
Implementing circularity using
partial evaluation

Julia L. Lawall?

DIKU, University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen, Denmark

Abstract. Complex data dependencies can often be expressed concisely
by defining a variable in terms of part of its own value. Such a circular
reference can be naturally expressed in a lazy functional language or in
an attribute grammar. In this paper, we consider circular references in
the context of an imperative C-like language, by extending the language
with a new construct, persistent variables. We show that an extension of
partial evaluation can eliminate persistent variables, producing a staged
C program. This approach has been implemented in the Tempo special-
izer for C programs, and has proven useful in the implementation of
run-time specialization.

1 Introduction

In compilation and program transformation, the treatment of a subcomponent
of a block of code often depends on some global properties of the code itself. A
compiler needs to know whether the source program ever uses the address of a
local variable, to decide whether the variable must be allocated on the stack [1].
A partial evaluator needs to know whether a dynamic (but non-side-effecting)
expression is referred to multiple times, to decide whether the expression should
be named using a let expression [4, 23]. In the context of run-time specialization,
we have found that optimizing the specialized code based on its total size and
register usage can significantly improve its performance [15]. Such programs can
often be efficiently implemented as multiple phases, where early phases collect
information and later phases perform the transformation. This organization,
however, distributes the treatment of each subcomponent of the input across the
phases, which can introduce redundancy, and complicate program understanding
and maintenance.

In a lazy language, we can implement these examples in a single traversal
using recursive declarations, as investigated by Bird [3]. The canonical example
of such a circular program is “repmin,” which reconstructs a tree, such that the
value at each leaf is the least value at any leaf in the original tree. While repmin
can be implemented by first traversing the tree to detect the least value, and
? E-mail: julia@diku.dk. This research was partially supported by the Danish Natural

Science Research Council (PLT project).

then traversing the tree again to construct the result, the program can also be
expressed in a lazy language as follows [3]:

data Tree = Tip Int | Fork Tree Tree

rm t = fst p

where p = repmin t (snd p)

repmin (Tip n) m = (Tip m, n)

repmin (Fork L R) m = (Fork t1 t2, min m1 m2)

where (t1, m1) = repmin L m

and (t2, m2) = repmin R m

The variable p in rm represents a value that is the result of the traversal of the
tree, but that is used in computing that result as well. Here, a lazy evaluation
strategy suffices to order the computations such that the components of p are
determined before they are used.

Nevertheless, the use of a lazy language is not always appropriate. To resolve
this dilemma, we propose a language extension, persistent variables, that can
describe circular references in an imperative language. Using this facility, we can
implement repmin imperatively as follows, where the persistent variable minval
implements the circular reference to p in the functional implementation:1

typedef struct ans {

int mn;

Tree *tree;

} Ans;

Tree *rm(Tree *t) {

persistent int minval;

Ans a;

repmin(t, pread(minval), &a);

pwrite(minval,a.mn);

return a.tree;

}

void repmin(Tree *t, int m, Ans *a) {

Ans a1, a2;

if (t->type == Fork) {

repmin(t->left, m, &a1);

repmin(t->right, m, &a2);

a->mn = min(a1.mn,a2.mn);

a->tree = mkFork(a1.tree,a2.tree);

}

else /* (t->type == Tip) */ {

a->mn = t->tipval;

a->tree = mkTip(m);

}

}

This implementation uses pread (“persistent read”) to reference the final value
to which minval is initialized using pwrite (“persistent write”). To execute the
program, we must first transform it such that it initializes minval before any
reference. In this paper, we show how to use partial-evaluation technology to
perform this transformation.

Traditionally, partial evaluation specializes a program with respect to a sub-
set of its inputs. The program is evaluated in two stages: The first stage per-
forms the static computations, which depend only on the known input. When

1 The structure Ans is used to return multiple values from the function repmin.

2

the rest of the input is available, the second stage evaluates the remaining dy-
namic computations, producing the same result as the original program. With
minor extensions, we can use this framework to eliminate circularity by simply
considering computations that depend on the persistent variables to be dynamic,
and the other computations to be static. For example, in the above implemen-
tation of repmin, the construction of each leaf of the output tree depends on
the value of the persistent variable minval, via the parameter m of repmin, and
is thus dynamic. The calculation of the least value in the tree depends only on
the input tree, and is thus static. The staging performed by partial evaluation
permits the persistent variables that only depend on static information to be
initialized in the static phase and read in the dynamic phase. We have imple-
mented this approach in the Tempo partial evaluator for C programs, developed
in the Compose group at IRISA [6].

This implementation of circularity leads naturally to incremental special-
ization [7, 17]; if the value of a persistent variable depends on that of another
persistent variable, partial evaluation must be iterated. If there are recursive
dependencies among the persistent variables, however, the program cannot be
treated by our approach (cf. Section 6.3).

The rest of this paper is organized as follows. Section 2 describes partial
evaluation in more detail. Section 3 presents the implementation of persistent
variables in the context of a partial evaluator for a simple imperative language.
Section 4 gives a semantics of the language with persistent variables and shows
that partial evaluation of a program preserves its semantics. Section 5 compares
our partial evaluation-based approach to related techniques in the implemen-
tation of attribute grammars. Section 6 provides some examples of the use of
persistent variables. Section 7 describes related work, and Section 8 concludes.

2 Specialization using partial evaluation

Partial evaluation uses interprocedural constant propagation to specialize a pro-
gram with respect to some of its inputs. We use offline partial evaluation,
in which each expression is annotated as static or dynamic by a preliminary
binding-time analysis phase. Two kinds of specialization can be performed in
this framework: program specialization and data specialization. Program special-
ization transforms a program into an optimized implementation based on the
results of evaluating the static subexpressions [11]. Static subexpressions are
replaced by their values, static conditionals are reduced, and static loops are
unrolled. Data specialization separates a program into two stages, known as the
loader and the reader, before the static data is available [2]. The loader stores
the values of the static subexpressions in a data structure known as a cache. The
reader has the form of the source program, but with the static subexpressions
replaced by cache references. Because the loader and reader are independent of
the static data, conditionals are not reduced and loops are not unrolled.

