 presents the
individual and global throughput of bank where one of the
thread (denoted first) can run its transactions in any of the
modes while the other threads only run them in OPT mode.
It illustrates the claim, made in Section III, that the impact
of the three execution modes on the overall throughput is
progressive: running the first transaction in VR mode only
results in a 26% total throughput reduction for 16 threads
compared to using OPT, while using IVC results in a severe
reduction of 80% for the same settings. We also note that the
individual throughput in VR mode is smaller: this is due to
the overhead of marking visible reads during the transaction
execution.

Predictable execution lengths: We characterize the
difference in execution time of transactions when executed
in the different modes (IR, VR, and IVC) for all STAMP
applications, and for each separate atomic block in these
applications. Table II presents the execution times for
transactions running in OPT mode, and the relative difference
for VR and IVC, for the 90th and 99th percentiles. These
extreme values of the distribution are the ones that matter in
our context, as these are the ones that will be used for setting
the contract associated with a deadline. Note that the results
are similar when considering the median of the distribution.
For a majority of transactions, the difference between OPT
and VR, and OPT and IVC, is very limited (less than ±10%).
The running time in VR mode is typically larger than for
OPT mode due to the overhead imposed by setting the orecs
with a CAS operation (see Section III-C), while the lengths
of IVC transactions are smaller or comparable to that of
OPT transactions. Exceptions mostly concern short-running
transactions, where the cost of acquiring the global IVC



90th percentile 99th percentileApp. Block OPT VR IVC OPT VR IVC
1 11.90µs +8% -2% 13.20µs +9% -1%
2 0.38µs +28% -6% 0.48µs +22% -3%

genome 3 1.28µs +17% -2% 233.37µs +47% -3%
4 0.80µs +7% -10% 0.94µs +9% -11%
5 0.99µs +10% -3% 1.20µs +9% -2%
1 0.38µs -3% -14% 0.45µs -3% -14%

intruder 2 16.63µs +14% -20% 39.91µs +8% -20%
3 0.17µs +1% -3% 0.43µs +8% -3%
1 2.97µs = -1% 3.12µs = -1%

kmeans 2 0.20µs -21% -12% 0.22µs -2% +2%
3 0.35µs -36% +14% 7.27µs -37% +26%
1 1.78µs +12% +25% 2.10µs +9% +21%

labyrinth 2 543.6ms -2% -2% 633.7ms +2% +2%
3 1.60µs +31% = 1.60µs +31% =
1 12.41µs -21% -7% 12.41µs -21% -7%

ssca2 2 2.09µs +51% +55% 2.09µs +51% +55%
3 0.88µs +1% +2% 0.98µs +1% +3%
1 31.45µs = = 35.75µs +1% =

vacation 2 71.21µs = +1% 113.80µs = +1%
3 19.99µs = = 24.68µs +1% =
1 0.72µs +23% +7% 4.72µs +5% +2%
2 0.28µs +28% +36% 0.40µs +23% +24%

yada 3 67.60µs +11% -3% 92.89µs +12% -4%
4 0.18µs +25% +48% 0.24µs +19% +34%
5 0.85µs +33% +4% 4.54µs +8% +2%
6 0.49µs +8% +10% 0.49µs +8% +10%
1 9.94µs +13% +28% 9.94µs +13% +28%
2 0.74µs +39% +2% 10.08µs +1% =
3 0.54µs +17% +6% 1.09µs +36% -17%
4 10.52µs +2% -1% 22.20µs +8% -6%
5 8.54ms +1% = 31.32ms +1% +1%
6 0.32µs +16% +40% 0.65µs +57% +52%

bayes 7 311.76µs +1% -1% 29.36ms +2% +3%
8 366.47µs +2% +1% 10.63ms +2% +1%
9 0.25µs +27% +24% 9.85µs +23% +1%

10 64.52ms +1% = 592.4ms +1% +1%
11 16.05ms +1% +2% 226.8ms +2% +2%
12 19.99ms +2% +1% 314ms = =
13 1.15µs +31% -13% 9.87µs -22% +2%

Table II
STAMP: TRANSACTION LENGTHS W/ DIFFERENT EXECUTION MODES.

token is higher than the gain observed for not having to
maintain a read set with long transactions. For long-running
transactions (such as labyrinth:2, yada:3 or bayes:5&10),
predicting the execution time in VR and IVC modes based
on OPT executions is accurate within a small error margin
(resp. [-2%:+12%] for VR and [-4%:+1%] for IVC).

