
G-DUR: A Middleware for Assembling, Analyzing,

and Improving Transactional Protocols

⇤

Masoud Saeida Ardekani

Inria &

Sorbonne Universités,

UPMC Univ Paris 06

Pierre Sutra

University of Neuchâtel

Marc Shapiro

Inria &

Sorbonne Universités,

UPMC Univ Paris 06

ABSTRACT
A large family of distributed transactional protocols have
a common structure, called Deferred Update Replication
(DUR). DUR provides dependability by replicating data, and
performance by not re-executing transactions but only ap-
plying their updates. Protocols of the DUR family di↵er
only in behaviors of few generic functions. Based on this
insight, we o↵er a generic DUR middleware, called G-DUR,
along with a library of finely-optimized plug-in implemen-
tations of the required behaviors. This paper presents the
middleware, the plugins, and an extensive experimental eval-
uation in a geo-replicated environment. Our empirical study
shows that:(i) G-DUR allows developers to implement var-
ious transactional protocols under 600 lines of code; (ii) It
provides a fair, apples-to-apples comparison between trans-
actional protocols; (iii) By replacing plugs-ins, developers
can use G-DUR to understand bottlenecks in their protocols;
(iv) This in turn enables the improvement of existing proto-
cols; and (v) Given a protocol, G-DUR helps evaluate the
cost of ensuring various degrees of dependability.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed databases; H.2.4 [Database Manage-
ment]: Systems—Transaction processing ; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
systems; D.4.5 [Operating Systems]: Reliability—Fault-
tolerance

General Terms
Algorithms, Performance

⇤The research leading to this publication was partly funded
by the European Commission’s FP7 under grant agreement
number 318809, LEADS project, and by the Agence Na-
tionale de la Recherche (ANR) project ConcoRDanT (ANR-
10-BLAN 0208).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

Middleware ’14 December 08 - 12 2014, Bordeaux, France

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2785-5/14/12$15.00.

http://dx.doi.org/10.1145/2663165.2663336

Keywords
Deferred Update Replication, Distributed Transaction, Dis-
tributed Data Store, Consistency Criterion

1. INTRODUCTION
Internet applications have conflicting requirements. On

the one hand, they should be highly parallel and distributed
in order to be fast, responsive and available; on the other,
application servers must remain synchronized, in order to
maintain consistency. Because of this tension, there exists a
large number of distributed transaction models and protocols
with di↵erent trade-o↵s: from very strongly synchronized
ones [1], to ones with lots of parallelism [2–4].

Finding one’s way in the jungle of consistency criteria and
transactional protocols is not easy. Although literature is
abundant, papers use di↵erent vocabulary, formalisms, and
perspectives. Because they assume di↵erent environments,
the implementations themselves are not comparable. It thus
remains di�cult to understand what are the important dif-
ferences, and to make an objective, scientific comparison of
their real-world behavior.

We propose a pragmatic tool for exploring the consistency
design space. It is based on the insight that many protocols
share a common structure, called deferred update replication
(DUR), and di↵er only by the parametrization of a few generic
functions [3–15]. For instance, they all have a read phase,
di↵ering by their choice of which specific object version to
read; and a termination phase, di↵ering only by how they
detect and resolve concurrency conflicts.
We express this insight as a common algorithmic struc-

ture, with well-identified realization points. This generic
structure is instantiated into a specific protocol by select-
ing appropriate plug-ins from a library. For instance, for a
serializable protocol, the read plug-in will select the most
recent committed version of an object, and the termination
plug-in will abort any transaction if it is concurrent with an
already-committed conflicting transaction.
We implement this structure as a generic middleware,

called Generic DUR (G-DUR). G-DUR is a research tool
that o↵ers a library of highly-optimized plug-ins. In particu-
lar, it support the following customizations: (i) Optimistic
read protocols di↵ering by their versioning mechanisms and
their freshness guarantees. (ii) Certification procedures dif-
fering by whether they can handle multiple transactions in
parallel, and by how they manage conflicts. (iii) Commit-
ment protocols based on group communication primitives
(atomic broadcast or multicast), two-phase commit, or Paxos
Commit.

