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A program executing on a low-end embedded system, such as a smart-card, faces scarce memory
resources and fixed execution time constraints. We demonstrate that factorization of common
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1. INTRODUCTION

The Java language [Gosling et al. 1996], while enjoying widespread use in many
application domains, is by design also meant to be used in embedded systems.
This is witnessed by the availability of specific APIs, such as the JavaCard and
EmbeddedJava specifications [Sun Microsystems, Inc. 1997; 1998a; 1999b; 1999c;
1999d]. The primary advantage of Java in this context is portability, which is
realized through the Java bytecode format [Lindholm and Yellin 1996]. The use of
a standard format allows any third-party developed services to be installed on any
Java-compatible embedded system.

Low-end embedded systems, such as smart-cards, have strong restrictions on the
amount of available memory, severely limiting the size of applications that they
can run. Memory is scarce for a number of reasons: production costs must be kept
low; power consumption must be minimized; and available physical space is limited.
Thus, it is desirable that an embedded application consumes as little memory as
possible, including the space taken up by the program code itself; the less space
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is taken by the code for each feature of the application, the more features can be
embedded into the system.

Existing efforts at reducing the size of Java programs have concentrated on re-
ducing the size of Java class files for transmission and subsequent execution on a
standard workstation [Bradly et al. 1998; Pugh 1999]. In the Java class format,
the constant pool comprises most of the space; the bytecode instructions only con-
tribute about 18% of the total size [Antonioli and Pilz 1998]. However, the size
of a class file is unimportant in the context of low-end embedded systems; only
the memory footprint of the loaded program matters. In a low-end embedded sys-
tem, the constant pool is either completely removed (when dynamic loading is not
needed) or reduced using ad hoc techniques. We estimate1 that the bytecode ac-
counts for roughly 75% of the memory footprint in a system, using the token-based
constant-pool approach of JavaCard 2.1 [Sun Microsystems, Inc. 1999d] (which
allows dynamic loading of code).

Although Java bytecode is reasonably concise, programs still contain repeated
patterns of code. Compression comes to mind as a viable solution for those situ-
ations where the size of the program code storage must be minimized. Data com-
pression has a very wide range of applications, and is a well-studied area [Bell et al.
1990; Ziv and Lempel 1978]. A traditional solution would involve decompressing
different parts of the program as they are needed, and discarding them afterward.
However, this approach is usually not applicable in the context of low-end embed-
ded systems. First, in a low-end embedded system, there may not be sufficient
memory to decompress even a single method. For example, an existing JavaCard
system such as the Java Ring is limited to 32K of ROM and 6K of RAM [Dallas
Semiconductor Corp. 1998]. Second, the time taken to uncompress such a segment
of code might exceed time constraints defined by the application domain.

This paper presents a solution that reconciles the need to conserve space on
low-end embedded systems with fixed time constraints. We propose to factorize re-
curring instruction sequences into new instructions. This factorization allows more
concise programs to run on a Java Virtual Machine (JVM) extended to support
new instructions.

By expressing the new instructions as macros over existing instructions, the JVM
only needs to be extended to support these macro instructions, not to support
instructions specific to any one program. Using this technique, program memory
footprint is on the average reduced to 85% of its original size, at an average run-time
speed penalty between 2% and 30%.

The rest of the paper is organized as follows. Section 2 fixes the setting by
discussing various applicable techniques for reducing the memory footprint of Java
programs. We factorize code into macros over instructions, as illustrated in Section
3 by an example. Section 4 describes the actual factorization algorithm that we
employ. Section 5 describes how macro support is implemented in the JVM. The
experimental results are presented and discussed in Section 6. Finally, related work
is described in Section 7, and concluding remarks are presented in Section 8.

1Based on measurements done using standard JavaCard CAP files, described in Section 6.
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Fig. 1. Transferring Java classes into a JavaCard system.

2. APPROACHES TO REDUCING MEMORY FOOTPRINT

The standard Java class file format contains information that does not need to be
present in a low-end embedded system. Thus, an internal, more compact format is
used, as discussed in Section 2.1. However, the size of the bytecode can be further
reduced, by using standard compression techniques in the limited fashion proposed
in Section 2.2, or by factoring out recurring instruction sequences, as described in
Section 2.3.

2.1 Conversion to an Internal Format

Although the Java bytecode instruction set was designed with embedded systems in
mind, it is evident that standard Java class files produced by compilers such as Sun’s
javac compiler are not intended for use on such systems: debugging information
and names of internal (private) identifiers are, for example, included by default. Al-
though these are easily stripped from class files,2 much precious space is still taken
up by names that are not needed during execution. For this reason, it is natural for
a low-end embedded system to use its own internal space-efficient representation.
Throughout this paper, we will use the JavaCard 2.1 environment [Sun Microsys-
tems, Inc. 1999b; 1999c; 1999d] as a reference, since it is the only documented,
freely available low-end Java execution platform.