We implement persistent variables in the context of data specialization. Per-
sistent variables and data specialization fit together well, because the data spe-

3

cialization cache is a natural means to transmit the values of persistent variables
from the static phase to the dynamic phase.

3 Data specialization and persistent variables

We now define data specialization for a simple imperative language with persis-
tent variables. Treating a richer language is straightforward; the implementation
allows the full subset of C accepted by Tempo [6], including pointers and recur-
sive functions.

3.1 Source language

A program consists of declarations d and a statement s, defined as follows:

d ∈Declaration ::= int x | persistent int p
s ∈Statement ::= x = e | pwrite(p, e) | if (e) s1 else s2

| while (e) s | {s1; . . . ;sn}
e ∈Expression ::= c | x | e1 op e2 | pread(p)
x ∈Variable
p ∈Persistent variable Variable ∩ Persistent variable = ∅

A persistent variable can only appear as the first argument of pread or pwrite.
Thus, a persistent variable is essentially a label, rather than a first-class value.

3.2 Binding-time annotation

Binding times are static, S, and dynamic, D, where S < D. The language of
binding-time annotated declarations d̂, statements ŝ, and expressions ê is defined
as follows:

b ∈Binding time = {S, D}
d̂ ∈BT-Declaration ::= int xb | persistent int pb

ŝ ∈BT-Statement ::= x =b êb′ | pwrite(pb, êb′) | if (êb) ŝ1 else ŝ2

| while (êb) ŝ | {s1; . . . ;sn}
ê ∈BT-Expression ::= c | x | êb1

1 op êb2
2 | pread(pb)

Figure 1 presents inference rules that specify binding-time annotations for a
program, based on an environment Γ mapping variables and persistent variables
to binding times. In the annotation of a program, Γ (d) represents the binding
time associated by Γ to the variable declared by d. The annotation of a statement
s is described by Γ, bc `s s : ŝ, where the binding time bc is the least upper bound
of the binding-times of the enclosing conditional and loop tests. The annotation
of an expression e is described by Γ `e e : êb. Annotations can be automatically
inferred using standard techniques [11].

The rules of Figure 1 treat statements and expressions as follows. The an-
notation of an assignment statement is determined by the binding time of the

4

Programs:
Γ, S `s s : ŝ

Γ `p d1 . . . dns : d̂
Γ (d1)
1 . . . d̂

Γ (d1)
n ŝ

Statements:

Γ [x 7→ b] `e e : êb′ b w bc t b′

Γ [x 7→ b], bc `s x = e : x =b êb′
Γ [p 7→ b] `e e : êb′ b w bc t b′

Γ [p 7→ b], bc `s pwrite(p, e) : pwrite(p̂b, êb′)

Γ `e e : êb Γ, bc t b `s s1 : ŝ1 Γ, bc t b `s s2 : ŝ2

Γ, bc `s if (e) s1 else s2 : if (êb) ŝ1 else ŝ2

Γ `e e : êb Γ, bc t b `s s : ŝ

Γ, bc `s while (e) s : while (êb) ŝ

Γ, bc `s s1 : ŝ1 . . . Γ, bc `s sn : ŝn

Γ, bc `s {s1; . . . ;sn} : {ŝ1; . . . ;ŝn}

Expressions:

Γ `e c : cS Γ [x 7→ b] `e x : xb

Γ [p 7→ b] `e pread(p) : pread(pb)D

Γ `e e1 : êb1
1 Γ `e e2 : êb2

2

Γ `e e1 op e2 : (êb1
1 op êb2

2)b1tb2

Fig. 1. Binding-time analysis

assigned variable, which must be greater than or equal to the binding time of the
right-hand side expression and the binding times of the enclosing conditional and
loop tests (bc). The annotation of a pwrite statement is similarly constrained.
In the annotation of a conditional statement, the least upper bound of bc and the
binding time of the test expression is propagated to the analysis of the branches.
The annotation of a loop is similar. The result of a pread expression is always
dynamic; the binding time of its argument is obtained from the environment.
The treatment of the other constructs is straightforward.

This analysis is flow-insensitive and does not allow static assignments under
dynamic conditionals and loops. These restrictions can be removed for ordinary
variables by existing techniques [9]. Nevertheless, persistent variables must be
flow-insensitive, to ensure that every assignment to a persistent variable occurs
before any access. An implementation strategy is to perform the binding-time
analysis in two phases. The first phase annotates all expressions except persis-
tent variables, using a flow-sensitive analysis. The second phase annotates each
persistent variable with the least upper bound of the binding times of all pwrite
statements at which it is assigned. This second phase does not affect the bind-
ing times of other terms, because the binding time of a pread expression is
dynamic, independent of the binding-time of the associated persistent variable,
and a pwrite statement has no return value.

3.3 Data specialization

Data specialization stages the source program into a loader and a reader that
communicate via a cache, which we represent as an array. We thus extend the

5

language with constructs for manipulating cache elements:

s ∈Statement ::= . . . | {Cache x;s} | *e1 = e2

e ∈Expression ::= . . . | *e
x ∈Variable ∪ {cache, tmp}

The statement {Cache x;s} is a block that declares a pointer into the cache.
Two such pointers are cache, which is initialized to an external array, and tmp,
which is used in the translation of dynamic conditionals and loops. The indi-
rect assignment *e1 = e2 and the indirect reference *e initialize and access cache
elements, respectively. In practice, bounds checks and casts into and out of a
generic cache-element type are added as needed. We refer to this language as
the target language, and the sublanguage of Section 3.1 as the source language.