By mixing and matching the appropriate plug-ins, it is
relatively easy to obtain a high-performance implementation
of a protocol. We leverage this capability with an extensive
experimental evaluation in a geo-replicated environment. The
contributions of this paper include the following:

(1) We tailor G-DUR to implement six prominent trans-
actional protocols [3, 4, 10–12, 15]. The implementation of
each protocol in G-DUR requires only 200 to 600 lines of
code (LOC), an order of magnitude less than the monolithic
originals. We evaluate empirically these protocols. Our
apples-to-apples comparison brings out di↵erences between
the protocols, and between the consistency criteria they im-
plement. In addition, it shows that they have well-separated
performance domains, and enables us to precisely identify
their respective limitations.

(2) We show how a developer can use G-DUR to finely
understand the limitations of a protocol. We take a recently
published protocol [4], and identify its bottlenecks by me-
thodically replacing its plugs-ins by weaker ones.

(3) The previous approach also helps a developer to en-
hance existing protocols. We illustrate this point by present-
ing a variation of P-Store [11] that leverages workload locality
to perform up to 70% faster than the original protocol.

(4) We evaluate the cost of various degrees of dependability.
To this end, we take a protocol ensuring serializability and we
study the price of tolerating failures by varying the replication
degree and the algorithm in use during commitment.
We organize the remainder of this paper as follows. Sec-

tion 2 reviews related work. We give an overview of the
transactional middleware at core of G-DUR in Section 3.
Section 4 details the execution phase of G-DUR, and we
explain its termination, and atomic commitment protocols
in Section 5. In Section 6, we show how to realize various
protocols in G-DUR. The implementation of G-DUR is cov-
ered in Section 7. In Section 8, we conduct our experimental
evaluation, and we conclude in Section 9.

2. RELATED WORK
In general, application workloads exhibit a large portion

of non-conflicting transactions. Under such an assumption,
the interest of the DUR approach, i.e., an optimistic phase
followed by a termination phase, was underlined by Alonso
[16]. Wiesmann and Schiper [17] compare several replication
protocols and confirm that DUR is better than distributed
locking and primary copy under full replication. The work of
Schmidt and Pedone [18] provides a formal analysis of DUR,
focusing on serializability and full replication. The DUR
approach is also a de facto standard for software transactional
memories [19, 20].
Several works aim at understanding and classifying full

replication techniques. Wiesmann et al. [21] provide a classi-
fication of di↵erent replication mechanisms, for both trans-
actional and non-transactional systems. Subsequently, the
authors propose a three parameter classification of transac-
tional protocols [22]. They classify protocols according to the
server architecture (primary copy versus update-everywhere),
the server interaction (constant versus linear), and the trans-
action termination (voting versus non-voting). The present
work continues their study, focusing on DUR protocols un-
der partial replication. According to their terminology, this
means that we shall be interested in passive replication with
either update-everywhere or primary-copy, and both voting
and linear interaction.

An abundant literature (see detailed survey elsewhere [23])
provides analytical models and simulations of distributed
database systems. These works focus on evaluating through-
put or latency as a function of workload, replication factor
and network characteristics, and provide useful insights on
how transactional protocols behave. However, by oversim-
plifying the management of conflicting transactions, they
do not give a completely accurate figure. In particular, the
impacts of (i) versioning mechanism, (ii) consistency criteria,
(iii) convoy e↵ects during certification, and (iv) genuineness
1 on a protocol are largely under-evaluated. Our experiments
show that these parameters strongly influence performance.
Commercial database products [24, 25] usually allow the

client to pick a consistency criterion when executing transac-
tions. Several researchers have studied, and compared multi-
ple criteria. Berenson et al. [26] show that the phenomena-
based definition of ANSI SQL-92 does not properly charac-
terize the di↵erences between SI and SER. They propose
new anomalies and compare most well-known criteria based
on this characterization. Adya et al. [27, 28] present the
first implementation-independent specification of ANSI lev-
els. This specification is not limited to pessimistic imple-
mentations, that is based on an a priori ordering of the
transactions [29, 30], but is also applicable to optimistic and
multi-version schemes. To achieve this, the authors capture
conflicts with various graphs that they use to model and com-
pare well-known consistency criteria. This specification is yet
hard to understand, especially in the context of distributed
transactional systems.
A few works study and compare di↵erent family of trans-

actional protocols. Bernabé-Gisbert et al. [31] introduce a
middleware that ensures di↵erent levels of consistency. They
use an update everywhere approach, and certify transactions
with the help of atomic broadcast. Each transaction can de-
clare separately a consistency criterion of its choice. It is then
the job of the underlying database to certify transactions,
and to execute the concurrency control. No comparison or
evaluation is given in this paper. Kemme and Alonso [6]
introduce a family of eager replication protocols using group
communication primitives. They compare various consistency
criteria (SER, SI and Cursor Stability) with simulations, but
do not provide a unified protocol.

