
Scheduling Support for
Transactional Memory Contention Management

Walther Maldonado
Patrick Marlier
Pascal Felber

Univ. of Neuchâtel
Switzerland

first.last@unine.ch

Adi Suissa
Danny Hendler
Ben Gurion Univ.

Israel
adisuis@cs.bgu.ac.il

hendlerd@cs.bgu.ac.il

Alexandra Fedorova
Simon Fraser Univ.

Canada
fedorova@cs.sfu.ca

Julia L. Lawall
Univ. of Copenhagen

Denmark
julia@diku.dk

Gilles Muller
INRIA / Regal

France
gilles.muller@lip6.fr

Abstract
Transactional Memory (TM) is considered as one of the most promis-
ing paradigms for developing concurrent applications. TM has been
shown to scale well on multiple cores when the data access pattern
behaves “well,” i.e., when few conflicts are induced. In contrast,
data patterns with frequent write sharing, with long transactions, or
when many threads contend for a smaller number of cores, result in
numerous conflicts. Until recently, TM implementations had little
control of transactional threads, which remained under the supervi-
sion of the kernel’s transaction-ignorant scheduler. Conflicts are thus
traditionally resolved by consulting an STM-level contention man-
ager. Consequently, the contention managers of these “conventional”
TM implementations suffer from a lack of precision and often fail
to ensure reasonable performance in high-contention workloads.

Recently, scheduling-based TM contention-management has
been proposed for increasing TM efficiency under high-contention
[2, 5, 19]. However, only user-level schedulers have been considered.
In this work, we propose, implement and evaluate several novel
kernel-level scheduling support mechanisms for TM contention
management. We also investigate different strategies for efficient
communication between the kernel and the user-level TM library.
To the best of our knowledge, our work is the first to investigate
kernel-level support for TM contention management.

We have introduced kernel-level TM scheduling support into
both the Linux and Solaris kernels. Our experimental evaluation
demonstrates that lightweight kernel-level scheduling support sig-
nificantly reduces the number of aborts while improving transaction
throughput on various workloads.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.4.1 [Operating Systems]:
Process Management

General Terms Algorithms, Performance

Keywords Transactional Memory, Scheduling, Contention Man-
agement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $5.00

1. Introduction
Transactional memory (TM) [11, 18] has emerged as a promising
alternative to lock-based programming for developing concurrent
applications [1, 12]. In transactional memory, critical sections are
expressed as atomic blocks performed as transactions. At runtime,
these transactions may be executed concurrently based on the
optimistic expectation that the set of locations accessed by one
transaction will not overlap with the set of locations written by
another concurrent transaction. If such a conflict does occur, a TM
contention manager (CM) [10] decides how it should be resolved;
typically, one of the conflicting transactions is aborted (the loser)
and rolled back while the other is allowed to proceed (the winner).
TM has been shown to scale well on multiple cores when the
data access pattern behaves “well,” i.e., when few conflicts are
induced [1, 12]. In contrast, a data access pattern with frequent
writes to shared data will induce numerous aborts. This means that
a long running transaction has little chance to make progress and
commit successfully unless specific—often ad-hoc—measures are
taken.

Our goal is to address the problem of repeated aborts in software
transactional memory (STM). In some cases, to avoid repeated
aborts, it is sufficient to follow “good” practices, such as using
short transactions in cases where the rate of conflicts is likely
to be high. When this is not possible, the problem of repeated
aborts is usually addressed via an application-level contention
manager, which reacts when a conflict is detected, by aborting one
of the conflicting transactions or by waiting for the conflict to be
possibly resolved. Exponentially increasing delays can furthermore
be inserted after an abort to reduce the probability of a recurrence of
the conflict. These approaches, however, have been found to often
provide poor performance with many workloads commonly used to
evaluate STMs [15, 16]. They suffer from: (i) too many aborts, e.g.,
when a long running transaction conflicts with shorter transactions;
(ii) lack of precision, since an aborted thread may wait too long
after the commit of the conflicting transaction to restart its own
transaction; and (iii) unpredictable benefits, as delaying the restart
of a long transaction does not necessarily increase its chance of
success, unless all other conflicting transactions have completed
or are delayed even longer. These problems are particularly acute
when there are more threads than cores, as can be desirable for the
execution of server-type applications where threads can block in
non-transactional code. In this case, a transaction that repeatedly
aborts prevents other useful work from being performed on the same
CPU.

The problem of conflict management is essentially a problem of
controlling when transactions are executed, such that a transaction is

not executed at the same time as some other conflicting transaction,
and is thus essentially a scheduling problem. This observation has
led researchers to consider various user-level scheduling policies
performing some variant of serialization, in which the thread
running a loser transaction is moved to a wait queue until the winner
transaction completes [2, 5, 19]. Such approaches, however, incur
a high overhead for short transactions, because they replicate at
the user level kernel-level scheduling operations and abstractions
and because their implementation introduces additional user-kernel
context switches. Furthermore, they do not address the problem
of context switches during the execution of a transaction, which
increase the window of vulnerability in which a conflict can occur.

In this paper, we propose, implement and evaluate several novel
user and kernel-level scheduling support mechanisms for TM con-
tention management and analyze their relative benefits, depending
on the number of threads and cores, the duration of transactions,
and the degree of contention. Novel features of the algorithms con-
sidered include the use of a shared memory segment to provide
lightweight communication between the user-level STM library and
the kernel-level scheduler, and “soft” forms of serialization in which
the loser thread is not prevented from executing, but only has its
priority reduced. Finally, we propose a new contention manage-
ment strategy that is based on extending the time slice of a thread
running a transaction, to reduce its window of vulnerability. This
strategy is orthogonal to serialization and can be combined with any
of the proposed serialization algorithms. With respect to these new
features, we find that the use of shared memory allows defining a
serialization strategy that is efficient for short transactions with high
contention, that soft serialization is beneficial for transactions that
may be nondeterministic, and that time slice extension can improve
scalability for some contention management strategies.

The contributions of this paper are as follows:

• We propose novel approaches for improving the performance of
software transactional memory by modifying the OS scheduling
policy. Our work is the first to implement and evaluate TM
contention management support in the kernel.

• We study the relative efficiency of system calls and shared
memory as a means of allowing the STM to interact with the
kernel.

• We demonstrate the benefits of a simple yield as a contention
management strategy, particularly in the presence of low con-
tention and transactions with a duration of less than one time
slice.

• We have created a reference implementation of our approach in
the Linux kernel. Our modifications to the kernel are small and
highly localized. We have subsequently validated the general
applicability of our approach by porting and testing it on Solaris.

• We have evaluated our approach on both micro- and macro-
benchmarks using a lock-based STM library. Results show that
our approach is effective in situations where an application-level
contention manager cannot provide satisfactory performance.

The rest of this paper is organized as follows. Section 2 further
describes software transactional memory and the problem of con-
tention management. In Section 3, we consider four approaches to
serialization, and analyze their tradeoffs. In Section 4, we propose
a complementary contention management strategy, based on time-
slice extension, to close the window of vulnerability introduced
by thread preemption at the kernel level. Section 5 evaluates these
strategies on a range of benchmarks. Finally Section 6 presents
related work and Section 7 concludes.

2. Background
In this section, we briefly describe the main principles of software
transactional memory and highlight the difficulties that conventional
contention managers have in accurately dealing with conflicts.