Figure 2 presents the transformation rules for data specialization of state-
ments and expressions. The transformation of a statement is described by i `s

d

ŝ : 〈l, r, i′〉, where i is the offset from cache of the next free cache entry, l is
a statement representing ŝ in the loader, r is a statement representing ŝ in the
reader, and i′ is the offset from cache of the next free cache entry after executing
either l or r. By keeping track of the cache offset i, we reduce the number of as-
signments to the cache pointer. The transformation of an expression is described
by i `e

d êb : 〈l, v, r, i′〉, where i and i′ represent cache offsets as for statements, l
is a statement initializing the cache with the values of the static subexpressions
of êb, v is an expression to use in the loader to refer to the static value of êb

if it has one, and r is an expression representing the value of êb for use in the
reader. In the definition of the transformation, e is the result of removing all
binding-time annotations from the annotated expression êb.

The transformation treats statements and expressions as follows. We use
cache entries to implement static persistent variables. Thus, pwrite(pS, êb) is
translated into an indirect assignment to the entry allocated to p. This assign-
ment is placed in the loader. Similarly, pread(pS)D is translated into an indi-
rect reference to the corresponding entry. This reference is placed in the reader.
References and assignments to a dynamic persistent variable are placed in the
reader. The treatment of the remaining constructs is standard [5, 14]. We include
the translation of static conditionals here to give a flavor of the adjustments to
the cache pointer needed to implement branching control flow constructs. The
complete treatment of conditionals and while loops is presented in Appendix A.

We conclude with ds[[p]]Γ , the transformation of a program p with respect
to a binding-time environment Γ . Let d̂b1

1 . . . d̂bn
n ŝ be the result of annotating p

with respect to Γ . Suppose that the first m declarations of p declare the static
persistent variables p1, . . . , pm. If m `s

d ŝ : 〈l, r, i′〉, then ds[[p]]Γ is:

dm+1 . . . dn

{

Cache cache, p1, ..., pm;

cache = cache start; p1 = cache; . . . ;pm = cache + m - 1;

l; cache = cache start; r
}

6

Statements:

i `s
d x =S êb : 〈x = e, {}, i〉 i `s

d pwrite(pS, êb) : 〈*p = e, {}, i〉

i `e
d êb : 〈l, v, r, i′〉

i `s
d x =D êb : 〈l, x = r, i′〉

i `e
d êb : 〈l, v, r, i′〉

i `s
d pwrite(pD, êb) : 〈l, pwrite(p, r), i′〉

i `e
d êS : 〈l, v, r, i′〉 i′ `s

d ŝ1 : 〈l1, r1, i1〉 i′ `s
d ŝ2 : 〈l2, r2, i2〉

i `s
d if (êS

) ŝ1 else ŝ2 :
〈{l;if (v) {l1;cache = cache+i1} else {l2;cache = cache+i2}},
if (r) {r1;cache = cache+i1} else {r2;cache = cache+i2},
0〉

i `s
d ŝb1

1 : 〈l1, r1, i1〉 . . . in−1 `s
d ŝbn

n : 〈ln, rn, in〉
i `s

d {ŝb1
1 ; . . . ;ŝbn

n } : 〈{l1; . . . ;ln}, {r1; . . . ;rn}, in〉
Expressions:

i `e
d êS : 〈*(cache+i) = e, *(cache+i), *(cache+i), i + 1〉 i `e

d xD : 〈{}, 0, x, i〉

i `e
d pread(pS)D : 〈{}, 0, *p, i〉 i `e

d pread(pD)D : 〈{}, 0, pread(p), i〉

i `e
d êb1

1 : 〈l1, v1, r1, i1〉 i1 `e
d êb2

2 : 〈l2, v2, r2, i2〉
i `e

d (êb1
1 op êb2

2)D : 〈{l1;l2}, 0, r1 op r2, i2〉

Fig. 2. Data specialization of statements and expressions (excerpts)

The generated program first initializes cache to the beginning of the cache and
the static persistent variables to cache entries. Next the loader l is executed.
Finally, the value of cache is reset, and the reader r is executed.

4 Correctness

We now relate the semantics of the result of data specialization to the semantics
of the source program. We begin with the semantics of the target language, which
is a superset of the source language. The semantics depends on a store σ mapping
locations to values. For conciseness, we implicitly associate each variable x with
the store location x̃. The semantics of a statement s is specified by σ `s

s s : σ′, for
stores σ and σ′. The semantics of an expression e is specified by σ `e

s e : v, where
σ is a store and v is a value. We only describe the semantics of the constructs
manipulating persistent variables; the other constructs are standard, and are
deferred to Appendix B.

The semantics must ensure that every reference to a persistent variable using
pread sees the final value to which the variable is assigned using pwrite. We
use two distinct store locations p̃in and p̃out to represent each persistent variable

7

p. The location p̃in holds the final value of p, while the location p̃out records
updates to p. Thus, the semantics of pread and pwrite are as follows, where
undefined is some value distinct from the value of any expression:

v 6= undefined
σ[p̃in 7→ v] `e

s pread(p) : v

σ `e
s e : v

σ `s
s pwrite(p, e) : σ[p̃out 7→ v]

The values stored in p̃in and p̃out are connected by the semantics of a complete
program, specified as follows:

Definition 1. Let p be a program d1 . . . dn s declaring the variables x1, . . . , xy

and the persistent variables p1, . . . , pq. Let σ0 be a state mapping the x̃i to the
initial values of the xi, and the p̃out

j to “undefined”. Then, the meaning of p, [[p]],
is the set of stores σ, binding only the x̃i, such that for some values v1, . . . , vq

σ0 ∪ {p̃in
j 7→ vj | 1 ≤ j ≤ q} `s

s s : σ ∪ {p̃in
j , p̃out

j 7→ vj | 1 ≤ j ≤ q}

This definition uses the value undefined to ensure that the meaning of a program
represents computations in which the value of a persistent variable is only read
when it is also defined.