3. OVERVIEW
The core goal of Deferred Update Replication (DUR) is

to provide clients with a transactional datastore abstraction.
Under the hood, this store is distributed and replicated across
multiple replicas. Replicas synchronize each other to o↵er
clients a consistent and live access to the datastore.
G-DUR is designed as a generic, tailorable, implementa-

tion of DUR. Figure 1 presents the global architecture of the
middleware. Clients submit their transactions to G-DUR
instances. A client may execute a transaction interactively,
i.e., G-DUR does not require all the transactional code to be
submitted at once. Certain optimizations are nevertheless
possible if such an assumption holds. A transaction starts
by a begin operation, followed by one or more CRUD opera-
tions (i.e., Create, Read, Update, or Delete) , and ends with
commit or abort. Create, update, and delete operations are

1A protocol is genuine when only the replicas of the ob-
jects accessed by a transaction make computational steps to
execute it.

Begin
 CRUD Operations

Commit

G-DUR

Instance
…

Clients

Execution

ͻRead appropriate versions

ͻBuffer after-values

Termination

ͻPropagate

ͻCommit/abort

ͻPersist after-values

DS

C
R

U
D

G-DUR

Instance

G-DUR

Instance

Figure 1: G-DUR Architecture

Notation Meaning
x, y object

Ti, i 2 N transaction
xi version of x written by Ti

oi(x) Ti reads or writes object x

coord(T
i

) coordinator of Ti
rs(Ti), ws(Ti) read and write set of Ti

Ti k Tj Ti and Tj are concurrent
⇧ set of all replicas

Table 1: Notations

implemented as write operations. Consequently, we shall be
simply referring to read and write operations in the following.
Each G-DUR instance coordinates the transactional re-

quests it receives from a client. To that end, an instance
holds a local datastore containing a subset of the globally
available data, and it executes two customizable execution
and termination protocols (see bottom of Figure 1). The ex-
ecution protocol is responsible for reading data and bu↵ering
after-values. The termination protocol handles the propaga-
tion of the transaction side e↵ects, its commitment and the
persistence of after-values.
Refer to Table 1 for a summary of the notations used in

the remainder of this paper.
At some G-DUR instance, a transaction Ti, can be in

four distinct states: Executing, Submitted , Committed or
Aborted , explained next:

• Executing : Each operation oi(x) in Ti is executed spec-
ulatively at the coordinator, i.e., at the replica that receives
the transaction from the client. If oi(x) is a read, the co-
ordinator returns the corresponding value, fetched either
from the local replica or a remote one. If oi(x) is a write,
the coordinator stores the corresponding update value in a
local bu↵er, enabling (i) subsequent reads to observe the
modified value, and (ii) the subsequent commit to send the
after-values to remote replicas.

Algorithm 1 Execution protocol - code at process p

1: Variables:
2: ds, committed , aborted , executing, submitted
3:
4: execute(begin, Ti)
5: pre: Ti /2 executing [aborted [committed [submitted
6: e↵: executing executing [{Ti}
7: init(T

i

)

8: execute(read, Ti, x)
9: pre: Ti 2 executing
10: e↵: if 9xi 2 ws(Ti) then return xi
11: else if isLocal(x) then return localRead(x)
12: else
13: send hreq, Ti, xi to q 2 replicas(x)
14: wait until received hreply, Ti, xji from q

15: return xj

16: execute(write, Ti, xi)
17: pre: Ti 2 executing
18: e↵: ws(Ti) ws(Ti) [{xi}
19: execute(commit, Ti)
20: pre: Ti 2 executing
21: e↵: submit(Ti)

22: localRead(Ti, x)
23: pre: choose(x ,T

i

) 6= ?
24: e↵: let xj 2 choose(x ,T

i

)
25: return xj

26: remoteRead(Ti, x, q)
27: pre: received hreq, Ti, xi from q

28: choose(x ,T
i

) 6= ?
29: e↵: let xj 2 choose(x ,T

i

)
30: send hreply, Ti, xji to q

• Submitted : Once all the read and write operations of Ti

have executed, the coordinator submits it for termination.
This includes synchronizing with the concerned replicas, and
a certification check to satisfy the safety conditions of the
implemented consistency criterion.