Java programs are transferred to JavaCard systems in units of packages, each
package implementing either a set of applets or a library. The process of transferring
a Java package to a JavaCard system is illustrated in Figure 1. First, a set of Java
class files that make out a package is converted into a single CAP (converted applet)
file and an export file describing the package interface. Export files describing other
packages that are used by the classes in the package are also given to the converter.
This scheme allows all the name information to be stored in export files, with two-
byte tokens as the only representation of names in the CAP file. The CAP file is
transferred onto the JavaCard device, which is then free to convert it into whatever
internal representation is used for execution. Verification of the class files can be

2Numerous utilities, such as IBM’s Jax (accessible from http://www.alphaworks.ibm.com/) re-
duce the size of Java class files by removing such superfluous information. Jax also performs
class hierarchy specialization [Tip and Sweeney 1997], which removes unused features from Java
programs, and is orthogonal to the techniques presented in this paper.
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done at all stages in the process, but the properties that can be verified become
more limited as more and more information is removed.

The low-level implementations of JavaCard systems are strictly proprietary, mak-
ing it difficult to give a precise description of what internal format could be used
to store Java programs. As an approximation, we use the standard CAP file for-
mat as in-memory format; information not needed after installation onto the card
is assumed to have been stripped from the CAP file. Concretely, a CAP file is
separated into several components, and we exclude those components not needed
for execution when the CAP file format is the in-memory format. The stripped
CAP file format is explained in the appendix, where a more detailed overview of
the CAP file format also can be found. The stripped CAP file format is not ideal in
terms of space consumption, and a realistic embedded system would probably use
a more optimized format, giving a smaller memory footprint. Nonetheless, due to
the lack of precise information regarding concrete embedded systems, the stripped
CAP file format will serve as memory footprint measure throughout this paper.
According to the experiments with stripped CAP files reported in Section 6, the
bytecode takes up most of the memory footprint. We thus concentrate on reducing
the size of the bytecode.

2.2 Basic-Block Compression

Looking beyond simple conversion of the Java class file into a more compact format,
an often-used solution for compression is word-stream compression techniques such
as Huffman encoding [Huffman 1952] or Lempel-Ziv compression [Ziv and Lempel
1978]. The bytecode of the whole program can be stored in compressed form, de-
compressing each part of the program from ROM to RAM, as it is needed during
execution. However, given the limited memory resources of low-end embedded sys-
tems, it is not even possible to decompress each method as it is invoked. Rather
than storing complete parts of the program in RAM, stream compression can be
applied individually on each basic block of the code. Since the instructions in a ba-
sic block are used sequentially, they can be decompressed on-the-fly by a modified
JVM, without having to store them to RAM. (The disadvantage is that decom-
pression on-the-fly makes the overhead proportional to the program running time
rather than the program size.) While such generic compression algorithms may not
be optimal for the kinds of patterns found in program code [Ernst et al. 1997], they
are well-known and can easily be implemented. However, because stream compres-
sion techniques are not well suited for the compression of many small, individual
blocks, the expected gains in compression are limited.3 Also, the restrictions on
the amount of available RAM would impose strong restrictions on the size of the
dynamic dictionary; these restrictions would have detrimental effects on the degree
of compression. In addition, a significant time overhead would be associated with
decompressing each basic block, slowing down the overall speed of the system to
an unacceptable degree.

3On average Java methods are small, and basic blocks are even smaller. For example, in the
programs used for experiments in Section 6, the average method length is roughly 50 bytes.
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public class Point {
public int x, y;

public int dist() {
return Z.intSqrt( (x*x)+(y*y) );

}
}

public class Rectangle {
public Point p1, p2;

}

Fig. 2. Java source code for the Point and Box classes.

2.3 Code Factorization

Most Java bytecode programs contain repeated occurrences of instructions. As a
simple example, consider a specific object field that is manipulated throughout a
class; furthermore assume that each access to this field is performed by the same
sequence of operations. Common-subexpression elimination can be used to elimi-
nate some of this redundancy. However, this optimization only applies to the rare
cases where the instruction sequences actually compute the same value.

A simple way of eliminating code redundancy is to create methods that store
repeated instruction sequences. Each original sequence of instructions is replaced
by a call to such a method. However, there is a space overhead for defining a
method and for invoking it (three bytes per invocation). Furthermore, any changes
to the local state have to be copied explicitly back and forth, introducing significant
time and space overheads. The code space overhead can be reduced to a few bytes
per replaced instruction sequence by using Java bytecode subroutines instead of
methods. However, such subroutines are intraprocedural, making the applicability
of each subroutine too limited for our purposes.

As an alternative to a pure Java solution, our proposal is to extend the instruction
set of the virtual machine with instructions that can replace recurring instruction
sequences. In contrast to the workstation world, JVMs for embedded systems are
proprietary and are as a rule written specifically for, and manually optimized to,
each system. This makes it feasible to add new features to the JVM, as long as the
changes are minimal and systematic, and as long as the JVM is still able to run
standard Java bytecode.

Adding a fixed set of new instructions would be a nontrivial change that would
significantly increase the size of the JVM. Furthermore, if the new instructions
are specific to a given program, then they would have to be replaced if a different
program is to be used. Our alternative is to extend the virtual machine to read
new instruction definitions from the CAP file. These macro instruction definitions
consist of bytecode instructions, and replace common instruction sequences in the
code. Any instruction not in the standard instruction set is assumed to be a pro-
grammable instruction, defined by a table specific to the program being interpreted.
The macro instructions can be stored in the run-time system, with very little mem-
ory overhead. With this approach, the number of new instructions is limited only
by the number of instructions not used in the standard instruction set.