We now show that data specialization preserves the semantics. Data spe-
cialization separates a program into the loader, which only manipulates static
variables, and the reader, which only manipulates dynamic variables. To relate
the semantics of the loader and reader to the semantics of the source program,
we first define the operators stat and dyn, which separate the input store into
static and dynamic components:

Definition 2. Let σ be a store and Γ be a binding-time environment. Let pout

and pin be locations that are unique for each persistent variable p, but that may
be identical to each other. Then,

1. stat(σ, Γ) = {x̃ 7→ σ(x̃) | Γ (x) = S} ∪ {p̃ 7→ pout, pout 7→ σ(p̃out) | Γ (p) = S}
2. dyn(σ, Γ) = {x̃ 7→ σ(x̃) | Γ (x) = D} ∪ {p̃ 7→ pin, pin 7→ σ(p̃in) | Γ (p) = S}∪

{p̃in 7→ σ(p̃in), p̃out 7→ σ(p̃out) | Γ (p) = D}

To relate stores stat(σ, Γ) and dyn(σ, Γ) back to σ, we must eliminate the inter-
mediate locations pin and pout. We thus define the operator]:

Definition 3. For binding-time environment Γ and stores α and β,

α]Γ β ={x̃ 7→ α(x̃) | Γ (x) = S} ∪ {x̃ 7→ β(x̃) | Γ (x) = D}
∪ {p̃in 7→ β(pin), p̃out 7→ α(pout) | Γ (p) = S}
∪ {p̃in 7→ β(p̃in), p̃out 7→ β(p̃out) | Γ (p) = D}

The operators stat, dyn, and] are related by the following lemma:

Lemma 1. stat(σ, Γ)]Γ dyn(σ, Γ) = σ

8

The loader and reader also use some store locations not present in the store
used by the source programs, namely the cache pointer, the local tmp variables,
and the cache. For conciseness, we specify the store with respect to which the
loader and reader are executed as a sequence α, c, τ, ξ of

1. The bindings (α) associated with the source variables.
2. The cache pointer (c).
3. A stack (τ) representing the values of the locally declared tmp variables.
4. The cache (ξ).

The following theorem shows that given the loader and reader associated with
a source statement, execution of the loader followed by resetting of the cache
pointer followed by execution of the reader has the same effect on the values of
the source variables as execution of the source statement.

Theorem 1. For any statement s and store σ, if Γ, bc `s s : ŝ and i `s
d ŝ :

〈l, r, i′〉, and if for some c, τ , and ξ, there are α, β, c′, τ ′, and ξ′ such that

1. stat(σ, Γ), c, τ, ξ `s
s l : α, c′, τ ′, ξ′.

2. dyn(σ, Γ), c, τ ′, ξ′ `s
s r : β, c′, τ ′, ξ′.

Then, σ `s
s s : α] β.

Because of speculative evaluation of terms under dynamic control (see Ap-
pendic A), termination of the source statement does not necessarily imply ter-
mination of the loader. Thus, we relate the semantics of the source program to
that of the loader and reader using the following theorem, which includes the
hypothesis that the loader terminates.

Theorem 2. For any statement s and store σ, if Γ, bc `s s : ŝ and i `s
d ŝ :

〈l, r, i′〉, and there are some σ′, c, τ , and ξ such that

1. σ `s
s s : σ′

2. For some store σ′′, stat(σ, Γ), c, τ, ξ `s
s l : σ′′

Then, there are some α, β, c′, τ ′, and ξ′, such that

1. stat(σ, Γ), c, τ, ξ `s
s l : α, c′, τ ′, ξ′.

2. dyn(σ, Γ), c, τ ′, ξ′ `s
s r : β, c′, τ ′, ξ′.

3. σ′ = α] β

Both theorems are proved by induction on the height of the derivation of
Γ, bc `s s : ŝ. These theorems imply the following, which shows that the store
resulting from execution of the source statement and the store resulting from
execution of the result of data specialization agree on the variables x, which
determine the semantics of a program as specified by Definition 1.

Corollary 1. For any program p ≡ d1 . . . dn s, binding-time environment Γ ,
and store σ, if ds[[p]]Γ ≡ d′1 . . . d′m sds, σ `s

s s : σ′, and σ `s
s sds : σ′ds, then for all

variables x of p, σ′(x) = σ′ds(x).

The corollary holds because sds initially sets up a store that is compatible with
the store assumed by the above theorems and resets the cache pointer between
the execution of the loader and the reader.

9

5 Circularity and attribute grammars

The efficient implementation of circular specifications has been studied exten-
sively in the attribute-grammar community [13, 18–21]. As is the case for offline
partial evaluation, these approaches begin with a dependency analysis, the re-
sults of which then guide code generation. Nevertheless, the partial-evaluation
and attribute-grammar-based approaches differ in their starting point and in the
quantity of information collected by the analyses. Our approach also differs from
attribute-grammar-based approaches in that our source language is imperative.

The starting point of an attribute-grammar-based approach is an attribute
grammar describing the input of the program to be generated. An analysis de-
termines the dependencies between the attributes, and uses this information
to construct a series of schedules, known as a visit sequences, of the attribute
computations such that each computation depends only on previously-computed
attributes. Each element of a visit sequence can be implemented as a function
whose argument is the component of the input for which the corresponding at-
tribute is to be computed. The resulting implementation amounts to a series
of recursive traversals of the input structure [13]. Specific techniques have been
devised to transmit intermediate values (“bindings” [18]) that are not part of
the input from one phase to the next, and to create specialized input structures
(“visit trees” [19, 21]) that eliminate the need to maintain portions of the input
that are not needed by subsequent phases.