• Committed/Aborted : If certification is successful, Ti en-
ters the Committed state, and every process q 2 replicas(T

i

)
applies the transaction’s after-values (if any) to its copy of
the datastore. Otherwise, Ti aborts, and enters the Aborted
state. Consequently, its after-values are discarded.
Building upon the work of Wiesmann et al. [21], our key

insight in the design of G-DUR is that all the DUR protocols
satisfy the above description. In the next sections, we give
additional detail on our generic execution and termination
protocols. These protocols are explained as a set of atomic
actions guarded by pre-conditions. The customizable points
(called realization points) appear as functions whose names
are underlined and in blue in the algorithms, e.g., choose().
Concretely, a realized protocol will define the set of plug-ins
to be called in lieu of the realization points.

4. EXECUTION
Algorithm 1 shows the pseudo-code of the execution pro-

tocol from the perspective of a G-DUR instance (replica p).
The description refers to the following variables: We note ds
the local (partial) copy of the datastore. Variable committed ,
aborted , executing and submitted refer to four sets that serve
to log the transactions the replica executes,
A transaction Ti starts when action execute(begin, Ti) is

invoked at process p. In such a case, we say that p is the coor-
dinator of Ti, denoted coord(Ti). Action execute(read, Ti, x)
describes how Ti reads some object x. First, coord(Ti) checks

against the bu↵er ws(Ti) in case Ti previously updated
x. Otherwise, if the local database contains a copy of x,
coord(Ti) reads it (line 11). If none of the previous cases
hold, coord(Ti) sends an (asynchronous) read request to some
replica holding x (line 13). Such a request is re-iterated to
another replica, in case no answer is returned after some
time (not covered in Algorithm 1).
Local (i.e., the coordinator is p) and remote reads (when

the coordinator has requested a read from p) are handled by
the actions localRead and remoteRead respectively. In both
cases, the plug-in for choose selects a version that complies
with the consistency criterion’s versioning rules. We shall
detail shortly how.
Action execute(write, Ti, x) describes the processing of

a write request by Ti at the coordinator coord(Ti). The
middleware bu↵ers the update value in ws(Ti) (line 18).
When the execution reaches the end of the transaction,

action execute(commit, Ti) submits Ti to the termination
protocol line 21). The execution algorithm then waits until
Ti either commits or aborts, and returns the outcome.
When the termination protocol commits a transaction, it

stores the modifications in the datastore. Depending on the
realized protocol, one or more versions of an object may exist
simultaneously in ds. The realization point choose (line 23
in Algorithm 1) abstracts which version is selected when the
replica resolves a read request. G-DUR provides a convenient
and generic support for tracking and choosing versions. We
detail it in the next sections.

4.1 Version Tracking
The choice of a version depends on the versioning mecha-

nism at work in the datastore. Recall that when a transaction
Ti writes to object x, we say that it creates version xi. Given
some history h, we abstract a versioning mechanism ⇥ as a
mapping that associates to each version xi 2 h, a version
number ⇥(xi) taken from some partially ordered set (V, <).

Several versioning mechanisms have been proposed in the
past. Their implementations usually rely on timestamps
(TS) [32], vector clocks (VC) [33] or version vectors (VV)
[34, 35]. More recently, Sovran et al. [3] and Sciascia and
Pedone [12, Section E] discovered independently the concept
of vector timestamps (VTS), which support the computation
of partially consistent snapshots, at the cost of communicat-
ing with all replicas in the background. The GMU vectors
(GMV) of Peluso et al. [4] do not have this drawback, but
they do not guarantee the monotonicity of snapshots. Parti-
tioned dependence vectors (PDV) o↵er a mechanism close
to GMV. In case their size equals O(m), with m = |Objects|,
they allow a permissive computation of all the partial consis-
tent snapshots [15, Theorem 1].2 In the current state of the
implementation, G-DUR supports the TS, VC, VTS, GMV
and PDV versioning mechanisms.