3. A SIMPLE EXAMPLE

As an example of our approach, we use the Java classes of Figure 2. The class Point
represents a geometrical point, with a method that computes the distance to the
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Method int dist()

0 aload_0

1 getfield #4 <Field Point.x I>

4 aload_0

5 getfield #4 <Field Point.x I>

8 imul

9 aload_0

10 getfield #7 <Field Point.y I>

13 aload_0

14 getfield #7 <Field Point.y I>

17 imul

18 iadd

19 invokestatic #6

<Method Z.intSqrt(I)I>

22 ireturn

Method Point()

0 aload_0

1 invokespecial #5

<Method java.lang.Object.<init>()V>

4 return

Method Rectangle()

0 aload_0

1 invokespecial #5

<Method java.lang.Object.<init>()V>

4 return

Fig. 3. Java bytecode for the Point and Rectangle classes.

center of the coordinate system. The class Rectangle represents a geometrical rect-
angle defined by two opposing corner points. The corresponding bytecode program
is shown in Figure 3. Default constructors for both classes have been automatically
introduced by the Java compiler.

In the bytecode program of Figure 3, there are some obvious opportunities for
factorization. To access the Point.x field, the Point instance is loaded onto the
stack, and a getfield instruction is used to extract the value. This field access
yields two repetitions of the following instruction sequence:

0 aload_0

1 getfield #4 <Field Point.x I>

Furthermore, both classes have been extended with a default constructor, which
consists of an invocation of the constructor of Object:

0 aload_0

1 invokespecial #5 <Method java.lang.Object.<init>()V>

4 return

Every default constructor in a program has exactly the same body, representing an
ideal opportunity for factorization.

Faced with such sequences of generic instructions that are used repeatedly in
specific programs, we replace each sequence by a new instruction. Let us now
factorize the common instruction sequences identified in the program of Figure 3.
Figure 4 shows the factorized bytecode program, along with the corresponding
table of macros. The repeated instruction sequences for accessing fields have been
factorized into macro instructions, as has the body of the constructors.

4. FACTORIZATION

We now present an algorithm for transforming a Java bytecode program into an
equivalent program factorized with respect to a set of patterns. We give a high-level
description of the algorithm used to obtain the results of this paper; implementation
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.
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Method int dist()

0 Macro#204

1 Macro#204

2 imul

3 Macro#205

4 Macro#205

5 imul

6 iadd

7 invokestatic #6

<Method Z.intSqrt(I)I>

10 ireturn

Method Point()

0 Macro#206

Method Rectangle()

0 Macro#206

Macro table:

Macro instruction 204:

0 aload_0

1 getfield #4 <Field Point.x I>

Macro instruction 205:

0 aload_0

1 getfield #7 <Field Point.y I>

Macro instruction 206:

0 aload_0

1 invokespecial #5

<Method java.lang.Object.<init>()V>

4 return

Fig. 4. Factorized Java bytecode for the Point and Rectangle classes.

details can be found in our technical report [Clausen et al. 1998]. Computing the
optimal set of patterns is an NP-complete problem [Garey and Johnson 1979]. Our
algorithm is designed to be simple and fast, while computing a set of patterns that
is sufficient for the purpose of our experiments.

Conceptually, recurring sequences of operations are abstracted by factorizing
them into single units. Each sequence of bytecode instructions is called a pattern.
Factorizing a program with respect to a pattern yields a reduced program, where
each occurrence of the pattern has been replaced by the corresponding new instruc-
tion. We refer to a control flow branch going from code surrounding an occurrence
of a pattern into this occurrence as an incoming branch, whereas a branch going
from a pattern to the code surrounding it is referred to as an outgoing branch.
An outgoing branch is found in all occurrences of a pattern, whereas an incoming
branch may be specific to a given occurrence of a pattern.

For a given program, factorization is done in two steps. First, repetitive instruc-
tion sequences are identified as patterns. Second, the bytecode is factorized with
respect to these patterns, generating new instructions on-the-fly.

4.1 Pattern Generation

To find the set of patterns with which to factorize the program, all combinations of
instruction sequences occurring in the program are generated; identical sequences
are treated as a single occurrence group. First a group of length one is created for
each set of equivalent instructions. These groups are iteratively expanded, either
elongating each group or splitting it to create new groups of longer, equivalent
occurrences.

Pattern generation must take into account how the constant pool is represented
on the embedded system, to correctly reference constants after factorization. In the
CAP file format, there is a separate constant pool for each package. The virtual
machine keeps track of the current package to reference constants correctly, so two
occurrences of an instruction in different packages with equal constant pool indices
can be considered as being equal (permitting them to be factorized into the same
pattern): the virtual machine will correctly interpret the instruction in the context
of the current package. Alternative strategies to deal with constants in the virtual
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machine and in the factorization algorithm are discussed in Section 5.3.
We reduce the occurrence groups to avoid unfactorizable instructions in the pat-

terns, and to avoid branch instructions that cross the boundaries of an occurrence
group. The instructions tableswitch, lookupswitch, jsr, and ret are consid-
ered unfactorizable: a switch instruction has alignment constraints that makes it
difficult to place inside a macro, and a subroutine instruction causes problematic
intraprocedural control flow. Neither of these instruction types are used very often,
so we do not consider it worth the extra complexity to factorize them. Unfactoriz-
able instructions are removed from a pattern by splitting the pattern into two new
patterns, and splitting the occurrence group accordingly. Similarly, whenever an
outgoing branch leaves a pattern, the branching instruction is removed from the
pattern, creating two new patterns. Next, incoming branches are checked. Since in-
coming branches may be the result of a single branching statement, we only remove
occurrences that have an incoming branch. The first instructions of an exception
handler, and the first and last instructions of a code region where exceptions are
caught, are treated in the same way as targets of incoming branches.