2.1 Software Transactional Memory
Software transactional memory (STM) [17] is a lightweight alterna-
tive to locks for synchronizing threads in concurrent applications.
STM allows developers to combine sequences of concurrent op-
erations into atomic transactions that execute optimistically and,
upon conflict, automatically roll back and restart their execution.
This approach promises a great reduction in the complexity of both
programming and verification, by making parts of the code appear
to be sequential without the need to program fine-grained locks.

There exist several types of STM designs [12], which mainly
differ in their liveness properties and the granularity of conflict
detection (e.g., memory word, object), as well as the various
implementation choices they follow. In this paper, we use the
TINYSTM [8] library, which belongs to the class of word-based
and lock-based STMs, which are widely considered to be among
the most efficient and general purpose [4, 7]. In this class of STMs,
conflict detection is performed at the level of individual machine
words, and the implementation uses revokable locks to protect
memory from conflicting accesses. This class also notably includes
Ennals’ STM [7], McRT-STM [14], and TL2 [4]. A distinguishing
feature of TINYSTM is that it provides by default eager write
conflict detection and invisible reads, i.e., write-read and write-write
conflicts are checked for when a memory location is accessed, while
read-write conflicts are only checked for at commit time.

2.2 Contention Management
STM relies on the hypothesis that conflicts are unlikely and thus,
in most cases, transactions can commit. Therefore, the ability of
STM to scale directly depends on the workload. Two scenarios can
negatively affect performance. First, transactions that conflict fre-
quently will trigger many aborts, sometimes even creating a livelock
situation. This is particularly the case with long running transac-
tions. Second, when the number of threads exceeds the number of
cores, threads can be preempted while executing transactions. This
increases the transaction duration by one or more scheduling time
slices, which is often several orders of magnitude more than the
actual computation time of the transaction (see Section 5), thus dras-
tically increasing the risk of conflicts. In both situations, transaction
throughput (i.e., commit rate) will decrease.

An important challenge is to be able to handle such scenarios
gracefully. This task is traditionally addressed by the contention
manager (CM), which determines based on various policies whether
conflicting transactions should abort, wait, or proceed. Comparative
studies of contention managers [15, 16] show that different strategies
work better for different benchmark applications, but no single
manager performs best on all workloads. In lock-based STMs (e.g.,
TL2 [4] and TINYSTM [8]), the typical strategy is to abort the thread
that discovers the conflict. If a transaction aborts multiple times,
it may wait for a random, exponentially increasing, delay before
restarting, to give conflicting transactions a chance to complete.
This exponential backoff strategy practically avoids livelocks, but
often does not give good performance. Obstruction-free designs [10]
usually provide more flexibility in the actions that CMs can take,
by letting transactions not only adjust their own behaviors but also
abort others, yet this flexibility comes with an extra cost.

To evaluate the impact of conflicts with many concurrent trans-
actions and the effectiveness of conventional contention manage-
ment, we have run a set of benchmarks from the STAMP suite [3]
on a 16-core machine with two STM implementations (see Sec-
tion 5 for details on our experimental setup): TL2 and TINYSTM,

with and without exponential backoff CM. TINYSTM can either
use encounter-time locking (ETL), or commit-time locking (CTL),
which make a write visible to other transactions immediately or only
at commit time, respectively.1

In the graphs in Figure 1, we observe that: (i) performance
degrades significantly on most STAMP benchmarks once there
are more threads than cores, except for ssca2 that has short
transactions and very few conflicts (see Section 5 and Table VI
in [3]); (ii) degradation starts even before reaching 16 threads
on two benchmarks (kmeans and intruder); (iii) degradation is
generally slightly less significant using commit-time locking (TL2
and TinySTM-CTL); (iv) the backoff contention manager can be
helpful (intruder) or counterproductive (genome), but it does not
affect most benchmarks.

 0

 0.5

 1

 1.5

 2

 1 8 16 32 64

ssca2

Tiny-ETL
Tiny-ETL (CM)

Tiny-CTL
 0
 2
 4
 6
 8

 10

 1 8 16 32 64

genome

 0
 1
 2
 3
 4
 5

 1 8 16 32 64

vacation (high)

S
pe

ed
up

Tiny-CTL (CM)
TL2

TL2 (CM)

 0
 2
 4
 6
 8

 10
 12

 1 8 16 32 64

labyrinth

 0

 0.5

 1

 1.5

 2

 1 8 16 32 64

intruder

Number of threads

 0

 0.5

 1

 1.5

 2

 1 8 16 32 64

kmeans (high)

Figure 1. Performance of TINYSTM (ETL and CTL) and TL2 on
STAMP benchmarks (speedup relative to single-threaded execution).

There are several reasons why a conventional contention manager
may be inadequate for scheduling transactions. Notably, it lacks pre-
cision when delaying the restart: a sleep of even a few microseconds
is likely much longer than the duration of the winner transactions,
implying that cycles are wasted. In addition, at the user level it is not
possible to control when threads are preempted: if the OS scheduler
preempts a thread in the middle of an active transaction, the risk of
conflict with concurrent transactions increases.

3. Serialization
To address the deficiencies of conventional contention managers,
attention has turned to serialization. Serialization is a contention-
management strategy that prevents the tread running the loser trans-
action from executing until the winner transaction has completed.
The rationale behind serialization is the following: once a pair of
transactions conflict, they are likely to conflict again if allowed to

1 ETL is the default. CTL typically reduces the risk of conflicts during
transaction execution but increases the likelihood of an abort at validation
time [8].

execute concurrently. It follows that the execution of a loser transac-
tion concurrently with a transaction with which it conflicted before
is likely to waste CPU cycles.

Algorithm 1 shows the basic outline of an implementation of
serialization. On starting a transaction, the transaction is mapped to
the current thread. When a transaction detects a conflict it aborts,
and is then made to wait for the completion of the winner. Finally,
when a transaction commits, it releases any waiting transactions.
The critical aspect of this algorithm is how to implement WAIT and
RELEASEALL, in particular whether waiting should be implemented
entirely at the user level, or by blocking the loser thread, which
requires interaction with the kernel. The optimal implementation
depends on the relationship between the number of threads and
the number of cores, the duration of transactions, and the level
of contention. Previous work has considered purely user-level
strategies. We propose strategies that involve the kernel, as well.

Algorithm 1: Serialization implementation outline
// Start transaction tx

upon START(tx)1
tx.thr ← CURRENTTHREAD()2

// Conflict between tx and tx′

upon CONFLICT(tx, tx′)3
ABORT(tx)4
WAIT(tx.thr, tx′.thr.wait) // Serialize after winner5

// Commit transaction tx

upon COMMIT(tx)6
RELEASEALL(tx.thr.wait)7

User-level implementation Executing a transaction when it is
known that the transaction is likely to encounter a conflict uses
CPU resources unnecessarily and may provoke conflicts with other
transactions. If the number of threads is less than or equal to the
number of cores, however, using CPU resources unnecessarily does
not affect throughput. In this case, serialization may be implemented
by causing the loser transaction to wait on a spinlock that is held
by the winner, thus preventing the loser from performing operations
that may provoke further conflicts. This is indeed a contention man-
agement strategy that is already provided by TinySTM (CM DELAY),
which we refer to as SER-u (spin).2 When the winner transaction
commits, it releases the spinlock, allowing the waiting loser trans-
actions to restart immediately. If there are more threads than cores,
however, the use of spinlocks drastically reduces throughput, as
the loser transaction monopolizes the CPU for its entire time slice,
without performing any useful computation.