In contrast, the starting point of data specialization is the program itself;
data specialization is independent of the structure of the input data. The con-
struction of both glue and visit trees is subsumed by the basic mechanism of data
specialization: the caching of the value of every static expression that occurs in
a dynamic context. The cache can, nevertheless, be viewed as implementing a
specialized visit tree. The cached values of static conditional tests correspond to
sum-type tags, while the values cached for the chosen branch of a static condi-
tional correspond to the components of the sum element. In our implementation,
this tree structure is flattened; pointers from one cache entry to another are only
introduced to implement speculative evaluation of dynamic control constructs
(See Appendix A).

The binding-time analysis used by data specialization is significantly less in-
formative than the analysis used in the implementation of attribute grammars.
We have seen that binding-time analysis simply classifies each expression as
static or dynamic, according to the classification of the terms that it depends
on. This strategy implies that a persistent variable that depends on the value of
another instance of itself is considered dynamic. The attribute-grammar anal-
ysis collects complete information about the relationships between attributes.
This extra precision allows fewer dependencies to be considered recursive. The
impact of replacing the binding-time analysis of data specialization by the more
informative attribute-grammar analysis is a promising area for future research.

Finally, we have presented an implementation of circularity in the context of
an imperative language, whereas attribute grammars use a declarative notation,
with some similarity to a lazy functional language [10]. Because imperative lan-

10

guages are flow sensitive, we have to indicate explicitly which variables should
be considered persistent, and thus take on the final value to which they are
assigned, rather than the most recent value. In contrast, in a flow-insensitive
language, such as a declarative or functional language, a variable has only one
value, which is its final value. The addition of circularity to such a language
simply allows the value to be specified after the point of reference, rather than
requiring that it be specified before, and no keyword is required.

6 Examples

We now present some examples: the translation of the imperative definition of
repmin, a use of our approach in the implementation of run-time specialization
in Tempo, and two examples from the literature on circular programs.

6.1 Repmin

Figure 3 shows the result of applying data specialization to the imperative im-
plementation of repmin presented in Section 1.2 The loader, comprised of rm ldr
and repmin ldr, accumulates the minimum value at any Tip. Once the complete
tree has been analyzed, this value is stored in the cache location assigned to the
persistent variable minval. The reader, comprised of rm rdr and repmin rdr,
uses this value to reconstruct the tree.

In the implementation of Figure 3, calls to the primitives mkTip and mkFork
are considered to be dynamic, and thus placed in the reader. It is also possible
to consider these calls to be static, in which case the output structure is built
in the loader. Following this strategy, the reader recursively visits the tips, in-
stantiating the value of each to be the minimum value. When part of the output
structure does not depend on the values of persistent variables, this strategy im-
plies that the binding-time analysis considers its construction to be completely
static, which can reduce the amount of data stored in the cache.

6.2 Inlining

This work was motivated by the problem of optimizing run-time specialization
in Tempo [15]. An important optimization is the inlining of specialized functions.
Inlining is performed during the execution of a dedicated specializer (generating
extension [11]) written in C, and is thus most naturally implemented in C as well.
We have found that the use of persistent variables facilitates the implementation
of various inlining strategies, by requiring only local changes that do not affect
the overall implementation of run-time specialization.

To achieve good performance, the size of a specialized function should not
exceed the size of the instruction cache or the distance expressible by a relative
2 The code produced by Tempo has been slightly modified for readability. Among

these simplifications, we exploit the fact that only integers are stored in the cache
to eliminate casts to and from a generic cache type.

11

void rm_ldr(Tree *t, int *cache) {

Ans a;

int *minval_ptr = cache++;

cache =

repmin_ldr(t, &a, cache);

*minval_ptr = a.mn;

}

int *repmin_ldr(Tree *t, Ans *a,

int *cache) {

Ans a1, a2;

*cache = (t->type == Fork);

if (*cache++) {

cache =

repmin_ldr(t->left, &a1, cache);

cache =

repmin_ldr(t->right, &a2, cache);

a->mn = min(a1.mn, a2.mn);

}

else a->mn = t->tipval;

return cache;

}

Tree *rm(Tree *t) {

int *cache = mkCache();

rm_ldr(t, cache);

return rm_rdr(cache);

}

Tree *rm_rdr(int *cache) {

Ans a;

int minval = *cache++;

cache =

repmin_rdr(minval, &a, cache);

return a.tree;

}

int *repmin_rdr(int m, Ans *a,

int *cache) {

Ans a1, a2;

if (*cache++) {

cache =

repmin_rdr(m, &a1, cache);

cache =

repmin_rdr(m, &a2, cache);

a->tree =

mkFork(a1.tree, a2.tree);

}

else a->tree = mkTip(m);

return cache;

}

Fig. 3. Data specialization of repmin

branch instruction. One approach is to constrain inlining based on the number of
instructions already generated for the current function. A more precise approach
is to constrain inlining based on the size of the complete specialized function. To
implement these strategies, we use data specialization and persistent variables
to separate the implementation into a pass that analyzes the size, followed by a
pass that performs the inlining and code generation.