4.2 Pattern Application

Having computed the set of patterns, we now generate the macro instructions.
Macros are generated greedily by selecting the occurrence group that gives most
savings first and continuing until we either run out of unused instruction codes or
occurrence groups that save space. We replace each occurrence by a macro instruc-
tion and update any other occurrences that contained the replaced occurrence to
reflect this change.

The number of unused instructions in the instruction set determines the possible
number of new macro instructions. The number of unused instructions depends
on the Java platform used; it ranges from 52 to 152 free instructions (the various
JavaCard instruction sets will be discussed in Section 6.1). Representing a macro
as a single byte is simple and has very little overhead. However, to overcome the
limit imposed by the number of free instructions, we may wish to define macros
that have a two-byte instruction length. We refer to such macros as double-byte
macros with a double-byte instruction coding (as opposed to single-byte macros
with a single-byte coding). Although this coding yields less size reduction than
using a single-byte coding, it is still worth doing in some cases. The loss in size
reduction can be minimized by assigning the double-byte coding to macros that
have few occurrences. The first byte of a double-byte macro is the instruction code,
and the second byte indicates an offset into a secondary table of ordinary single-
byte macros. This gives room for 255 more double-byte instructions for each free
single-byte instruction code used this way.

Since macros by definition are nonrecursive, the factorization program also com-
putes the maximal intraprocedural macro nesting. This information can be used
to simplify the modifications that need to be made to the JVM. The factorized
bytecode replaces the unfactorized bytecode in the method bytecode component,
and the macro table is placed in a custom CAP file component (see the appendix).
Alternatively, the unfactorized bytecode can also be kept, and a choice between
what code to be used can be made during code installation, so a JVM without
support for execution of factorized code still can run the program.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.
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5. IMPLEMENTING AN EXTENSIBLE JVM

This section describes the changes that are needed to make a standard JVM exten-
sible. A few simple changes must be made once in the interpreter main loop.

5.1 Macro Representation

We make a standard JVM extensible by enabling execution of macro instructions.
A macro is essentially defined by two values: the instruction code and the body.
The body of the macro is a code block which is terminated by the special instruction
macro end. It may contain other macro instructions. The set of macros is global
to all packages.

Macros are stored using a standard file format, enabling the modified interpreter
to use macros produced by any factorization program [Clausen et al. 1998]. When
transferring a factorized package into an embedded system, the macros must be
transferred as well. This transfer can be done automatically, since the factorized
code and the macros are already present in the CAP file for the package.

Verification of the factorized bytecode before transfer into the embedded system
must also take macros into account. A trivial preprocessor could expand the macros
before verification is performed. As a result, existing bytecode verifiers could be
used. Verification of factorized bytecode on the embedded system is more difficult,
but the properties that are typically verified at this stage are usually fairly simple,
making it possible for the verifier to directly process factorized code.

5.2 JVM Main-Loop Modifications

Basically, the JVM modifications consist of enabling the interpreter to detect and
subsequently call macros, dispatching based on the instruction number. The macro
call is always local to a method; to enable returning to the calling instruction,
a small stack must save return addresses. Thus, each method invocation stack
frame must contain a fixed-size macro call stack of program counters. Since macros
are nonrecursive, the maximum stack depth can be computed by the factorization
algorithm along with the set of macros, and be verified by the preprocessor for the
verifier.

When a macro instruction is invoked, the current value of the program counter
is pushed on the macro stack. Afterward, the program counter is set to point to
the first instruction of the body of the executed macro. Execution continues in the
macro until either the macro return instruction macro end is executed, an exception
is thrown, or a return is made from the current method.

When the macro end instruction is executed, the program counter is reset to the
top value of the program counter stack (which is popped), and execution continues
at the next instruction. If a return is performed during the execution of a macro,
control is transferred back to the caller, and the current stack frame is popped from
the stack, disposing any program counters stored on the macro stack. Similarly, if an
exception is thrown during the execution of a macro, (1) the entire stack of program
counters is popped, (2) the program counter is reset to the last program counter
popped from the stack, and (3) control is transferred directly to the appropriate
exception handler.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.
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Table I. Instruction Set Sizes for Java Platforms

instructions
Java platform key used free

Standard Java (EmbeddedJava and up) java 203 52
JavaCard 2.1, with integer support jc21+i 184 71
JavaCard 2.1, without integer support jc21-i 135 120
JavaCard 2.0 jc20 103 152

5.3 Constant Pool Representation

We assume that the virtual machine uses the CAP file format as its in-memory
format, and therefore does not resolve constants before execution, which implies
that the factorization algorithm does not need to resolve constants either. For this
mechanism to work correctly, the virtual machine must keep track of the current
package. Given that the virtual machine implicitly keeps track of the current class,
and that the package of a class can be trivially found from the class itself, this
requirement does not impose any significant overhead.