Workload contention, liveness of read-only transactions and
storage cost all influence the choice of a versioning mechanism,
For instance, a DUR protocol may favor a central sequencer
assigning timestamps for its simplicity despite that it creates
a potential bottleneck in the system. The dimension of V
usually varies from one to the size of the data set or the
number of storage nodes. Recently, Peluso et al. [37] prove
an ⌦(min(m,n)) lower bound on the dimension of V with

2Following Guerraoui et al. [36], a transactional system is
permissive to some property P i↵ for every history in h 2 P ,
there exists a run that simulates h.

Algorithm 2 Termination protocol - code at process p

1: Variables:
2: ds, committed , aborted , executing, submitted , Q, AC
3:
4: initialize()
5: e↵: if AC = gc then start Algorithm 3
6: else if AC = 2pc then start Algorithm 4

7: submit(Ti)
8: pre: Ti 2 executing
9: e↵: executing executing \ {Ti}
10: submitted submitted [{Ti}
11: obj certifying obj (T

i

)

12: if obj = ? then
13: committed committed [{Ti}
14: else
15: xcast(term,T

i

) to replicas(obj)

16: xdeliver(Ti)
17: pre: received hterm, Tii
18: e↵: Q Q � Ti

19: commit(Ti)
20: pre: decide(Ti) = commit

21: e↵: Q Q \ {Ti}
22: committed committed [{Ti}
23: ds ds [{xi 2 ws(Ti) : x0 2 ds}
24: post commit(T

i

)

25: abort(Ti)
26: pre: decide(Ti) = abort

27: e↵: Q Q \ {Ti}
28: aborted aborted [{Ti}
29: post abort(T

i

)

n = |⇧| when the datastore is strictly disjoint access parallel.3

A similar result was previously conjectured in [39].

4.2 Picking a Version
The realization of function choose by a DUR protocol fits

in two categories: choose
last

returns the latest version of the
object in the sense of <, whereas choose

cons

returns a version
consistent with the previous reads. The first mechanism is
straightforward but requires to abort queries that did not
read a consistent snapshot. In the second case, G-DUR ab-
stracts the behavior of protocols that construct consistent
snapshots on the course of the execution with a versions
compatibility test. This test takes as input two version num-
bers ⇥(xi) and ⇥(yj), and it outputs true i↵ {xi, yj} forms
a consistent snapshot according to the versioning mechanism
⇥. Upon executing a read request from transaction Ti on
some object x, choose

cons

returns the latest version of x that
is compatible with all the versions read previously by Ti.

5. TERMINATION
Algorithm 2 depicts the pseudo-code of the termination

protocol in G-DUR It accesses the same variables as the
execution protocol along with a FIFO queue named Q and a
variable called AC. This last variable specifies a particular
atomic commitment algorithm; we shall detail its role shortly.

When a transaction Ti is submitted for termination, the co-
ordinator first computes certifying obj (Ti), the set of objects
required to certify Ti. Depending on the realized protocol,

3A datastore is strictly disjoint access parallel when two
non-conflicting transactions never contend on the same base
object (i.e., on any object in use at the implementation level)
[38]. This definition generalizes the concept of genuine partial
replication Schiper et al. [11].

coord(Ti)

p1

pn

xcast(Ti) to
replicas(obj)

commute()
v і certify(Ti)
obj і vote_recv_obj(Ti)

obj і certifying_obj(Ti)

send(v) to
replicas(obj)
 & coord (Ti)

vote_snd_obj(Ti)
outcome(Ti)

(a) Using group communication

xcast(Ti) to
replicas(obj)

commute()
v і certify(Ti)

obj і certifying_obj(Ti)

send(v) to
coord (Ti)

vote_snd_obj(Ti)
o і outcome(Ti)
obj і vote_recv_obj(Ti)

send(o) to
replicas (obj)

outcome(Ti)

(b) Using two-phase commit

Figure 2: Atomic Commitment Timeline

certifying obj (Ti) returns one of the following sets of objects:
• ?: When returning an empty set, the realized protocol

allows transaction Ti to commit without synchroniza-
tion. A typical use case is to ensure that read-only
transactions are wait-free.