Kernel-level implementation An alternative to having the loser
thread wait on a spinlock at the user level is to block the thread,
thus allowing other threads to access the CPU. This approach
is indeed essential to achieving adequate parallelism when there
are more threads than cores. Blocking a thread, however, requires
removing it from the kernel scheduler’s ready queue, which implies
communication between the user and the kernel level. To achieve the
full benefit of serialization, this communication must be efficient.

Traditionally, the user level communicates with the kernel via
system calls. Following this strategy, which we refer to as SER-u
(cond), WAIT is implemented using a system call that causes the
thread to be blocked on a condition variable associated with the
winner transaction, and RELEASEALL is implemented by a system
call that releases all the threads blocked on the thread’s condition
variable. Locks are used to ensure that the winner transaction has not
yet committed before the loser waits. System calls, however, have

2 “u” refers to user-level. In the sequel, we use “k” to refer to kernel-level.

a significant overhead, which adds an extra cost to every COMMIT.
This overhead may be unacceptable for short transactions, especially
when there are few conflicts, in which case the system call performed
by COMMIT is likely not to find any blocked threads.

To enable communication between the transaction operations
and the kernel without resorting to system calls, we have developed
a novel architecture based on a memory region shared between the
STM library and the scheduler, as shown in Figure 2. The shared
memory region contains a table of MAXTHREADS elements, each
being a structure describing STM information for a given thread.
We also augment the OS thread structure with a pointer to the
respective entry of the aforementioned table. The initial setup and
communication between the application and the kernel is done via
a special device file /dev/stm, through which, via I/O control and
memory mapping calls, the table of elements is allocated by the
main application thread. Child threads subsequently request to be
linked to the next available entry in the array, as part of their STM
initialization process. Using this strategy, to interact with the kernel,
the application simply fills in data in the shared structure, avoiding
the cost of a direct user-kernel interaction.

User space

STM

Kernel space

Scheduler
Kernel

extension

Task

structure

Memory

STM thread

structure

Figure 2. Layout of the interaction between the Kernel and appli-
cation.

The shared memory-based implementation of serialization, SER-
k, is implemented in two parts, at the STM and at the kernel level.
Algorithm 2 shows the code executed by the STM at the user level
that informs the kernel level that the start of a transaction, a conflict,
or a commit has occurred. The WAIT and RELEASEALL actions are
then shifted to the kernel scheduler, as shown in Algorithm 3. The
kernel scheduler is chosen as the place to invoke this code because it
is executed relatively frequently and because it can immediately
react to any changes in thread state induced by the contention
management code. For each thread, the scheduler first checks
whether the thread has been configured to run transactions (line 11),
and then whether it has committed a transaction (line 12) or detected
a conflict (line 18). Because the STM-level COMMIT code does
not perform any action, e.g., yield, that would cause an invocation
of the kernel scheduler, a thread may have both committed one or
more transactions and detected a conflict during the time that elapses
before the scheduler is invoked. The SCHEDULE function thus tests
on line 15 that the stored conflict transaction is different from the
current transaction of the committing thread, if any, so that only
threads in conflict with completed transactions are returned to the
ready queue. Next, if the thread is in conflict (lines 19–21), it is
moved to the wait queue of the conflicting thread (line 21). This is
only done if the latter thread is still in the OS’s ready queue (line 20),
i.e., it has not concurrently detected a conflict, to avoid introducing
cycles that could cause deadlock.

Using the shared memory approach, COMMIT now only performs
two assignments, and no user-kernel interactions. Thus, there is
essentially no overhead on COMMIT, even when there are many
short transactions but few conflicts. Furthermore, because the kernel

Algorithm 2: SER-k: STM-level code
struct stm thread1

tx : transaction id2
conflict thr : thread3
conflict tx : transaction id4
commit : bool5

// Start transaction tx

upon START(tx)6
tx.thr ← STMSHAREDSTRUCTPTR()7
tx.thr.tx← tx8

// Conflict between tx and tx′

upon CONFLICT(tx , tx ′)9
tx .thr .conflict tx ← tx ′10
tx .thr .conflict thr ← tx ′.thr11
ABORT(tx)12
YIELD(tx.thr)13

// Commit transaction tx

upon COMMIT(tx)14
tx .thr .tx ← null15
tx .thr .commit ← true16

Algorithm 3: SER-k: Kernel-level code
struct thread extension1

sh shm : struct stm thread2
wait : waitqueue3

// Kernel initialization of shared data structures
upon KERNELSTMINIT(t)4

t.sh stm ← GETNEXTFREESTMSTRUCT()5
tx .sh stm.thr .conflict thr ← null6
tx .sh stm.thr .commit ← false7
t.wait ← INITQUEUE()8

// Thread election,Q is the OS ordered ready queue
upon SCHEDULE(Q)9

foreach thread t do10
if t.sh stm then11

// ReleaseAll on Commit
if t.sh stm.commit then12

t.sh stm.commit ← false13
foreach thread t′ in t.wait do14

// Unblock threads conflicting with committed
transactions

if t′.sh stm.conflict tx 6= t.sh stm.tx then15
MOVETOREADYQUEUE(t′)16

// Wait on Conflict
t′ ← t.sh stm.conflict thr17
if t′ 6= null then18

t.sh stm.conflict thr ← null19
if ONREADYQUEUE(t’) then20

MOVETOWAITQUEUE(t, t′.wait)21

ELECT(FIRST(Q))22

schedule function has access to all threads, it can perform all of
the commit and conflict handling on only one core at a time, thus
reducing the amount of locking required. Nevertheless, this approach
can incur a substantial latency on awakening the blocked loser
threads, as the kernel only polls the shared memory structure when
the schedule function is invoked. A loser transaction can thus be
unnecessarily blocked for a period of time that may be as long as a
thread’s time slice, which may be much longer than the duration of
the transaction’s computation itself.

The main source of overhead in both of the above blocking-based
strategies is due to the need to interact with the kernel to restore
the normal execution of the loser threads on each COMMIT. A third
possible solution is then to release the CPU in a way that does not
require explicit unblocking. For this, we implement WAIT using
the yield system call and RELEASEALL as a no-op, as shown in
Algorithm 4. YIELD instructs the scheduler to elect a new thread,
while considering that the yielded thread has the lowest possible
priority. If there are more threads than cores, the yielding thread will
be blocked for at least one time slice. This strategy is thus beneficial
when the winner transaction is short, implying that this amount of
time is sufficient to allow it to complete.

Algorithm 4: YIELD (system-call based)
// Start transaction tx

upon START(tx)1
tx.thr ← CURRENTTHREAD()2

// Conflict between tx and tx′

upon CONFLICT(tx, tx′)3
ABORT(tx)4
YIELD(tx.thr)5

// Commit transaction tx

upon COMMIT(tx)6
// No action

Non-determinism Serialization relies on the property that, once
a transaction has conflicted with another transaction, it is likely to
continue to do so. If a transaction is non-deterministic, however,
then this property may not hold. Non-determinism occurs when a
transaction takes a different code path when it is restarted relative
to its previous execution. This can occur, for example, because the
values that are used for making branching decisions were changed
between the two incarnations of the transaction. Blocking the loser
is too drastic in this case. As the future behavior of a possibly non-
deterministic transaction is impossible to predict, we propose an
alternative strategy, SOFTSER, that reduces the priority of the loser,
rather than blocking it completely. With a scheduler such as that
of Linux, the loser will then only be elected if there are no other
higher-priority ready threads on the current core.