As an alternative to referencing constants indirectly through the constant pool,
an embedded system can resolve all constants when a package is installed onto the
card. Indeed, this appears to be the purpose of the CAP file Reference location

component (see the appendix for details). If constants are resolved globally, then the
virtual machine no longer needs to keep track of the current package to correctly
reference constants. However, the factorization algorithm must be modified to
resolve all constants before factorization, to ensure that the factorized code can
be resolved correctly during installation onto the card. A macro must only be
shared between two different packages if for both packages constants referenced
by the macro resolve to the same global address. We believe that performing
global constant resolution would have a positive impact on the number of recurring
patterns in the code and thus on the compression ratio, since instruction sequences
performing the same action would be identical. However, all experiments reported
in this document are performed without constant resolution.

6. PERFORMANCE EVALUATION

We have implemented factorization of standard Java class files and extended the
JVM of the Harissa environment [Muller and Schultz 1999] with macro support.
The Harissa environment integrates an optimizing off-line Java compiler with an
interpreter; the interpreter allows execution of dynamically loaded programs. Using
these tools, we have performed a number of experiments to evaluate our factoriza-
tion technique. In this section, we first present our considerations for what Java-
Card instruction sets to include in our experiments; then we describe the actual
experiments and their results; last we provide an assessment of the results.

6.1 The Various Java(Card) Instruction Sets

There are no less than four different instruction sets to consider when working with
Java low-end embedded systems. Although only two of these are used in the latest
specification of JavaCard (version 2.1), we consider it interesting to measure the
effectiveness of our factorization algorithm on all of these instruction sets, since
factorization could be used for non-JavaCard systems.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.
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Table I shows the different Java instruction sets. The standard Java instruction
set [Lindholm and Yellin 1996] (denoted by java) is used in large Java embedded
systems (i.e., non-JavaCard systems) [Sun Microsystems, Inc. 1998a]. The Java-
Card 2.0 instruction set (denoted by jc20) is a strict subset of the standard Java
instruction set, where instructions for operations not supported by JavaCard sys-
tems have been removed [Sun Microsystems, Inc. 1997]. There are two versions
of the JavaCard 2.1 instruction set, one with 32-bit integer support (denoted by
jc21+i), and one without 32-bit integer support (denoted by jc21-i) [Sun Microsys-
tems, Inc. 1999d]. Both JavaCard 2.1 instruction sets extend the jc20 instruction
set with a number of new instructions not found in the standard Java instruction
set; these new instructions are intended to permit a more compact program rep-
resentation. Many of the new instructions are parameterized and are thus more
general than the macros generated by our approach; we investigate issues related
to the the new JavaCard 2.1 instructions in Section 6.3.

6.2 Experiments

To test the effectiveness of the factorization algorithm and the execution speed of
the resulting program, we consider the following program packages:

JavaCard 2.1 Library. The JavaCard 2.1 library classes, taken from the Java-
Card 2.1 Development Kit [Sun Microsystems, Inc. 2000]. These libraries are
normally placed on every JavaCard 2.1 system; they represent ideal candidates for
factorization. The parts of the library that require 32-bit integer support (packages
impl and installer from the com.sun.javacard package hierarchy) are excluded in
the jc21-i experiments.

JavaCard Applets. The demonstration applets distributed with the JavaCard 2.1
Development Kit [Sun Microsystems, Inc. 2000].

JavaRing Applets. The sample JavaRing applets available from the iButton home
page [Dallas Semiconductor Corp. 1999], updated for JavaCard 2.1 compatibility.
These applets require integer support and are thus excluded from jc21-i experi-
ments.

Plain JavaCard. JavaCard applets together with the JavaCard 2.1 library classes.
Full JavaCard. JavaCard applets and JavaRing applets together with the Java-

Card 2.1 library classes.
JES. Sun’s Java Embedded Server 1.0, a full-featured Web-server for embedded

systems [Sun Microsystems, Inc. 1999a].
CaffeineMarks. Microbenchmark suite designed specifically for Java [Pendragon

Software 1997] (the embedded version).
Javac. JavaSoft’s JDK 1.0.2 Java compiler [Sun Microsystems, Inc. 1998c], pack-

ages acm, java, javac, and tree from the sun.tools package hierarchy.

Of these program packages, the JavaCard library, JavaCard applets, and JavaRing
applets were only tested with the various JavaCard instruction sets, and tests in-
cluding the JavaRing applets always use instruction sets with integer support. The
last three tests (JES, CaffeineMarks, and Javac) were all done with the full Java
instruction set.
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Table II. Size in Bytes of Bytecode and Memory Footprint before and after Factorization
(†: Estimated memory footprint, ‡: excluding certain classes; see text.)
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JavaCard jc20 16071 11241 31 69.9% 186 8221 680 9276 14106 82.5% 87.8%
Library jc21-i‡ 4941 4390 16 88.8% 119 2944 400 3582 4133 81.6% 83.6%

jc21+i 14283 9453 26 66.2% 96 7560 354 8109 12939 85.8% 90.6%
JavaCard jc20 5624 4067 75 72.3% 150 2325 586 3211 4768 79.0% 84.8%
Applets jc21-i 4886 3329 61 68.1% 119 1977 446 2661 4218 79.9% 86.3%