• ws(Ti): In this case, only the objects modified by trans-
action Ti are certified.

• ws(Ti) [rs(Ti): Both the readset and the writeset of
Ti are involved in the certification. Protocols ensuring
serializability (or above) usually return this value.

• Objects: This last case represents a scenario where all
replicas should participate in the certification.

In the case where certifying obj (Ti) returns an empty set,
Ti commits locally (line 12). Otherwise, Ti is sent to all
the replicas concerned by Ti, that is holding some object
in certifying obj (Ti). This is up to the realized protocol to
chose an appropriate xcast primitive in order to propagate
the submitted transaction (line 15). Some protocols [8, 10]
employ atomic broadcast, while others [11, 15] use atomic
or reliable multicast. (The reader may refer to Défago et al.
[40] for complete specifications and explanations of these
communication primitives.)
Upon delivery of Ti for termination (action xdeliver(Ti)),

Ti is added to queue Q. The atomic commitment algorithm
(variable AC) then decides upon Ti, and eventually com-
mit or abort it. Once the atomic commitment algorithm
has taken a decision upon Ti, the transaction is flagged ei-
ther commit or abort. If it is commit, the transaction
is removed from Q, added to committed , then its updates
are applied to the local database. Otherwise, it is added
to aborted . In both cases, and once a transaction is termi-
nated, an event (post commit() or post abort()) is triggered
through a function call. These events can be used to perform
operations o↵ the critical path (e.g., garbage collection).
From the above description, we notice that atomic com-

mitment plays a central role in termination. This plug-in
decides upon the outcome of transactions by certifying them.
The most widely employed realizations of this plug-in are
(i) atomic commitment with group communication ensuring a
total or partial ordering of transactions [8, 10, 11], (ii) atomic
commitment using two phase commit [3, 4], and (iii) atomic
commitment with Paxos Commit [41]. In what follows, we
cover in detail the first two realizations. The third one is
omitted due to space limitations.

5.1 Group Communication
Figure 2-a presents an overview of atomic commitment

with group communication (GC). Conceptually, this ap-
proach is divided into the following steps: Transaction Ti is
first sent to a set of voting replicas which deliver it in the
same order. These replicas certify Ti, then send the results
of their certification tests to another group of replicas. This
last group of replicas contains at least the coordinator and
the replicas of ws(Ti), but it might be larger in certain cases.
After receiving enough votes, these processes decide locally
upon the outcome of Ti.
Algorithm 3 details the internals of the approach. This

realization requires that function xcast ensures a partial order
property over the set of submitted conflicting transactions.
Hence, depending on the realized protocol, xcast can be
replaced with (uniform) atomic broadcast or multicast. When
transaction Ti is added to Q, a certification vote is cast
upon it. This vote occurs when Ti commutes with all the
transactions that precede it in Q (line 3). The definition
of commutativity is a function of the consistency model
implemented by the realized protocol. Commutativity is
crucial to minimize convoy e↵ect during certification [11, 42],
that is when the certification of one transaction slows down
the certification of another one.
Once a replica locally certifies Ti (line 4), it sends the

result of its vote to the coordinator and to the processes in
replicas(vote recv obj (T

i

)). In most cases, vote recv obj (Ti)
equals ws(Ti), that is the objects updated by the transaction.
However, for some protocols, all replicas must receive the
certification votes.
A process can safely decide upon the outcome of Ti once

it has received votes from a voting quorum for Ti. A voting
quorum Q for Ti is a set of replicas such that for every
object x 2 vote snd obj (Ti), the set Q contains at least one
replica of x. Formally, vquorum(Ti) equals {Q ✓ ⇧ | 8x 2
vote snd obj (Ti) : 9j 2 Q \ replicas(x)}. A process uses the
following (three-values) predicate outcome(Ti) to determine
whether some transaction Ti commits, or not:

outcome(Ti) ⌘
if vote snd obj (Ti) = ?

then true
else if 8Q 2 vquorum(Ti), 9q 2 Q,

¬received hvote, T, i from q then ?
else if 9Q 2 vquorum(Ti), 8q 2 Q,

received hvote, T, truei from q then true
else false

Once the result of outcome(Ti) equals true, and Ti is at the
beginning of Q, Ti is flagged commit (lines 9 to 11). Other-