The implementation of SOFTSER, following a system-call based
approach, is shown in Algorithm 5. Because a thread in conflict re-
mains able to run while in a conflict state, it may encounter a conflict
with a given thread multiple times or it may encounter conflicts with
multiple threads. To manage information about multiple conflicts,
the implementation of SOFTSER uses a two-dimensional boolean
array C, where C[i][j] is true if and only if thread i has detected a
conflict with thread j , and a conflict counter for each thread that
indicates the number of transactions with which it is currently in
conflict. When thread i detects a conflict with thread j , CONFLICT
sets C[i][j] to true and increments thread i’s conflict counter (lines
8–9). In COMMIT, the column C[t][∗] for the thread t performing
the commit is cleared, to indicate that other threads are no longer
in conflict with the current one, and the conflict counter for each
such thread is decremented. The row C[∗][t] is also cleared, since
the thread is no longer in a transaction. When a thread is no longer
in conflict with any transaction, as indicated by its conflict counter
reaching 0, its priority is returned to normal.

This system-call based implementation of SOFTSER is converted
to a shared-memory implementation as done for SER. In particular,
the STM-level code (Algorithm 2) is identical.

Assessment Table 1 summarizes the tradeoffs between the various
serialization strategies. Different strategies are beneficial in different
contexts, depending on the relationship between the number of

Algorithm 5: SOFTSER (system-call based)
C[∗][∗]← false // Conflict matrix, initialized to false1

// Start transaction tx

upon START(tx)2
tx.thr ← CURRENTTHREAD()3
tx.thr.conflict count ← 04

// Conflict between tx and tx′

upon CONFLICT(tx, tx′)5
ABORT(tx)6
if ¬C[tx.thr][tx′.thr] then7
C[tx.thr][tx′.thr]← true8
tx.thr.conflict count ← tx.thr.conflict count + 19
CHANGEPRIO(tx.thr, LOW)10

// Commit transaction tx

upon COMMIT(tx)11
foreach thread t do // Clear column12

if C[t][tx.thr] then13
C[t][tx.thr]← false14
t.conflict count ← t.conflict count − 115
if t.conflict count = 0 then16

// Reset priority if no more conflicts
CHANGEPRIO(t , NORMAL)17

C[tx.thr][t]← false // Clear row18

CHANGEPRIO(tx.thr, NORMAL) // Reset priority19

upon SCHEDULE(Q)20
ELECT(FIRST(Q))21

threads > # cores
threads≤ Short transactions Long

cores Few conflicts Many conflicts transactions
SER-u (spin) + − − −
SER-u (cond) − −
SER-k − +
YIELD + + −

Table 1. Comparison of the benefits of the serialization strategies

threads and the number of cores, the duration of transactions, and
the degree of contention. − indicates a particular disadvantage for a
given strategy, while + indicates a particular advantage. Spinlocks
only work well when there are fewer threads than cores. Serialization
with condition variables may incur too much overhead for very short
transactions. Shared memory-based serialization may incur latency,
but this is mitigated when there are many aborts. Finally, yielding is
most effective for transactions shorter than a time slice.

4. Time-Slice Extension
Serialization addresses the problem of repeated aborts, by preventing
a thread from executing if it is likely to conflict again. An orthogonal
approach is to prevent aborts in the first place, by ensuring that
each transaction can commit as quickly as possible. In an operating
system such as Linux with a priority-based round-robin scheduler,
a thread is suspended when its time slice has expired or when a
thread with a higher priority is unblocked. If the thread is currently
running a transaction, being suspended in this manner dramatically
increases the probability for another transaction to create a conflict,
by modifying some shared data, or for it to create a conflict with
other transactions, by hiding its own modifications to shared data
over one or more time slices.

Strategy EXT minimizes this phenomenon by deferring the
preemption of a thread that is running a transaction. In order to
prevent a thread running a very long transaction from monopolizing

a processor, a counter is associated with the thread, meaning it
only gets a maximum number N of such “extensions” before it
is actually suspended. Finally, if a thread has benefited from an
extension, it yields after the next commit, again to ensure that it
does not monopolize the processor. Strategy EXT only has an impact
on each thread in isolation, rather than on the interaction between
winner and loser threads. Thus, any of the serialization strategies
can be augmented to use time-slice extension.

A shared-memory based implementation Because Linux does not
provide a time-slice extension system call,3 we consider only a
shared-memory based implementation. As shown in Algorithm 6,
this implementation sets a flag indicating that the thread is in a
transaction in START (line 8) and clears it in COMMIT (line 11).
On each invocation of the scheduler, which represents a potential
preemption point, the scheduler checks whether the current thread
is running a transaction (line 18) and if so whether the number
of extensions received for the current transaction is less than the
limit N . If both conditions are satisfied, the scheduler increments
the extension counter, performs some Linux-specific bookkeeping
operations, and then returns (lines 20-21), thus preventing the thread
from being preempted.

Algorithm 6: EXT (shared-memory)
// Thread structure in shared memory
struct stm thread1

tx : transaction id2
extensions : int3

// Init of the thread before using the STM
upon KERNELSTMINIT(t)4

t.sh stm ← GETNEXTFREESTMSTRUCT()5

// Start transaction tx

upon START(tx)6
tx.thr ← STMSHAREDSTRUCTPTR()7
tx.thr.tx← tx8
tx.thr.extensions ← 09

// Commit transaction tx

upon COMMIT(tx)10
tx.thr.tx← null11
if tx.thr.extensions > 0 then12

YIELD(tx.thr)13

// Extension of OS thread structure
struct thread extension14

sh shm : struct stm thread15

// Thread election,Q is the OS ordered ready queue
upon SCHEDULE(Q)16

t ← CURRENTTHREAD()17
// Check that the thread uses the STM and is in a transaction
if t.sh stm 6= null ∧ t.sh stm.tx 6= null then18

if t.sh stm.extensions < N then19
t.sh stm.extensions ← t.sh stm.extensions + 120
return // The current thread keeps running21

ELECT(FIRST(Q))22

5. Evaluation
The goal of our experimental evaluation is to study the relative
performance of the various scheduling algorithms we have pro-
posed. In addition to these algorithms, we consider for comparison
CM SUICIDE, which we refer to as basic, a minimal contention man-
ager provided by TinySTM that just restarts a transaction on abort.

3 Solaris does provide such a system call, but with a somewhat different
semantics.

Our tests have been carried out on an AMD Opteron server with
four 2.3 GHz quad-core CPUs (16 cores in total) and 8GB RAM
running Linux 2.6.30. Our implementation extends the default Linux
scheduler (CFS), which works with per-CPU task queues. We use
two types of benchmarks: synthetic and realistic. In our benchmarks,
we focus on throughput (commit rate), as would be relevant to a
server application that receives a stream of continuous requests.

5.1 Synthetic benchmarks
We consider three categories of synthetic benchmarks: those with
very short transactions (skip list and red-black tree), those with
medium-length transactions (linked list), and those with very long
transactions (STMBench7). The transaction durations are shown
in Figure 3.4 These results were obtained in single threaded mode,
where there is no contention on data access. The benchmarks with
very short transactions represent the worst case in terms of any
overhead that is added by contention management. The benchmarks
with very long transactions represent the worst case in terms of the
number of aborts per transaction.