Inlining based on current function size: The heart of the implementation
is the function do call, shown with binding-time annotations in Figure 4. The
arguments to do call are the number of instructions already generated for the
caller (caller size), the name of the callee (callee), and the buffer into which
code for the caller is generated (caller output). The treatment of a call pro-
ceeds in three steps. First, callee output is initialized to the address at which
to generate code for the specialized callee. If the specialized callee is to be inlined,
callee output is set to the current position in the caller’s buffer, as indicated
by caller output. Otherwise, mkFun is used to allocate a new buffer that is

12

extern Code *the_program[];

extern int threshold;

int do_call(int caller_size, int callee, Code *caller_output) {

int inlined, callee_size;

persistent int inlinedp, callee_sizep;

Code *callee_output;

/* select the output buffer based on whether the call is inlined */

if (pread(inlinedp))

callee_output = caller_output;

else

callee_output = mkFun(pread(callee_sizep));

/* specialize the callee */

callee_size = spec(the_program[callee], callee_output);

/* initializations based on whether the call is inlined */

inlined = (callee_size + caller_size <= threshold);

pwrite(inlinedp,inlined);

if (inlined)

/* return the number of instructions added to the caller */

return callee_size;

else {

/* end the callee */

*(callee_output + callee_size) = RETURN;

/* record the callee’s size */

pwrite(callee_sizep,callee_size+1);

/* add a call instruction to the caller */

*output = mkCall(get_name(callee_output));

/* return the number of instructions added to the caller */

return 1;

}

}

Fig. 4. The do call function used in the implementation of inlining based on current
function size. Dynamic constructs are underlined.

13

the size of the specialized callee. Because the decision of whether to inline and
the size of the specialized callee are not known until after specialization of the
callee, this information is implemented using the persistent variables inlinedp
and callee sizep, respectively. Next, the callee is specialized by applying the
function spec to the callee’s source code and the selected output buffer. Special-
ization emits code in the output buffer and returns the size of the specialized
function. Finally, the number of instructions already generated for the caller is
combined with the size of the specialized callee to determine whether the callee
should be inlined. The persistent variables are then initialized accordingly, and
other initializations are performed as indicated by the comments in Figure 4.
The return value is the number of instructions added to the caller.

The loader produced by data specialization computes the size of each gener-
ated function and determines whether it should be inlined. The reader then uses
this information to allocate the output buffer and perform code generation.

Controlling inlining based on maximum possible function size: The
previous approach takes into account only the number of instructions generated
for the caller so far. A more accurate approach is to consider the caller’s total
size. For this purpose we add a new persistent variable local sizep recording
the total size of the current function before inlining.

The use of the dynamic value of the persistent variable local sizep to deter-
mine whether to inline implies that the value of the persistent variable inlinedp
depends on dynamic information. Thus, we must iterate data specialization, pro-
ducing a three-phase implementation. The first phase calculates the number of
instructions generated for each source function, if no inlining is performed. The
second phase decides whether to inline each call, based on the sum of the number
of instructions in the specialized caller and the number of instructions added by
inlining all selected calls. The third phase performs the actual code generation.

6.3 Other circular programs

We now consider several examples from the literature on attribute-grammar-
based and lazy implementations of circular programs. These examples illustrate
the limitations of an approach based on binding-time analysis.

The Block language has been used by Saraiva et al. to illustrate numerous
strategies for generating efficient implementations of attribute grammars [19, 20,
22]. Block is a block-structured language in which the scope of a variable decla-
ration is any nested block, including nested blocks to the left of the declaration.
The language thus generalizes the common use of forward references to top-level
functions, extending this facility to local variables. The scoping rule is illustrated
by the following program, in which braces delimit a nested block, “int x” is a
declaration of x, and “x” is a use of x:

{ { x } int x }

14

We focus on one of the compilation problems that has been studied for Block,
that of translating Block code to a stack-based language [22]. Circularity arises
when the compiler needs to determine the stack offset of a variable that occurs
before its declaration has been processed.

Saraiva et al. present two implementations of such a compiler: a lazy imple-
mentation and a strict implementation generated from an attribute grammar
[22]. Both implementations represent the environment as two variables, which
we refer to as the local environment and the complete environment. The local
environment contains all of the declarations for the enclosing blocks, but only
the variables declared to the left of the current position in the current block. As
new declarations are encountered, they are recorded in this environment. The
complete environment contains all of the declarations that should be visible at
the current point, including those that occur to the right of the current position.
This environment is used for code generation. In the compilation of a block, the
environments are connected using a circular reference: the input value of the
complete environment is the local environment that results from processing the
block.

This implementation can be directly translated into our language by using
a persistent variable to implement the complete environment. If we follow this
strategy, however, our approach is unable to eliminate the circularity. Because
the initial value of the local environment is the dynamic value of the persistent
variable representing the complete environment of the enclosing block, the local
environment is always dynamic, and cannot be used to initialize the complete
environment of the nested block to a static value. The strict implementation of
Saraiva et al. resolves this dependency by a strategy analogous to calling the
loader for the treatment of a block from the reader, rather than from the loader
of the context. Within the reader, the complete environment for the surrounding
context has been determined. It is, however, not clear how to infer the need for
this implementation strategy using binding-time analysis.

By slightly reorganizing the structure of the environment, we can implement
the Block compiler using persistent variables and data specialization. The local
environment of a nested block extends the enclosing block’s complete environ-
ment, but does not otherwise depend on its contents. We thus replace the flat
environment generated by Saraiva et al.’s implementation by an environment
constructed of frames, such that an empty, and thus static, frame is allocated
on entry to each block. The loader adds the declarations made by the block to
this frame, which is then stored in a persistent variable at the end of the block.
When the reader enters the block, it extends the complete environment with
this new frame, producing an environment suitable for code generation. This
program structure is also used in the second inlining example. The reorgani-
zation corresponds roughly to reformulating a computation f(d) into d ⊕ f(s),
where s is some static initial value and ⊕ is some operation, thus permitting the
computation of f to be considered static.