jc21+i 4886 3329 61 68.1% 67 2260 329 2723 4280 81.8% 87.6%
JavaRing jc20 7314 6305 106 86.2% 150 3402 554 4256 5265 67.5% 72.0%
Applets jc21+i 6494 5485 92 84.5% 77 3335 363 3855 4864 70.3% 74.9%
Plain jc20 21695 15308 37 70.6% 202 11216 858 12481 18868 81.5% 87.0%
JavaCard jc21-i‡ 9827 7719 24 78.5% 149 5253 607 6161 8269 79.8% 84.1%

jc21+i 19169 12782 31 66.7% 83 10418 383 10970 17357 85.8% 90.5%
Full jc20 29009 21613 46 74.5% 225 15400 1027 16880 24276 78.1% 83.7%
JavaCard jc21+i 25663 18267 39 71.2% 102 14327 592 15126 22522 82.8% 87.8%
JES† java 206143 153133 53 74.3% 102 115374 1667 117248 170258 76.6% 82.6%
Caf.Mark† java 4067 3021 37 74.3% 68 1882 439 2460 3506 81.4% 86.2%
Javac† java 121189 90025 79 74.3% 127 72022 606 72885 104049 81.0% 85.9%
Averages 50.9 74.3% 79.7% 84.7%

Table II shows the size of the bytecode in bytes and the total memory footprint,
before and after factorization. The size of the bytecode is shown with and without
the macro definition code included. The average method size is shown for refer-
ence, as is the percentage of memory footprint taken by the bytecode. The maximal
macro stack nesting did not exceed four on any of these tests, and the factorization
for all the tests reported in Table II was performed in less than 10 minutes on a
233MHz Pentium II machine. The memory footprint is given for stripped CAP files
(as explained in the appendix). We cannot give a precise figure for the memory
footprint of the three non-JavaCard programs, since they cannot be converted to
CAP files (they all use non-JavaCard functionality). We observe that, on average,
across all instruction sets, the bytecode accounts for 74.3% of the memory foot-
print. This figure is used as an estimate when reporting the memory footprint for
these three test programs. As mentioned earlier, the factorization of programs in
jc21-i instruction set is sometimes done on a more limited set of classes (JavaCard
Library), or not included at all (JavaRing Applets and Full JavaCard).

We expect that the higher the number of unused instructions in an instruction
set, the better the compression ratio. It can be seen that consistently across all of
the JavaCard experiments, the jc20 and jc21-i instruction sets give rise to better
compression ratios than the jc21+i instruction set, due to the higher number of
unused instructions. There is, however, no consistent difference between the com-
pression obtained for the jc20 and jc21-i instruction sets, which we attribute to
the small difference in unused instructions. For the jc20 and jc21-i instruction
sets, the footprint is reduced on average to roughly 84% of its original size, whereas
the reduction is closer to 86% of the original size for the jc21+i instruction set. The
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.
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Fig. 5. Decrease in memory footprint by factorization and compression.

Table III. Factorization Options (factorization of some JavaCard 2.0 programs, memory footprint
estimated, bytecode size includes macro table)

bytecode size memory footprint
bytes effect bytes effect

unfactorized size 10754 — 15071 —

all options on (no CSE) 7733 0.0% 12050 0.0%
2-byte macros, nesting (no branches, no CSE)) 7881 +1.9% 12198 +1.2%
2-byte macros, branches (no nesting, no CSE) 7928 +2.4% 12245 +1.6%
2-byte macros (no nesting, no branches, no CSE) 8006 +3.4% 12323 +2.2%
nesting, branches (no 2-byte macros, no CSE) 7826 +1.2% 12143 +0.8%

unfactorized size, CSE (vs. “unfactorized size”) 10721 −0.3% 15038 −0.2%
all options on, CSE (vs. “all options on”) 7748 +0.2% 12065 +0.1%

compression ratios for the Java programs are relatively high compared to the Java-
Card programs, when taking into account the lower number of unused instructions.
These programs were written with larger systems in mind, so it seems likely that
the source code may contain more redundancy giving rise to more opportunities for
factorization.

Factorization vs. gzip Comparison. To compare the compression obtained us-
ing factorization with an estimate of what would be gained by compressing each
method individually using a standard compression algorithm, we compare the size
reduction obtained with the standard Unix compression tool gzip. To use a gzip-
like algorithm to uncompress methods in a JVM, each basic block would have to
have been compressed individually using a global static dictionary, as was described
in Section 2.2. To loosely estimate the size reduction obtained using this technique,
we compress the bytecode of each method separately and subtract the overhead
from the 20-byte header and file name. The compression ratios are shown in Fig-
ure 5. Factorization compression is roughly comparable to that of gzip, although
gzip in general performs slightly better than factorization.

Assessment of Factorization Algorithm Features. The factorization algorithm
factorizes out code containing branches, allows macros to be defined in terms of
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Table IV. Benchmarks Comparing Normal Execution with Macro Ex-
ecution