Algorithm 3 Atomic Commitment with GC - code at p

1: vote(Ti)
2: pre: Ti 2 Q
3: 8Tj Q Ti : commute(T

i

,T
j

)
4: e↵: v certify(T

i

)

5: send hvote, Ti, vi to
6: replicas(vote recv obj (T

i

)) [{coord(T
i

)}
7: decide(Ti)
8: pre: outcome(Ti) 6= ?
9: e↵: if outcome(Ti) then
10: wait until Ti = head(Q)
11: return commit

12: else
13: return abort

Algorithm 4 Atomic Commitment with 2PC - code at p

1: vote(Ti)
2: pre: Ti 2 Q
3: e↵: if 9Tj 2 Q : ¬commute(T

i

,T
j

) then
4: send hvote, Ti, falsei to coord(T

i

)
5: else
6: v certify(T

i

)

7: send hvote, Ti, vi to coord(T
i

)

8: vote coordinator(Ti)
9: pre: p = coord(T

i

)
10: e↵: send hvote, Ti, outcome(Ti)i to vote recv obj (T

i

)

11: decide(Ti)
12: pre: outcome(Ti) 6= ?
13: e↵: if outcome(Ti) then return commit

14: else return abort

wise, if outcome(Ti) equals false, it is flagged abort (line 13).
Algorithm 3 waits that Ti reaches the head of the queue be-
fore committing it to ensure replicas apply updates in the
same order. This property is mandatory for every criterion
equal or stronger than Serializability [18]. For weaker consis-
tency criteria (e.g., Read Committed), we can suppress this
constraint. However, in our experience, such a modification
has a small impact on performance.

5.2 Two-Phase Commit
The timeline of termination with two-phase commit (2PC)

for some transaction Ti is given at Figure 2-b. The core
di↵erence between 2PC and GC lies in the way 2PC employs
the coordinator. In Algorithm 3, all processes receive the
certification votes and locally decide to commit (or abort)
the transaction. In 2PC, the coordinator receives all votes,
decides the outcome of the transaction, then notifies other
participants about its decision.

We provide a complete view of 2PC in Algorithm 4. This re-
alization of atomic commitment overrides function xcast with
a multicast primitive. When a replica delivers a transaction
Ti, it aborts Ti in case a concurrent conflicting transaction
precedes it in Q. Otherwise, the transaction is certified. In
both cases, the outcome is sent to coord(Ti) which will decide
upon the outcome of Ti; other replicas need only to receive the
final vote from coord(T

i

). We reflect this by modifying the
definition of a voting quorum. More precisely, vquorum(Ti)
equals {Q ✓ ⇧ | 8x 2 vote snd obj (Ti) : replicas(x) ✓ Q}
at the coordinator, and {coord(T

i

)} at other replicas.
Algorithm 3 orders a priori conflicting transactions, whereas

Algorithm 4 relies on the spontaneous ordering of the network.
We shall see in Section 8.5 that this last choice increases
abort rate under contention.

We pointed out previously that Algorithms 3 and 4 di↵er
on their use of the coordinator. The next section details
how this key di↵erence impacts the fault-tolerance of the two
approaches.

5.3 Fault-Tolerance
The approach based on two-phase commit works either

when perfect failure detectors are available [43], or in a
crash-recovery model. In the first case, the coordinator
preemptively aborts the transaction when a replicas fails in
the middle of the termination phase. In the later, (i) every
time the state of Algorithm 4 changes, the modification must
be logged, and (ii) when a replica crashes, Algorithm 4 has
to wait that it comes back online to pursue the execution.
A commitment protocol based on group communication

can cope more easily with failures if it internally relies on
a dependable consensus protocol. In more details, if Algo-
rithm 3 employs atomic broadcast to order transactions, it
needs inaccurate failure detection and tolerates up to f < n/2
replica crashes, where n is the total number of replicas. Now,
if only replicas concerned by the transaction make steps to
commit it, Algorithm 3 should use a genuine atomic multicast
primitive [44]. In the general case, this requires perfect fail-
ure detection [45]. Nevertheless, with an appropriate replicas
placement, e.g., in a geo-replicated scenario, inaccurate fail-
ure detectors can implement a non disaster-tolerant atomic
multicast (see Schiper et al. [46] for more detail).