D. Deadline Aware Scheduling

We now evaluate the effectiveness of the combination of all
our mechanisms in committing a transaction before a deadline,
both for periodic tasks with the swarm rendering application,
and for one-shot tasks with the synquake application, while
keeping the impact on the system as low as possible. When
setting deadlines, we use the 99th percentile for the associated
contract. Using a contract of 100% would risk of selecting
an unrepresentative outlying measurement as the value of
L and be overly conservative in switching to pessimistic
execution modes. Using the highest reasonable percentile
also constitutes a worst-case scenario for contention and
throughput, as the VR and IVC modes are then more likely
to be used for respecting deadlines.

Periodic rendering — swarm application: The rendering
transaction in swarm periodically compiles the objects that
are then sent to an OpenGL rendering library (glut). As

 0

 20

 40

 60

 80

 100

#threads

legend
 

B A

success: commit
before the deadline
(here in VR mode)

failure: commit after
the deadline
(here in IVC mode)

 0

 20

 40

 60

 80

 100

2 4 8 12 16

OPT only
CM: suicide

OPT
VR
IVC

 0

 20

 40

 60

 80

 100

2 4 8 12 16

C
o
m

m
it
 r

a
te

 b
e
fo

re
 (

B
) 

a
n
d
 a

ft
e
r 

(A
) 

th
e
 d

e
a
d
lin

e
 (

%
)

VR only
CM: suicide

 0

 20

 40

 60

 80

 100

2 4 8 12 16

IVC only
CM: suicide

 0

 20

 40

 60

 80

 100

2 4 8 12 16

Threads

with deadline for 99
th

 percentile
CM: suicide

 0

 20

 40

 60

 80

 100

2 4 8 12 16

Threads

with deadline for 99
th

 percentile
CM: deadline aware

(a) Execution modes and success of committing by the deadline.

 0
 5

 10
 15
 20
 25
 30
 35

2 4 8 12 16

Threads

Frame rate (frames/second)

objective:
30 frames/second

OPT only; CM: suicide
VR only; CM: suicide

IVC only; CM: suicide

with deadline for 99th percentile; CM: suicide
with deadline for 99th percentile; CM: deadline aware

 0

 50

 100

 150

 200

2 4 8 12 16

Threads

Avg. retries (other transactions)

328
296

(b) Frame rate and contention.

Figure 7. Performance and success rate of swarm executions with a
deadline of 33% of the frame generation period (1/180 second). Baselines:
OPT-, VR- and IVC-only means that the transaction for which we set a
deadline executes in this mode, while the others all run in OPT.

such, it basically performs a consistent snapshot of the scene
while allowing concurrent execution of update transactions.
We consider a target frame rate of 30 images per second.
We set the deadline to be one sixth of a rendering period
from the time the rendering starts, that is, 1/180s from the
beginning of the transaction. At most one rendering starts
per 1/30s period. Transactions that commit after the deadline
are considered to be failures, while missed frames due to
transactions that last for longer than a rendering period result
in a drop in the effective frame rate.

Figure 7(a) presents the success rates (commits before the



deadline) for various execution modes, while the left graph
of Figure 7(b) shows the corresponding frame rate. We also
measure the impact on the overall throughput by observing
the contention, measured by the average number of retries
experienced by other transactions in the system, in this case
update transactions (right graph of Figure 7(b)).