Javac CaffeineMarks (cm)
Pentium SPARC Pentium SPARC

Without macros (n1) 46.3s 69.6s 26cm 15cm
With macros (n2) 46.6s 71.4s 21cm 11cm

Slowdown (1− n1/n2) 2% 3% 19% 27%

other macros, and permits the use of two bytes for defining a macro instruction
code. However, it is not obvious how much additional compression is provided by
these features. Also, some standard optimizations such as common-subexpression
elimination (CSE) tend to reduce code size, which might be cumulative with fac-
torization. We test the advantage of each of the factorization algorithm features
and the result of applying CSE in terms of additional compression, as illustrated in
Table III. All experiments are performed in the jc20 instruction set, and we per-
form CSE using the Cream bytecode optimizer [Clausen 1997]. Due to limitations
of the Cream implementation, we cannot use the “Full JavaCard 2.1” benchmark.
As an alternative, we use the JavaCard 2.0 library (taken from the JavaCard 2.0
Reference Implementation [Sun Microsystems, Inc. 1998b]) together with the Java-
Card applets from our previous tests and the Visa Open Platform Card Version 1.0
implementation for Applet Developers [Visa International Service Association 1998]
(a JavaCard 2.0-only library). Macros containing other macros offer the greatest
advantage, followed by macros containing branch instructions, and finally double-
byte macros. As for CSE, it reduces the unfactorized program size, but apparently
conflicts with the factorization algorithm, and causes an increase in the size of the
factorized program.

Run-Time Overhead of Factorized Code. To estimate the run-time speed over-
head of using macros, we have performed two tests with the modified Harissa inter-
preter, both on Pentium (100MHz Dell Pentium) and SPARC (SPARC Station 5)
architectures. Due to limitations in the Harissa interpreter, we were unable to run
the Java Embedded Server. The first test measures the performance of the factor-
ized Javac compiler. Although this is not a program that is likely to be placed in an
embedded system, it is a large and complex application that performs a wide range
of different data manipulation tasks. The result is shown in Table IV. There is
virtually no slowdown, as compilation takes 2–3% longer when using the factorized
code. The second test is the CaffeineMark benchmark. Given that the tests in
this suite are microbenchmarks (i.e., tight loops testing very specific instructions),
we assume that they represent a worst-case scenario with respect to the speed of
factorized code. Here, we observe a slowdown of 19% on the Pentium and 27% on
the SPARC. Code locality is strongly affected by factorization, which might have
had a negative effect on our benchmarks. However, code locality is only an issue
on systems with a cache, and most low-end embedded systems have a flat memory
model.

6.3 Assessment

We have chosen the approach of generating bytecode macros over that of adding
fixed instructions to the JVM. With the JavaCard 2.1 specification, the choice was
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.
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made to add new, fixed instructions to the JVM, offering a significant advantage
in terms of reduced code size beyond what can be achieved using factorization, as
was illustrated by our experiments. Naturally, factorization can still be applied to
the extended instruction set, further reducing code size.

The additional compression offered by the JavaCard 2.1 instruction sets indicates
that it would be worthwhile to allow parameterized macros. Parameterization could
be in the form of a fixed number of instructions (possibly themselves macros), or
in the form of arguments to bytecode instructions. Parameterization in the form of
bytecode instructions should allow even more sharing of macro definitions, further
improving compression. Parameterization in the form of bytecode instruction ar-
guments would permit most JavaCard 2.1 instructions to be expressed in terms of
a macro over JavaCard 2.0 instructions, allowing factorization to give compression
comparable to that offered by the combination of factorization and the JavaCard 2.1
instruction set. Macros have a significant advantage over additional fixed instruc-
tions: a macro-enabled JVM is simpler to implement and takes up less ROM space
than a JVM with a much larger instruction set (such as the JavaCard 2.1 instruction
set).

7. RELATED WORK

The idea of compressing code is by no means new. Fraser, Myers, and Vendt de-
scribe an approach similar to ours, using suffix trees to compress assembly code [Fra-
ser et al. 1984]. They get an average compression factor of 7%. They factorize local
branches, use parameterized patterns, and implement a cross-jumping technique
to exploit merging code sequences. Lefurgy, Bird, Chen, and Mudge replace com-
mon sequences of instructions with a single instruction macro [Lefurgy et al. 1997].
Compression is done on the instructions sets of the PowerPC, ARM, and i386 pro-
cessors. However, minor hardware modifications are required for the compressed
code to execute, contrary to the case for Java bytecode where only the virtual ma-
chine needs to be modified. The average compression rates obtained are 39%, 34%,
and 26%, respectively.

Ernst et al. describe compression of code, both for transmission and for exe-
cution [Ernst et al. 1997]. They obtain the same compression ratio as gzip for
executable code. They introduce a specific bytecode language for this purpose,
using a bottom-up joining technique to form patterns. While their compression
technique yields better results than ours, it requires greater amounts of RAM than
is available on most low-end embedded systems.

Proebsting describes a C interpreter using “superoperators” [Proebsting 1995].
These kinds of operators can be automatically inferred from the tree-like interme-
diate representation produced by lcc [Fraser and Hanson 1991a; 1991b]. The op-
erators are then used to produce an interpreter with specialized instructions. This
transformation is aimed at improving speed; it gives a modest reduction in pro-
gram size, at the cost of increased size of the generated interpreter. The approach
of using a specialized interpreter could also be viable for embedded systems, e.g.,
by specializing the interpreter with respect to the general run-time environment.