A related example is Karczmarczuk’s use of circularity to concisely imple-
ment complex mathematical operations in a lazy functional language [12]. Like

15

the compiler of the Block language, Karczmarczuk’s implementation has the
property that a circular value from an enclosing computation is used in perform-
ing a subcomputation. Here, however, the value from the enclosing computation
is used eagerly, and it is not clear how to perform a rewriting of the form of the
conversion of f(d) into d⊕ f(s).

7 Related work

The most closely related work is the automatic efficient implementation of an
attribute-grammar specification, which has been discussed in Section 5. Here, we
review the history of data specialization and of multiple levels of specialization.

Data specialization: Automatic data specialization was initially developed by
Barzdins and Bulyonkov [2], and described and extended by Malmkjær [16].
These approaches are more complex than ours. In particular, they use memo-
ization in the construction of the data specialization cache. Knoblock and Ruf
implement data specialization for a subset of C and investigate its use in an
interactive graphics application [14]. Chirokoff et al. compare the benefits of
program and data specialization, and propose combining these techniques [5].
Our implementation of data specialization in Tempo builds on that of Chirokoff.

Incremental specialization: We have proposed to iterate binding-time analysis
and data specialization to resolve dependencies among a hierarchy of persistent
variables. Marlet, Consel, and Boinot similarly iterate the specialization process
to achieve incremental run-time program specialization [17]. Alternatively, Glück
and Jørgensen define a binding-time analysis and program specializer that treat
multiple levels at once [7]. Their analysis should be applicable to our approach.

8 Conclusions and future work

In this paper, we have shown how circular programs can be implemented using a
minor extension of standard partial evaluation techniques. Previously developed
techniques to generate optimized implementations of circular specifications are
naturally achieved by the basic strategy of caching the values of static expressions
that occur in a dynamic context. We have found the use of persistent variables
crucial in experimenting with a variety of optimization strategies for run-time
specialization in Tempo. Because the introduced code is localized, and a staged
program is generated automatically, variants can be implemented robustly and
rapidly.

In future work, we plan to allow persistent variables as first-class values.
Given the set of analyses already performed by Tempo [8], this extension should
be straightforward. We also plan to investigate whether the information collected
by the analysis used for attribute grammars can be useful in the context of partial
evaluation. We hope that the work presented here will lead to further exchange of
techniques between the attribute-grammar and partial-evaluation communities.

16

Acknowledgements: This work has greatly benefitted from the encourage-
ment and feedback of many people, including Olivier Danvy, Andrzej Filinski,
Bernd Grobauer, Gilles Muller, Renaud Marlet, Ulrik Schultz, and the PADO-II
reviewers.

References

1. A.W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998. pages 131–132, 138–139.

2. G.J. Barzdins and M.A. Bulyonkov. Mixed computation and translation: Lineari-
sation and decomposition of compilers. Preprint 791 from Computing Centre of
Sibirian division of USSR Academy of Sciences, p.32, Novosibirsk, 1988.

3. R.S. Bird. Using circular programs to eliminate multiple traversals of data. Acta
Informatica, 21:239–250, 1984/85.

4. A. Bondorf and O. Danvy. Automatic autoprojection of recursive equations with
global variables and abstract data types. Science of Computer Programming,
16:151–195, 1991.

5. S. Chirokoff, C. Consel, and R. Marlet. Combining program and data specializa-
tion. Higher-Order and Symbolic Computation, 12(4):309–335, December 1999.

6. C. Consel, L. Hornof, F. Noël, J. Noyé, and E.N. Volanschi. A uniform approach
for compile-time and run-time specialization. In O. Danvy, R. Glück, and P. Thie-
mann, editors, Partial Evaluation, International Seminar, Dagstuhl Castle, number
1110 in Lecture Notes in Computer Science, pages 54–72, February 1996.

7. R. Glück and J. Jørgensen. An automatic program generator for multi-level spe-
cialization. Lisp and Symbolic Computation, 10:113–158, 1997.

8. L. Hornof and J. Noyé. Accurate binding-time analysis for imperative languages:
Flow, context, and return sensitivity. Theoretical Computer Science, 248(1–2):3–
27, 2000.

9. L. Hornof, J. Noyé, and C. Consel. Effective specialization of realistic programs
via use sensitivity. In P. Van Hentenryck, editor, Proceedings of the Fourth Inter-
national Symposium on Static Analysis, SAS’97, volume 1302 of Lecture Notes in
Computer Science, pages 293–314, Paris, France, September 1997. Springer-Verlag.

10. T. Johnsson. Attribute grammars as a functional programming paradigm. In
G. Kahn, editor, 1987 Conference on Functional Programming Languages and
Computer Architecture, volume 274 of Lecture Notes in Computer Science, pages
154–173, Portland, OR, September 1987. Springer-Verlag.

11. N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. International Series in Computer Science. Prentice-Hall, June 1993.

12. J. Karczmarczuk. Calcul des adjoints et programmation paresseuse. In Journées
Francophones des Langages Applicatifs (JFLA’2001), Metabief, France, January
2001.

13. U. Kastens. Ordered attributed grammars. Acta Informatica, 13:229–256, 1980.

14. T.B. Knoblock and E. Ruf. Data specialization. In Proceedings of the ACM
SIGPLAN ’96 Conference on Programming Language Design and Implementation,
pages 215–225, Philadelphia, PA, May 1996. ACM SIGPLAN Notices, 31(5). Also
TR MSR-TR-96-04, Microsoft Research, February 1996.

15. J. Lawall and G. Muller. Faster run-time specialized code using data specialization.
Research Report 3833, INRIA, Rennes, France, December 1999.

17

16. K. Malmkjær. Program and data specialization: Principles, applications, and self-
application. Master’s thesis, DIKU University of Copenhagen, August 1989.