 0

 0.2

 0.4

 0.6

 0.8

 1

102 103 104 105 106 107 108 109

D
is

tr
ib

ut
io

n
(C

D
F

)

Transaction length (CPU cycles)

M
ea

n
tim

e
sl

ic
eLinked list (1k)

Linked list (4k)
Linked list (8k)

RB tree
(16k)

Skip
list
(16k)

STMBench7 (r)
STMBench7 (rw)

STMBench7 (w)

Figure 3. Transaction lengths for the synthetic benchmarks.

The skip list (SL), red-black (RB) tree, and linked list (LL)
benchmarks all manipulate a set of integers. An execution consists
of both read transactions, which determine whether an element is
in the set, and update transactions, which either add or remove an
element (reads are also done to find the position of the element to
add or remove). The set is initially populated with a given number of
elements and its size is maintained constant by alternating insertions
and removals. SL and RB use data structures designed to make
it possible to access any element by traversing only a few other
elements, and thus exhibit a high rate of potential parallelism. For
LL, accessing an element requires traversing all previous elements,
implying that any write to a previous element that occurs before a
transaction completes causes a conflict. This benchmark thus has
less potential parallelism. Finally, STMBench7 performs read and
write accesses on a large graph of objects [9]. The benchmark allows
varying the ratio of reads to writes, leading to read dominated, write
dominated, or mixed workloads. STMBench7 furthermore includes
nondeterministic transactions.

For each benchmark, Table 2 summarizes the transaction length
(average µ and standard deviation σ), the average number of reads
and writes per transaction, and the amount of contention (percentage
of transactions that abort at least once on an execution with no
scheduling algorithm activated for 2, 8 and 16 threads on a 16-core

4 Figure 3 presents the duration of the transaction in cumulative distribution
frequency (CDF) format. In this format, each point represents the percentage
of transactions that have a duration less than the value indicated on the x-axis.
For example, a vertical line from the bottom to the top of the graph, as in the
case of RB tree, indicates that most transactions have the duration indicated
on the x-axis at the point of the increase. A gradual increase, as in the case of
STMBench, indicates that there are transactions of many different durations.

-1

 0

 1

-10 -5 0 5 10

Basic SER-u (spin) SER-u (cond) SER-k YIELD SOFTSER-k SOFTSER-u

 0
 5

 10
 15
 20
 25
 30
 35

 1 8 16 32 48 64

RB-16k, 0% updates

C
om

m
its

/s
 (

×
10

6)

 0

 5

 10

 15

 1 8 16 32 48 64

RB-16k, 5% updates

 0

 2

 4

 6

 8

 1 8 16 32 48 64

RB-16k, 20% updates

Number of threads

 0
 1
 2
 3
 4
 5

 1 8 16 32 48 64

RB-16k, 50% updates

 0
 5

 10
 15
 20

 1 8 16 32 48 64

SL-16k, 0% updates

C
om

m
its

/s
 (

×
10

6)

 0
 2
 4
 6
 8

 10
 12

 1 8 16 32 48 64

SL-16k, 5% updates

 0
 1
 2
 3
 4
 5
 6

 1 8 16 32 48 64

SL-16k, 20% updates

Number of threads

 0

 1

 2

 3

 4

 1 8 16 32 48 64

SL-16k, 50% updates

 0
 500

 1000
 1500
 2000

 1 8 16 32 48 64

LL-1k, 0% updates

C
om

m
its

/s
 (

×
10

3)

 0

 400

 800

 1200

 1 8 16 32 48 64

LL-1k, 5% updates

 0

 100

 200

 300

 400

 1 8 16 32 48 64

LL-1k, 20% updates

Number of threads

 0

 50

 100

 150

 1 8 16 32 48 64

LL-1k, 50% updates

 0
 50

 100
 150
 200
 250

 1 8 16 32 48 64

LL-8k, 0% updates

C
om

m
its

/s
 (

×
10

3)

 0
 25
 50
 75

 100
 125
 150
 175

 1 8 16 32 48 64

LL-8k, 5% updates

 0
 10
 20
 30
 40
 50

 1 8 16 32 48 64

LL-8k, 20% updates

Number of threads

 0

 5

 10

 15

 20

 1 8 16 32 48 64

LL-8k, 50% updates

Figure 4. Commit rate of the red-black tree, skip list, and linked list benchmarks.

server). For LL, where we vary the size of the set (1k, 8k) and
the update rate (only numbers for 20% are shown), the transaction
length and number of reads increase roughly linearly in the size of
the list. The number of writes for a given update rate is constant.
For small sizes and update rates, the contention increases roughly
linearly with the update rate, but reaches a maximum at around 20%
due to the constraint of the number of available processors.

Figure 4 shows the commit rate of the LL, SL, and RB bench-
marks with different update rates. Experiments were run with up to
64 threads, i.e., four times the number of available cores, to evaluate
the benefits of our scheduling algorithms when contention increases
and threads have to share CPUs. Indeed, given the small size of
the transactions and the limited contention, there is not much room
for improvement when the number of threads does not exceed the
number of cores.

Application Tx length (cycles) Reads Writes Contention (%)
µ σ µ µ @2 @8 @16

rb-16k-20% 1,258 1.1e3 31.6 1.8 0.01 0.06 0.11
sl-16k-20% 2,204 1.4e3 58.2 0.9 0.03 0.25 0.44
ll-1k-20% 17,298 1.1e4 1,034 0.4 6.38 22.08 23.48
ll-8k-20% 149,606 9.0e4 8,168 0.4 6.37 21.02 22.33

sb7-r 1,530,040 8.1e6 1,150 17.1 2.10 10.67 15.46
sb7-rw 3,564,994 1.5e7 869.8 65.5 4.32 16.73 20.10
sb7-w 5,626,921 2.1e7 483.7 135.6 5.15 16.63 20.07

Table 2. Workload characteristics for the synthetic benchmarks.

We first analyze the minimal overhead of contention manage-
ment. To this end, we have run experiments with just read-only
transactions, implying that there are no collisions and no expected

benefit from the scheduling algorithms. The ideal behavior is that
throughput rises linearly as the number of threads increases until
the number of threads reaches the number of processors, at which
point throughput levels off. This pattern is exhibited by all of the
algorithms except SOFTSER-u, and indeed all of these algorithms
have essentially the same throughput as basic, which has the least
overhead. SER-u (cond), SER-k, and SOFTSER-k sometimes has
slightly lower throughput, as they all perform some extra operations
on commit. Unlike the other algorithms, SOFTSER-u has a high
overhead for the SL and RB benchmarks, which have very short
transactions. This overhead comes from the traversal of the conflict
array C required on every commit. In SOFTSER-k, this overhead is
much reduced, because such traversals are handled by the kernel
once per call to the scheduler function. With such short transactions,
and no conflicts, there are many more commits than calls to the
scheduler. Because of this high overhead, we omit SOFTSER-u from
our other tests.