As an alternative to the standard ZIP-based JAR format, Bradley, Horspool, and
Vitek present the JAZZ format, which compresses collections of classes, improving
the compression ratio by reorganizing data, so that similar data are compressed
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together using standard compression techniques [Bradly et al. 1998]. Compression
is about 75%, as opposed to only 50% for the standard JAR format. Pugh goes be-
yond this result by employing more aggressive compression techniques, completely
reorganizing the class file layout, and employing dedicated compression techniques
to each kind of data [Pugh 1999]. The resulting programs are on the average half
the size of JAZZ-compressed programs. Although achieving superior compression
ratios, neither of these techniques are appropriate for low-end embedded systems,
both requiring more space and computation during uncompression than is avail-
able. Rayside, Mamas, and Hons present an alternative class file format that tar-
gets embedded systems that use the standard Java class file format as in-memory
format [Rayside et al. 1999]. They primarily focus on reducing the size of the con-
stant pool, while keeping it in a directly accessible format; class files are on the
average reduced to 75% of their original size. While the class pool dominates the
size of a Java program in the standard class file format, this is not true for low-end
embedded systems. In effect, their technique is only relevant for embedded systems
larger than those targeted by our factorization approach.

Franz and Kistler present SLIM binaries as an alternative to Java bytecode [Franz
and Kistler 1997]. SLIM binaries provide a highly compact platform-independent
structured program representation, designed to be translated into binary code by
an optimizing just-in-time compiler. Due to the structured representation which
can include information needed for optimizations, the compilation overhead is negli-
gible, and the generated binary code is as efficient as that generated by an ordinary
(optimizing) compiler. However, SLIM binaries are not easily interpretable in their
compressed form, needing to be compiled into binary code before execution. This
makes them unsuitable for low-end embedded systems.

Liao et al. optimize the selection of instructions on embedded DSP processors
that have complex instruction sets defining compound operations [Liao et al. 1995].
Unlike the factorization process proposed in this paper where we generate new
instructions for a given program, Liao et al. compile high-level programs to a given
instruction set.

8. CONCLUSION AND FUTURE WORK

We have implemented factorization for Java bytecode. It handles nontrivial pro-
grams, and reduces the overall memory footprint of bytecode programs for low-end
embedded systems to about 85% of their original size. Our factorization algo-
rithm seems to compare satisfactorily with traditional compression, as embodied
by gzip. The execution time overhead of introducing macros is between 2% and
30%. In particular, factorization can trivially provide better compression ratios
than the pure-Java solutions proposed earlier (methods and subroutines) with a
smaller run-time overhead, making it the embedded system engineer’s preferred
choice.

Inspired by the strong separation between packages in the JavaCard 2.1 spec-
ification, we are currently investigating the option of having package-local macro
tables. This has several advantages, chiefly that dynamically loaded packages can
be prefactorized using a private set of macros ranging over all free instructions.
Also, we are investigating how to permit macros to take arguments, as described in
Section 6.3. An initial assessment of the effect of having parameterized local vari-
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able numbers for load and store instructions looks promising, but much work needs
to be done to develop an efficient factorization algorithm. Finally, the factorization
algorithm and the extensible JVM are by design independent of one another, al-
lowing transparent replacement of our factorization algorithm with a new one that
provides better compression. We consider the development of such factorization
algorithms future work.

APPENDIX

To the authors’ knowledge, all existing JVMs for low-end embedded systems are
proprietary, making it difficult to assess the impact of bytecode compression on the
memory footprint of a Java program. The JavaCard 2.1 CAP format is publicly
specified [Sun Microsystems, Inc. 1999d], but it is not necessarily an appropriate
format for the internal JVM data structures. It would be inaccurate to use a metric
based on an existing JVM for a nonembedded environment (such JVMs usually are
optimized for speed rather than space). For the lack of better concrete information
we choose to use the CAP format as the basis for our memory footprint.

A CAP file consists of a number of components that in combination describe a
complete JavaCard package [Sun Microsystems, Inc. 1999d]:

Header. General information about this CAP file and the package it defines.
Directory. Lists the size of each of the components defined in this CAP file,

including any custom components.
Applet. Contains an entry for each of the applets defined in this package.
Import. Lists the set of packages imported by classes in this package.
Constant pool. Contains an entry for each of the classes, methods, and fields

referenced by elements in the Method component of this CAP file.
Class. Describes each of the classes and interfaces defined in this package.
Method. The method component describes each of the methods declared in this

package, including bytecode and exception handlers, but excluding <clinit> meth-
ods and interface method declarations.
Static field. Contains all the information required to create and initialize an

image of all of the static fields defined in this package.
Reference location. Represents lists of offsets into the bytecode of the Method

component to operands that contain indices into the constant pool array of the
Constant pool component.
Export. Lists all static elements in this package that may be imported by classes

in other packages.
Descriptor. Provides sufficient information to parse and verify all elements of

the CAP file (optional component).

In addition, we use the CAP file custom component mechanism to store the macro
table generated by the factorization algorithm in its own component. CAP files are
actually generated in the Java JAR format, but will of course be decompressed dur-
ing transfer to the JavaCard system. Thus, the memory footprint can be computed
as the sum of the sizes of the decompressed CAP file components.
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Not all of these components need to be included in the stripped CAP file for-
mat which we use to compute the memory footprint of a JavaCard system. The
Descriptor component is only needed for verification, and is explicitly listed in
the JavaCard 2.1 Virtual Machine Specification as being optional. The Reference
location component has no obvious use except to perform global resolution of
constants into absolute addresses. Since we lack more precise information, we as-
sume that the CAP file format is the in-memory format used for execution. Hence,
constants are not resolved into addresses, and the Reference location compo-
nent is not needed. Thus, we exclude the Descriptor and Reference location
components from our stripped CAP file format.
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