17. R. Marlet, C. Consel, and P. Boinot. Efficient incremental run-time specialization
for free. In Proceedings of the ACM SIGPLAN’99 Conference on Programming
Language Design and Implementation (PLDI’99), pages 281–292, Atlanta, GA,
May 1999.

18. M. Pennings. Generating incremental attribute evaluators. PhD thesis, Department
of Computer Science, Utrecht University, The Netherlands, November 1994.

19. J. Saraiva. Purely Functional Implementation of Attribute Grammars. PhD thesis,
Department of Computer Science, Utrecht University, The Netherlands, December
1999.

20. J. Saraiva, D. Swierstra, and M. Kuiper. Strictification of computations on trees. In
3th Latin-American Conference on Functional Programming (CLaPF’99), March
1999.

21. J. Saraiva, D. Swierstra, and M. Kuiper. Functional incremental attribute evalu-
ation. In D.A. Watt, editor, 9th International Conference on Compiler Construc-
tion, volume 1781 of Lecture Notes in Computer Science, pages 279–294, Berlin,
Germany, March 2000. Springer-Verlag.

22. J. Saraiva, D. Swierstra, M. Kuiper, and M. Pennings. Strictification of lazy func-
tions. Technical Report UU-CS 1996-51, Utrecht University, 1996.

23. E. Sumii and N. Kobayashi. Online-and-offline partial evaluation: A mixed ap-
proach (extended abstract). In 2000 ACM SIGPLAN Workshop on Partial Evalu-
ation and Semantics-Based Program Manipulation (PEPM’00), pages 12–21. ACM
Press, 2000. Also available as SIGPLAN Notices 34(11).

A Data specialization of branching statements

The data specialization rules for conditionals and while loops are shown in Figure
5. The principal problem here is to maintain the cache pointer. For static control
constructs, all possible control paths must set the cache pointer such that a
single constant offset i can be used after the control construct. The speculative
evaluation performed for dynamic control constructs implies that cache entries
are initialized in the loader that correspond to code that is not executed in
the reader. Thus, the cache itself has to record which cache entries to skip,
according to the control path chosen in the reader. While speculative evaluation
is not essential, it has been found useful in practice [11].

The specialization rules in Figure 5 create a cache entry for the value of
the test of each static conditional and for the value of the test performed on
each static while loop iteration. A more efficient approach is to collapse nested
static conditionals into a switch statement and to replace the recording of the
values of while loop tests by the recording of the number of loop iterations. Both
optimizations have been implemented in Tempo.

B Semantics

The complete semantics of statements and expressions is shown in Figure 6.

18

i `e
d êS : 〈l, v, r, i′〉 i′ `s

d ŝ1 : 〈l1, r1, i1〉 i′ `s
d ŝ2 : 〈l2, r2, i2〉

i `s
d if (êS

) ŝ1 else ŝ2 :
〈{l;if (v) {l1;cache = cache+i1} else {l2;cache = cache+i2}},
if (r) {r1;cache = cache+i1} else {r2;cache = cache+i2},
0〉

i `e
d êD : 〈l, v, r, i′〉 i′ + 1 `s

d ŝ1 : 〈l1, r1, i1〉 i1 + 1 `s
d ŝ2 : 〈l2, r2, i2〉

i`s
d if(êD

) ŝ1 else ŝ2 :
〈{Cache tmp; l;tmp = cache+i′;l1;*tmp = cache;tmp = cache+i1;l2;*tmp = cache},
if (r) {r1;cache = *(cache+i1)} else {cache = *(cache+i

′)r2},
i2〉

i `e
d êS : 〈l, v, r, i′〉 i′ `s

d ŝ : 〈ls, rs, is〉
i `s

d while (êS) ŝ : 〈{l;while (v) {ls;cache = cache + is − i;l}},
while (r) {rs;cache = cache + is − i},
is〉

i `e
d êD : 〈l, v, r, i′〉 i′ + 1 `s

d ŝ : 〈ls, rs, is〉
i `s

d while (êD
) ŝ :

〈{Cache tmp;l;tmp = cache + i′;ls;*tmp = cache},
{Cache tmp;tmp = cache;while (r) {rs;cache = tmp};cache = *(cache + i′)},
is〉

Fig. 5. Data specialization of branching statements

Statements:

σ `e
s e : v

σ `s
s x = e : σ[x̃ 7→ v]

σ `e
s e1 : ` σ `e

s e2 : v

σ `s
s *e1 = e2 : σ[` 7→ v]

σ `e
s e : v

σ `s
s pwrite(p, e) : σ[p̃out 7→ v]

σ `e
s e : 1 σ `s

s s1 : σ′

σ `s
s if (e) s1 else s2 : σ′

σ `e
s e : 0 σ `s

s s2 : σ′

σ `s
s if (e) s1 else s2 : σ′

σ `e
s e : 1 σ `s

s s : σ′ σ′ `s
s while (e) s : σ′′

σ `s
s while (e) s : σ′′

σ `e
s e : 0

σ `s
s while (e) s : σ

σ `s
s s1 : σ1 . . . σn−1 `s

s sn : σn

σ `s
s {s1; . . . ;sn} : σn

σ[x̃ 7→ undefined] `s
s s : σ′[x̃ 7→ v]

σ `s
s {Cache x;s} : σ′

Expressions:

σ `e
s c : c σ[x̃ 7→ v] `e

s x : v
σ `e

s e1 : v1 σ `e
s e2 : v2

σ `e
s e1 op e2 : v1 op v2

σ[` 7→ v] `e
s e : `

σ[` 7→ v] `e
s *e : v

v 6= undefined

σ[p̃in 7→ v] `e
s pread(p) : v

Fig. 6. Semantics of statements and expressions

19