Next, we analyze the benefits of our algorithms when increasing
the percentage of updates, and hence the level of contention. When
there are fewer threads than cores, adding more threads leads to
a declining increase in throughput, most notably for 50% updates,
where the maximum throughput is often reached at 4 or 8 threads.
For more threads than cores, throughput typically holds steady for
the blocking and yielding algorithms, but drops off significantly
for the purely user-level algorithms, basic and SER-u (spin), in
which an aborting transaction never releases the processor. For
RB, which has the shortest transactions, SER-u (cond) has also
has some drop off in throughput, due to the high overhead for

managing condition variables as compared to the transaction length.
Overall, SER-k has lower throughput than the other blocking and
yielding algorithms. This is because of the latency of waking up
blocked threads after a commit. Nevertheless, for RB and SL, which
have very short transactions, when there are many threads, and thus
many conflicts, there are frequent calls to the scheduler and SER-
k has throughput comparable to the others. Finally, YIELD often
gives the best throughput for low rates of contention (5% updates),
reflecting the fact that, unlike the other serializing algorithms, it has
no overhead on commit.

Figure 5 shows the commit rate when using time-slice extension,
limited for space reasons to combinations with SER-k and YIELD
and 20% updates. As previously noted, SER-k already gives good
performance when there are short transactions and frequent conflicts,
and thus time slice extension combined with SER-k gives little added
benefit for RB and SL. For LL, however, where the performance of
SER-k degrades when there are more threads than cores, the addition
of time-slice extension restores scalability, leading to throughput
that is the same as the other serializing and yielding algorithms in
the 1K case. YIELD, on the other hand, already has among the best
throughputs on all three applications, and thus time slice extension
does not give a significant improvement in this case.

 0

 100

 200

 300

 400

 1 8 16 32 48 64

LL-1k, 20% updates

C
om

m
its

/s
 (

×
10

3)

Number of threads

 0
 10
 20
 30
 40
 50

 1 8 16 32 48 64

LL-8k, 20% updates

Number of threads

 0

 2

 4

 6

 8

 1 8 16 32 48 64

RB-16k, 20% updates

C
om

m
its

/s
 (

×
10

6)

SER-k
SEREXT-k

 0
 1
 2
 3
 4
 5
 6

 1 8 16 32 48 64

SL-16k, 20% updates

YIELD
YIELDEXT

Figure 5. Commit rate of red-black tree, skip list, and linked list
benchmarks when using time-slice extension.

We now study the performance of our algorithms with STM-
Bench7 on three workloads that differ in the percentage of writes
performed by the transactions (Figure 6). This benchmark has longer
transactions, as well as nondeterministic transactions. In the read-
dominated workload, SER-u (spin) gives the best throughput when
there are fewer threads than cores, because it has low overhead,
but unlike basic and YIELD does block a thread that encounters a
conflict. YIELD is notably ineffective when the number of threads
exceeds the number of cores because the yield duration is often not
sufficient to allow the winner transaction to complete. For more
threads than cores, for the read-dominated workload, SER-u (cond)
gives the best throughput, as the cost of a system call is negligible
as compared to the duration of a transaction. On the other hand,
in the write-dominated workload, the presence of nondeterministic
transactions has a more significant impact, and the blocking serial-
ization algorithms, which can block a transaction that might be able
to commit due to taking an alternate execution path, all give signifi-
cantly reduced performance. In this case, YIELD and SOFTSER-k
typically give the best throughput, as they allow a nondeterministic
transaction to continue executing, although at lower priority.

The right side of Figure 6 shows the effect of combining
time-slice extension with SER-k, YIELD and SOFTSER-k, named

SEREXT-k, YIELDEXT, and SOFTSEREXT-k, respectively. For
read-dominated workloads, when the number of threads is less than
or equal to the number of cores, the combination of time-slice
extension with YIELD and SOFTSER-k gives a significant benefit.
These combinations, however, give less benefit for more threads than
cores, or when there are more writes. On the other hand, combining
time slice extension with SER-k gives the greatest benefit for high
contention, i.e., when there are 64 threads, in all of the workloads.-1

 0

 1

-10 -5 0 5 10

Basic
SER-u (spin)

SER-u (cond)

SER-k
YIELD

SOFTSER-k

SEREXT-k
YIELDEXT

SOFTSEREXT-k

 0

 2

 4

 6

 8

 1 8 16 32 48 64

C
om

m
its

/s
 (

×
10

3)

Read-dominated

 0

 2

 4

 6

 8

 1 8 16 32 48 64

 0

 1

 2

 3

 1 8 16 32 48 64

C
om

m
its

/s
 (

×
10

3)

Read-write

 0

 1

 2

 3

 1 8 16 32 48 64

 0

 0.5

 1

 1.5

 2

 1 8 16 32 48 64

C
om

m
its

/s
 (

×
10

3)

Number of threads

Write-dominated

 0

 0.5

 1

 1.5

 2

 1 8 16 32 48 64
Number of threads

Figure 6. Commit rates for STMBench7.

We also show that the new scheduling algorithms dramatically
reduce the rate of aborts. Figure 7 presents the abort rates cor-
responding to the experiments shown in Figure 6 (data for other
algorithms and other benchmarks are omitted due to space limita-
tions, but point to similar trends). We observe that all algorithms
reduce the abort rate significantly relative to the basic contention
management scheme; indeed, the serializing algorithms reduce the
abort rates by several orders of magnitude. Although YIELD and
SOFTSER-k (with and without time-slice extension) reduce aborts to
a smaller extent than the serializing algorithms, they do not necessar-
ily perform worse: an abort rate that is very small may be indicative
of an overly strict serialization, thus reducing the abort rate should
not be the sole goal of the scheduling algorithm.

5.2 Realistic applications
We now consider a collection of realistic applications that are not
trivially parallelizable without synchronization and can thus benefit
from transactional memory’s optimistic concurrency. These applica-
tions are taken from the STAMP [3] benchmark suite, which is the
most widely used STM benchmark. bayes uses a hill-climbing al-
gorithm that combines local and global search to learn the structure
of Bayesian networks from observed data; genome matches a large
number of DNA segments to reconstruct the original source genome;
intruder emulates a signature-based network intrusion detection
system; kmeans partitions objects in a multi-dimensional space into

-1

 0

 1

-10 -5 0 5 10

Basic
SER-u (spin)

SER-u (cond)

SER-k
YIELD

SOFTSER-k

SEREXT-k
YIELDEXT

SOFTSEREXT-k

100
102
104
106
108

 2 8 16 32 48 64

A
bo

rt
s/

s

Read-dominated

100
102
104
106
108

 2 8 16 32 48 64

100
102
104
106
108

 2 8 16 32 48 64

A
bo

rt
s/

s

Read-write

100
102
104
106
108

 2 8 16 32 48 64

100
102
104
106
108

 2 8 16 32 48 64

A
bo

rt
s/

s

Number of threads

Write-dominated

100
102
104
106
108

 2 8 16 32 48 64
Number of threads

Figure 7. Abort rates for STMBench7.

a given number of clusters; labyrinth executes a parallel routing
algorithm in a 3-dimensional grid; ssca2 constructs a graph data
structure using adjacency arrays and auxiliary arrays; vacation
implements an online travel reservation system; yada executes a
Delaunay mesh refinement algorithm. Additionally, two sets of pa-
rameters are recommended by the STAMP developers for vacation
and kmeans, to produce executions with low and high contention.
The single-threaded execution time of STAMP applications ranges
from a few seconds to several minutes. Figure 8 presents the trans-
action lengths, and Table 3 summarizes the characteristics of the
transactional workloads produced by these applications.