Running all transactions in OPT mode does not allow us to
reach a reasonable frame rate for more than 4 threads. Note
that for 8 threads, even if 60% of the rendering transactions
succeed by the deadline, the ones that do not succeed typically
last for multiple rendering periods, resulting in a drop to 10
frames per second. This highlights the unpredictability of
transaction lengths when running in OPT-mode. Similarly,
running the rendering transaction in VR mode only does not
succeed in reaching the target frame rate, as transactions are
aborting frequently, and also frequently span over multiple
rendering periods. As expected, running this transaction in
IVC mode is the ideal case for the success rate and the
frame rate, but also leads to a large level of contention, as
illustrated by the retry rate.

We now consider the results with a deadline contract on
the 99th percentile value from the reservoir, using either the
deadline-aware or the suicide CM described in Section IV.
In both cases, we succeed in committing before the deadline
in 99% of the cases for up to 12 threads, and 98% for 16
threads. We nonetheless observe that using the deadline-
aware CM provides a significant advantage in many respects.
First, with 16 threads, it achieves a better frame rate, meeting
the objective of 30 frames per second, while using the suicide
CM leads to a few long VR transactions that reduce the frame
rate. Second, using the suicide CM results in a much larger
number of deadlines being met by using the IVC mode,
as the transaction typically aborts in VR mode whereas the
deadline-aware CM would prioritize it over other transactions.
Third, a corollary to the previous observation is that using
the suicide CM results in a much larger contention in the
system, as one has to pay the price of contention of an IVC
transaction plus potentially many OPT and VR transactions
before it. On the other hand, the deadline-aware CM not
only meets a majority of deadlines using OPT or VR modes
(a few IVC, not visible on the figure, are still necessary
for part of the success rate for 8 threads and more), but
also results in a contention that is 3 times lower than using
directly IVC with 16 threads, as illustrated by the average
number of retries for other transactions in Figure 7(b) right.

Our final observation is on the time slice extension
mechanisms provided by the transaction support kernel
scheduler module. In the worst case (for 16 threads, with the
deadline-aware CM), transactions seldom require more than
one extension to be able to commit by the deadline. Out of
900 render commits, 1.5% required an extension, and 0.1%
required two. None required three or more extensions.

Batch simulation — synquake application: We set a
deadline on the time used for an attack operation performed

 0
 20
 40
 60
 80

 100

2 4 8 12 16

C
om

m
it 

ra
te

 b
ef

or
e 

(B
) 

an
d 

af
te

r 
(A

) 
th

e 
de

ad
lin

e 
(%

)

OPT only
CM: suicide

 0
 20
 40
 60
 80

 100

2 4 8 12 16

IVC only
CM: suicide

 0
 20
 40
 60
 80

 100

2 4 8 12 16

Threads

with deadline for 99th percentile
CM: suicide

 0
 20
 40
 60
 80

 100

2 4 8 12 16

Threads

with deadline for 99th percentile
CM: deadline aware

(a) Execution modes and success of committing by the deadline.

 0

 5

 10

 15

 20

 25

 30

2 4 8 12 16

Threads

Completion time (seconds)

OPT only; CM: suicide
VR only; CM: suicide

IVC only; CM: suicide

with deadline for 99th percentile; CM: suicide
with deadline for 99th percentile; CM: deadline aware

 0

 100

 200

 300

 400

 500

 600

2 4 8 12 16

Threads

Average number of retries

(b) Completion time for the complete workload and contention.

Figure 8. Performance and correctness of synquake executions with a
deadline of 750µs. The legend is shared with Figure 7

by the first thread only, and set its deadline to be 10 times the
90th percentile of its execution as observed in sample runs for
the same workload, that is, 750µs. Unlike swarm, operations
in synquake are performed as fast as possible, which means
that the impact of IVC transactions on throughput is likely
to be more important.