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106 107 108 109 1010

D
is

tr
ib

ut
io

n
(C

D
F

)

Transaction length (CPU cycles)

M
ea

n
tim

e
sl

ic
e

bayes

labyrinth

ssca2

yada

intruder genome

vacation (low)
vacation (high)

kmeans (low/high)

Figure 8. Transaction lengths for the STAMP benchmarks.

The performance of the STAMP benchmarks is shown in Figure
9, as compared to that of the application when run in a single thread,
without transactions (1 represents identical performance). Note that
for more threads than cores, the performance is overall significantly
better than that with the conventional contention managers, as
presented in Figure 1.

Application Tx length (cycles) Reads Writes Contention (%)
µ σ µ µ @2 @8 @16

ssca2 1,475 2.3e3 1.0 2.0 3.6e-4 2.6e-3 6.6e-3
genome 19,803 9.4e3 30.1 0.03 0.08 0.27 0.41

vacation-l 27,039 1.6e4 283.0 5.4 0.02 0.17 0.38
vacation-h 39,197 2.6e4 386.7 7.8 0.05 0.35 0.72

bayes 14,587,146 9.6e7 28.6 3.2 0.45 2.63 3.95
yada 25,664 6.7e5 60.8 18.8 3.31 6.72 6.60

labyrinth 207,825,190 2.6e8 180.1 177.0 1.85 6.06 10.56
intruder 2,197 3.9e3 23.6 2.7 1.89 23.72 33.93
kmeans-l 3,387 2.1e3 25.0 25.0 25.6 31.34 32.40
kmeans-h 3,293 1.9e3 25.0 25.0 28.5 45.79 41.33

Table 3. Workload characteristics for the STAMP benchmarks.

ssca, genome, vacation (low and high), and bayes all have
very low contention. ssca has very short transactions, and all
algorithms, including basic, maintain the same level of performance
as the number of threads increases beyond the number of cores.
genome has longer transactions and the performance when using
basic or SER-u (spin) drops off somewhat after 16 threads, but all of
the blocking contention manages maintain good performance. Due
to the length of the transactions, YIELD performs little better than
basic. vacation has even longer transactions, and basic, SER-u
(spin), and ultimately YIELD, fall well below the single-threaded
case. All of the blocking algorithms drop off in performance after
16 threads, but then level off, maintaining performance well above
the single-threaded rate. Finally, bayes has very long transactions.
Performance is mixed because the workload is quite random [3],
and in most cases drops off well before 16 threads.

yada and labyrinth have moderate contention. yada has
moderate length transactions, while those of labyrinth are quite
long. In yada the transactions have very large read and write sets,
making the management of aborts and the restart process very
expensive. The blocking algorithms, SER-u (cond) and SER-k,
result in execution that is essentially the same as single-threaded
execution. This problem does not occur in labyrinth, where all
of the algorithms, including basic, show only a slight decline in
performance as the number of threads increases beyond the number
of cores.

Finally, intruder, kmeans-l, and kmeans-h all have high
contention, but short transactions. Basic and SER-u (spin) incur
a substantial dropoff in performance already when there are the
same number of threads as cores, while the blocking, yielding, and
soft serialization algorithms maintain some degree of speedup over
the single-threaded case.

5.3 Solaris Implementation
To demonstrate the portability of our techniques we also present
results for a subset of the algorithms implemented on the Open-
Solaris platform. We have implemented two of the algorithms for
OpenSolaris: SOFTSER-u and YIELDExt. The implementation of
the former is somewhat different than the Linux version, in that it
executes at user level and does not maintain the conflict array C.
Instead, a thread that aborts reduces its own priority, and resets it
back to normal only when it commits. Due to space limitations, we
only show the results for benchmarks LL-1K, LL-8K and RB-16K
for 0%, 20% and 50% updates. Our tests were carried out on an
AMD Opteron server with four 2.3 GHz quad-core CPUs (16 cores
in total) and 32GB RAM running OpenSolaris. As on Linux, the
scheduling-based algorithms maintain the throughput as the number
of threads exceeds the number of cores. We next look at the results,
presented in Figure 10, in detail.

For the scenarios with 0% updates, all algorithms perform
roughly similarly. No contention management is needed, since
there are no conflicts in this scenario, and the only differences
in performance are due to bookkeeping overhead. We do not

 0

 0.5

 1

 1.5

 2

 1 8 16 32 64

ssca2

S
pe

ed
up

Basic
SER-u (spin)

SER-u (cond)
 0
 2
 4
 6
 8

 10

 1 8 16 32 64

genome

 0
 1
 2
 3
 4
 5
 6

 1 8 16 32 64

vacation (low)

 0
 1
 2
 3
 4
 5

 1 8 16 32 64

vacation (high)

 0
 1
 2
 3
 4
 5

 1 8 16 32 64

bayes

 0

 0.5

 1

 1.5

 1 8 16 32 64

yada

S
pe

ed
up

 0
 2
 4
 6
 8

 10
 12

 1 8 16 32 64

labyrinth

SER-k
YIELD

SOFTSER-k

 0

 1

 2

 1 8 16 32 64

intruder

Number of threads

 0
 1
 2
 3
 4
 5

 1 8 16 32 64

kmeans (low)

 0

 0.5

 1

 1.5

 2

 1 8 16 32 64

kmeans (high)

Figure 9. Speedup of the STAMP benchmarks as compared to single-threaded execution.

 0
 5

 10
 15
 20
 25
 30
 35

 1 8 16 32 48 64

RB-16k, 0% updates

C
om

m
its

/s
 (

×
10

6)

Number of threads

Basic
YIELDEXT

SOFTSER-u
 0

 2

 4

 6

 8

 1 8 16 32 48 64

RB-16k, 20% updates

Number of threads

 0
 500

 1000
 1500
 2000

 1 8 16 32 48 64

LL-1k, 0% updates

C
om

m
its

/s
 (

×
10

3)

Number of threads

 0

 100

 200

 300

 400

 1 8 16 32 48 64

LL-1k, 20% updates

Number of threads

 0
 50

 100
 150
 200
 250

 1 8 16 32 48 64

LL-8k, 0% updates

C
om

m
its

/s
 (

×
10

3)

Number of threads

 0
 10
 20
 30
 40
 50

 1 8 16 32 48 64

LL-8k, 20% updates

Number of threads

Figure 10. Commit rate of the red-black tree and linked list bench-
marks on OpenSolaris.

observe any significant overheads for our contention management
algorithms. As on Linux, for the experiments with 20% and 50%
updates, the basic contention management scheme is unable to
retain high throughput as the number of threads grows beyond
the number of cores. The new contention management algorithms,
however, enable the application to retain high throughput with
only a slight degradation in performance. SOFTSER-u does well
on all benchmarks. YIELDEXT does well for the LL benchmark,
but slightly worse for RB, where its performance tapers off as the
number of threads increases.

These experiments suggest that our techniques are portable
across operating systems and that their effectiveness does not hinge
on specific implementation details of any particular OS.

6. Related Work
STM implementations must resolve transaction conflicts in order to
guarantee progress. Typically this is done by delegating conflict res-
olution to a contention manager [15, 16]. As discussed in Section 2,
conventional (non-scheduling) contention managers have significant
limitations; notably they lack precision and have very limited con-
trol (or no control at all) on the scheduling of transactional threads.
Conventional contention managers also take a reactive approach, by
only acting once a conflict has been detected. In contrast, our time-
slice extension approach can also prevent conflicts from happening
by increasing the probability that threads are not preempted in the
midst of performing a transaction.

CAR-STM [5] also takes a scheduling-based approach for con-
tention management. It maintains per-core transaction queues, where
the transactions in each queue are executed by a dedicated thread
in a sequential manner. Upon collision, the loser transaction is en-
queued behind the winner transaction. This mechanism is similar to
our strategy SER-u, but CAR-STM serializes all loser transactions
aborted by the same winner one after the other, which may overly
reduce parallelism for many workloads.

Yoo and Lee [19] implemented a simple adaptive user-level
scheduler that essentially serializes transactions once a high level of
contention is detected. This approach is effective in specific settings
where parallelism actually degrades performance. Ansari et al. [2]
proposed Steal-on-abort, a transaction scheduler that avoids wasted
work by allowing transactions to “steal” conflicting transactions
so that they execute serially. Unlike these approaches, which em-
ploy synchronization mechanisms solely at the user level, we also
implement and evaluate OS kernel support for STM contention man-
agement in order to take advantage of existing kernel scheduling
capabilities and reduce synchronization overhead.

TL2’s [4] implementation on Solaris uses the schedctl mecha-
nism to request short-term preemption deferral during the commit
phase.5 Like our strategy EXT, this reduces the risk that a transaction
holding locks is preempted and prevents the progress of others. It
does not, however, control the scheduling of an active transaction
that has already accessed shared data but did not yet start the commit
phase, and for which preemption would also increase the chances of
an abort.

Recent work by Dragojevic et al. [6] presented Shrink, a user-
level transaction scheduler that bases its scheduling decisions on
the access patterns of past transactions. Similarly to our strategy

5 This strategy is not used in TL2’s x86 implementation on Linux as it does
not support the schedctl mechanism.

EXT, Shrink can prevent collisions before they occur. Shrink uses a
serialization mechanism similar to that of Yoo and Lee.

TxLinux [13] is a variant of Linux that exploits hardware
transactional memory (HTM) and integrates transactions with the
operating system scheduler. It follows different goals and a different
approach than our work, by focusing on HTM and experimenting
with new ways of achieving synchronization in the kernel for future
processors with TM hardware support.

7. Conclusion
In this paper, we have proposed scheduling-based approaches to
transactional memory contention management. We have defined and
implemented novel serialization and time-slice extension strategies,
and have studied their relative performance in the context of work-
loads that vary in the relationship between the number of threads
and the number of cores, the duration of transactions, and the degree
of contention. In this, we have particularly focused on the tradeoffs
involved in using user-level and kernel-level contention managers.

Our approach has been implemented in Linux, and selected algo-
rithms have been implemented in Solaris. In both implementations,
the changes we have made to the kernel require adding a total of
around 500 lines of code for all strategies and do not have any
impact on the existing scheduling logic. To the best of our knowl-
edge, our work is the first to implement support for STM contention
management in the kernel.

Our evaluation establishes that lightweight kernel-level schedul-
ing support enables TM applications to retain high throughput even
when the number of threads exceeds the number of cores and under
high contention. Moreover, even when the number of threads is
smaller than the number of cores, applications benefit from signifi-
cantly smaller abort rates, while retaining their throughput.

Which scheduling strategy is best depends on the workload and
the execution context. When there are few updates and relatively
short transactions, a simple yield on conflict is often sufficient.
Blocking serialization algorithms (SER-u (cond) or SER-k) often
give the best performance for realistic applications, as represented by
STAMP. However, SER-k gives the worst performance for moderate-
length transactions with more threads than cores due to the incurred
latency on restarting blocked transactions; this is exemplified by LL,
which shows essentially the same throughput from 1 to 64 threads.
Finally, SOFTSER-k gives the best throughput for non-deterministic
transactions, as exemplified by StmBench7, because it allows a
transaction to continue, at reduced priority, after a conflict.

Dynamically determining the most appropriate scheduling strat-
egy for a given workload seems to be a non-trivial challenge. We
believe our current work provides a required foundation for such
an endeavor, as the scheduling algorithms we present may serve as
building blocks of such a dynamic contention manager. We leave
this for future work.

References
[1] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin Saha.

Unlocking concurrency. Queue, 4(10):24–33, 2007.

[2] Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis,
Chris C. Kirkham, and Ian Watson. Steal-on-abort: Improving
transactional memory performance through dynamic transaction
reordering. In High Performance Embedded Architectures and
Compilers, Fourth International Conference (HiPEAC), pages 4–18,
2009.

[3] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. STAMP: Stanford transactional applications for multi-
processing. In Proceedings of IISWC, September 2008.

[4] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II.
In 20th International Symposium on Distributed Computing (DISC),
pages 194–208, September 2006.

[5] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: scheduling-
based collision avoidance and resolution for software transactional
memory. In Twenty-Seventh Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 125–134, August 2008.

[6] Aleksandar Dragojevic, Rachid Guerraoui, Anmol V. Singh, and
Vasu Singh. Preventing versus curing: Avoiding conflicts in
transactional memories. In Twenty-Eighth Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC),
pages 7–16, August 2009.

[7] Robert Ennals. Software transactional memory should not be
obstruction-free. Technical report, Intel Research Cambridge, 2006.
IRC-TR-06-052.

[8] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic
performance tuning of word-based software transactional memory. In
Proceedings of PPoPP, pages 237–246, February 2008.

[9] Rachid Guerraoui, Michał Kapałka, and Jan Vitek. STMBench7: A
benchmark for software transactional memory. In Proceedings of the
Second European Systems Conference EuroSys 2007, pages 315–324.
ACM, March 2007.

[10] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer III. Software transactional memory for dynamic-sized data
structures. In Twenty-Second ACM Symposium on Principles of
Distributed Computing (PODC), pages 92–101, July 2003.

[11] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
Architectural support for lock-free data structures. In 20th Annual
International Symposium on Computer Architecture (ICSA), pages
289–300, May 1993.

[12] James Larus and Christos Kozyrakis. Transactional memory.
Communication of the ACM, 51(7):80–88, July 2008.

[13] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.
Ramadan, Aditya Bhandari, and Emmett Witchel. TxLinux: Using
and managing hardware transactional memory in an operating system.
In Proceedings of SOSP, pages 87–102, October 2007.

[14] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. McRT-STM: a high performance
software transactional memory system for a multi-core runtime. In
Proceedings of PPoPP, pages 187–197, March 2006.

[15] William N. Scherer III and Michael L. Scott. Contention management
in dynamic software transactional memory. In Proceedings of the
PODC Workshop on Concurrency and Synchronization in Java
Programs, July 2004.

[16] William N. Scherer III and Michael L. Scott. Advanced contention
management for dynamic software transactional memory. In
Proceedings of PODC, pages 240–248, July 2005.

[17] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of PODC, pages 204–213, August 1995.

[18] Nir Shavit and Dan Touitou. Software transactional memory.
Distributed Computing, 10(2):99–116, 1997.

[19] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction
scheduling for transactional memory systems. In Proceedings of SPAA,
pages 169–178, June 2008.

	Introduction
	Background
	Software Transactional Memory
	Contention Management

	Serialization
	Time-Slice Extension
	Evaluation
	Synthetic benchmarks
	Realistic applications
	Solaris Implementation

	Related Work
	Conclusion