Figure 8(a) presents the success and failure rates for
committing before the deadlines in the same way as for
swarm. However, since synquake attempts to simulate a
given workload as fast as possible, we consider the running
time of the application instead of a frame rate for measuring
the overall application throughput. We also consider the
average number of retries for all transactions in the system
as a measure of the contention for each run. Due to space
restrictions, we do not present the results for VR-only for
deadline success rate: they are on par with the observations
made for swarm, that some more deadlines are met than in
OPT but far from enough to satisfy the deadline requirements.
We note though that the smaller transactions of synquake



do not allow for the same difference in throughput and
contention for the two different CM that we observe for
swarm (where the rendering transaction is very long as it
reads all objects). We also observe that the deadline-aware
CM is as effective as pushing the use of VR transactions up
to 12 threads. For 16 threads, and as the number of updates
rises, the limit of usability of VR mode is clearly reached
and the system has to rely on IVC transactions to meet the
deadlines.

VI. RELATED WORK

We discuss related work along two axes: (1) TM scheduling
in general and (2) real time and deadline management for
transactional memory.

TM scheduling: Conflict resolution and progress guaran-
tees in TM are typically the responsibility of an application-
level contention manager [12]. As argued in [9], conventional
(non-scheduling) contention managers notably lack precision
and have very limited control (or no control at all) on the
scheduling of transactional threads. Further, to be able to
guarantee progress, they must detect every conflict, which
rules out the “invisible read” design adopted by many efficient
STM implementations.

Several researchers have explored the use of a dedicated
transactional scheduler for improving the performance of
STM. CAR-STM [16] takes a scheduling-based approach
for contention management. It maintains per-core transaction
queues, where the transactions in each queue are executed by
a dedicated thread in a sequential manner. Upon collision, the
loser transaction is enqueued behind the winner transaction.
Yoo and Lee [17] implemented a simple adaptive user-level
scheduler that essentially serializes transactions once a high
level of contention is detected. This approach is effective
in specific settings where parallelism actually degrades
performance. Ansari et al. [18] designed a transaction
scheduler that avoids wasted work by allowing transactions
to “steal” conflicting transactions so that they execute serially.
Dragojevic et al. [19] proposed another user-level transaction
scheduler that bases its scheduling decisions on the access
patterns of past transactions.

These approaches are complementary to our work. We do
not explicitly serialize conflicting transactions except when
they are irrevocable. Our scheduler extension serves mainly
to control thread migration and preemption in certain cases.

One should note that avoiding thread preemption has also
been explored in TL2’s [1] implementation on Solaris using
the schedctl mechanism to request short-term preemption
deferral during the commit phase. This reduces the risk
that a transaction holding locks is preempted and prevents
the progress of others. It does not, however, control the
scheduling of active transaction before the commit phase nor
does it handle conflicts as they are encountered.

At the level of the operating system, TxLinux [20] is a
variant of Linux that exploits hardware transactional memory

(HTM) and integrates transactions with the operating system
scheduler. It follows different goals and a different approach
than our work, by focusing on HTM and experimenting with
new ways of achieving synchronization in the kernel for
future processors with TM hardware support.

In previous work, we proposed an operating system
scheduler [9] that serializes conflicting transactions on the
same core and avoids preempting threads that are executing
active transactions. We did not consider deadlines nor the
execution time of transactions, as the objective was to reduce
the abort rate of the application without consideration for the
latency of individual transactions. We reuse some of these
mechanisms for our deadline-aware scheduling framework.

Real-time TM and deadlines: RT-STM [21] is an
extension of Fraser’s STM [22] that supports real-time
transactions. RT-STM has been integrated in the LITMUSRT

real-time operating system [23]. The modifications to Fraser’s
STM are minimal: the conditions under which a transaction
helps another one to commit have been modified such that
higher-priority transactions are helped by lower-priority ones.
This modification only applies to the commit procedure in its
read and write phases. Note that with Fraser’s STM, there is
no guarantee that a transaction will commit even if it has a
high priority because it may abort before reaching the commit
phase. Therefore, unlike in our approach, RT-STM cannot
enter a privileged mode in which it is guaranteed to run
uninterrupted: it merely changes the priority of transactions
closer to their deadlines and does not take into account their
expected length. Evaluation was conducted only on red-black
trees and showed slightly reduced jitter and a higher number
of transactions that meet their deadlines.

RTTM [24] is a proposal for a hardware transactional
memory for chip-multiprocessors in real-time systems. It
has been designed to support small transactions with few
read/write operations and has been evaluated on a simulated
processor. The major contribution of RTTM is to bound the
maximum number of retries for periodic threads.

Fahmy et al. propose an algorithm to compute an upper
bound on the response time of transactions in distributed
multiprocessor real-time systems [25], but they do not address
the issue of implementing a real-time STM.

Several approaches for implementing irrevocability (also
called inevitability) have been proposed and compared in [6],
[7], [8], but they are not used in the context of deadlines.
Our design also slightly differs as our objective is to allow
optimistic transactions to progress concurrently.

VII. CONCLUSION

Transactional memory relies on optimistic concurrency
control and, as such, is not directly applicable to reactive
applications where operations must be completed within a
bounded amount of time. In this paper, we have presented
a novel approach to handling transaction with deadlines.
Our deadline-aware scheduler framework allows programmer



to associate deadlines with transactions. We use a com-
bination of mechanisms to (1) estimate the duration of
transactions, and (2) adaptively modify the execution mode
of the transactions as the deadline nears, switching from
the most optimistic approach that provides the highest level
of concurrency to more pessimistic modes (visible reads
and, eventually, irrevocable) that provide more deterministic
guarantees regarding execution time but also limit the
exploitable parallelism.

Our framework is implemented as a combination of
mechanisms added to an existing software transactional
memory library for transaction length measurements and
adaptive mode switching, and an extension of the operating
system scheduler that avoids thread preemption and migration
for transactions subject to deadlines.

Experimental evaluation of reactive applications shows
that our deadline-aware scheduler framework significantly
improves the number of transactions that commit by their
deadlines without noticeable degradation in the overall
transaction throughput.

ACKNOWLEDGMENTS

We are grateful to the authors of synquake [10] for
providing us with their application. The research leading to
the results presented in this paper has received funding from
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement No 216852.

REFERENCES
[1] D. Dice, O. Shalev, and N. Shavit, “Transactional locking

II,” in DISC’06: 20th International Symposium on Distributed
Computing, 2006, pp. 194–208.

[2] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance
tuning of word-based software transactional memory,” in
PPoPP ’08: 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, 2008, pp. 237–246.

[3] A. Dragojević, R. Guerraoui, and M. Kapałka, “Stretching
transactional memory,” in PLDI’09: ACM SIGPLAN Confer-
ence on Programming Languages Design and Implementation,
Jun. 2009.

[4] J. Sreeram, R. Cledat, T. Kumar, and S. Pande, “RSTM:
A relaxed consistency software transactional memory for
multicores,” in PACT’07: 16th International Conference on
Parallel Architecture and Compilation Techniques. IEEE CS,
2007.

[5] T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,
“Redline: first class support for interactivity in commodity
operating systems,” in OSDI’08: 8th USENIX conference on
Operating systems design and implementation, pp. 73–86.

[6] A. Welc, B. Saha, and A.-R. Adl-Tabatabai, “Irrevocable
transactions and their applications,” in SPAA ’08: 20th annual
symposium on Parallelism in algorithms and architectures.
ACM, 2008, pp. 285–296.

[7] M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael,
and M. L. Scott, “Implementing and exploiting inevitability
in software transactional memory,” in ICPP’08: 37th Interna-
tional Conference on Parallel Processing. IEEE CS, 2008.

[8] H. Volos, A. J. Tack, N. Goyal, M. M. Swift, and A. Welc,
“xCalls: safe i/o in memory transactions,” in EuroSys’09: 4th
ACM European conference on Computer systems, 2009, pp.
247–260.

[9] W. Maldonado, P. Marlier, P. Felber, A. Suissa, D. Hendler,
A. Fedorova, J. L. Lawall, and G. Muller, “Scheduling
support for transactional memory contention management,”
in PPoPP’10: 15th ACM SIGPLAN symposium on Principles
and practice of parallel programming, 2010, pp. 79–90.

[10] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick,
and C. Amza, “Transactional memory support for scalable
and transparent parallelization of multiplayer games,” in
EuroSys’10: 5th European conference on Computer systems.
ACM, 2010, pp. 41–54.

[11] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans.
Math. Softw., vol. 11, no. 1, pp. 37–57, 1985.

[12] W. N. Scherer III and M. L. Scott, “Advanced contention
management for dynamic software transactional memory,”
in PODC’05: twenty-fourth annual ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, Jul. 2005,
pp. 240–248.

[13] M. Herlihy, “SXM: C# Software Transactional Memory.
Unpublished manuscript, Brown Univ.” may 2005, http://www.
cs.brown.edu/~mph/.

[14] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and
M. Olszewski, “Anatomy of a scalable software transactional
memory,” in TRANSACT 2009: 4th ACM SIGPLAN Workshop
on Transactional Computing, feb 2009.

[15] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi- processing,”
in IISWC’08: IEEE International Symposium on Workload
Characterization, sep 2008.

[16] S. Dolev, D. Hendler, and A. Suissa, “CAR-STM: scheduling-
based collision avoidance and resolution for software transac-
tional memory,” in PODC’08, 27th Annual ACM Symposium
on Principles of Distributed Computing, Aug. 2008.

[17] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling
for transactional memory systems,” in SPAA’08: 20th ACM
Symposium on Parallelism in Algorithms and Architectures,
Jun. 2008, pp. 169–178.

[18] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. C. Kirkham,
and I. Watson, “Steal-on-abort: Improving transactional mem-
ory performance through dynamic transaction reordering,” in
HiPEAC: 4th International Conference on High Performance
Embedded Architectures and Compilers, 2009, pp. 4–18.

[19] A. Dragojevic, R. Guerraoui, A. V. Singh, and V. Singh,
“Preventing versus curing: Avoiding conflicts in transactional
memories,” in PODC’09, 28th Annual ACM Symposium on
Principles of Distributed Computing, Aug. 2009, pp. 7–16.

[20] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
A. Bhandari, and E. Witchel, “TxLinux: Using and managing
hardware transactional memory in an operating system,”
in SOSP’07: 22nd ACM symposium on Operating systems
principles, Oct. 2007, pp. 87–102.

[21] T. Sarni, A. Queudet, and P. Valduriez, “Real-time support
for software transactional memory,” in RTCSA’09: 15th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, 2009, pp. 477–485.

[22] K. Fraser, “Practical lock-freedom,” Ph. D. dissertation,
UCAM-CL-TR-579, Computer Laboratory, University of
Cambridge, 2004.

http://www.cs.brown.edu/~mph/
http://www.cs.brown.edu/~mph/


[23] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT : A testbed for empirically comparing
real-time multiprocessor schedulers,” RTSS’06: 27th IEEE
International Real-Time Systems Symposium, pp. 111–126,
2006.

[24] M. Schoeberl, F. Brandner, and J. Vitek, “RTTM: Real-time
transactional memory,” in SAC’10: 25th ACM Symposium on
Applied Computing, March 2010.

[25] S. F. Fahmy, B. Ravindran, and E. D. Jensen, “On bound-
ing response times under software transactional memory in
distributed multiprocessor real-time systems,” in DATE’09:
Conference on Design, Automation and Test in Europe, 2009.


	Introduction
	Measuring Transaction Lengths
	Transaction Execution Modes
	Design choices
	Optimistic mode
	Visible read mode
	Irrevocable mode

	Deadline-based Transaction Scheduling
	Setting deadlines
	Dynamically adapting the transaction execution mode
	Contention manager support
	Scheduler support

	Experimental Evaluation
	Experimental setup and benchmarks
	Measuring Transaction Lengths
	Adaptive Transaction Execution Modes
	Deadline Aware Scheduling

	Related Work
	Conclusion
	References