The di↵erence in terms of dependability between the two
approaches translates into a di↵erence in time and mes-
sage complexity. Let us note r the average cardinality of
replicas(ws(T) [rs(T)). Algorithm 4 requires ⌦(r) mes-
sages and its message delay is 2. On the other hand, an
optimal atomic broadcast protocol [47, 48] costs 3 message
delay with ⌦(n) messages, and the best genuine fault-tolerant
atomic multicast known to date needs 6 message delays with
⌦(r2) messages [45]. This makes fault-tolerance expensive at
first glance. In Section 8.5, we further investigates this cost
in the context of geo-replicated data.

6. REALIZING PROTOCOLS
This section illustrates how to specify a protocol in the

G-DUR middleware. To that end, we chose five consistency
criteria: Serializability, Snapshot Isolation, Update Serial-
izability, Parallel Snapshot Isolation and Non-Monotonic
Snapshot Isolation. For each criterion, we pick at least one
state-of-the-art DUR protocol, and explain how to implement
it with G-DUR. As we shall see, we can express the core
aspects of a protocol in less than 10 lines of pseudo-code.
In all the implementations we cover next, and otherwise

specified, vote recv obj (Ti) returns ws(Ti), and the real-
ization of vote snd obj () is the same as the realization of
certifying obj ().

6.1 Serializability
Serializability (SER) is the classical consistency criterion

implemented by transactional systems. A transactional sys-
tem satisfies SER when every concurrent execution of com-
mitted transactions is equivalent to some serial execution
of the same transactions. While early replication protocols
under SER have some scalability limitations, recent works
overcome these problems by focusing on two properties: (Gen-
uine Partial Replication.) While partial replication increases
scalability, some protocols [9] still require to communicate

Algorithm 5 P-Store [11]

1: ⇥ ⌘ TS
2: choose ⌘ choose

last

3: AC ⌘ gc

4: xcast ⌘ AM-Cast
5: certifying obj (Ti) ⌘ ws(Ti) [rs(Ti)
6: commute(T

i

,T
j

) ⌘ rs(Ti)\ws(Tj) = ?^ rs(Tj)\ws(Ti) = ?
7: certify(Ti) ⌘ 8(xi, xj) 2 rs(Ti)⇥ db : ⇥(xj)  ⇥(xi)

Algorithm 6 S-DUR [12]

1: ⇥ ⌘ VTS
2: choose ⌘ choose

cons

3: AC ⌘ gc

4: xcast ⌘ AMpw-Cast
5: certifying obj (Ti) ⌘ if |ws(Ti)| = 0 then ?

else ws(Ti) [rs(Ti)
6: commute(T

i

,T
j

) ⌘ rs(Ti)\ws(Tj) = ?^ rs(Tj)\ws(Ti) = ?
7: certify(Ti) ⌘ 8Tj k Ti 2 committed :

ws(Ti) \ rs(Tj) = ? ^ rs(Ti) \ ws(Tj) = ?
8: post commit(Ti) ⌘ M-Cast(⇥(Ti))

to (⇧ \ replicas(certifying obj (T
i

)))

Algorithm 7 GMU [4]

1: ⇥ ⌘ GMV
2: choose ⌘ choose

cons

3: AC ⌘ 2pc

4: certifying obj (Ti) ⌘ if |ws(Ti)| = 0 then ?
else rs(Ti) [ws(Ti)

5: commute(T
i

,T
j

) ⌘ rs(Ti)\ws(Tj) = ?^ rs(Tj)\ws(Ti) = ?
6: certify(Ti) ⌘ 8xi, xj 2 rs(Ti)⇥ db : ⇥(xj)  ⇥(xi)

with all replicas in the system. This decreases the paral-
lelism in the system. On the contrary, P-Store [11] ensures
genuine partial replication (GPR). This property states that
a transaction only communicates with the replicas holding
some object read or written by the transaction. (Wait-Free
Queries.) In early serializable solutions, both queries (read-
only) and update transactions need to certify and go through
a synchronization phase. The S-DUR protocol of Sciascia
and Pedone [12] solves this issue by ensuring that queries
are wait-free (WFQ), that is they do not wait for concurrent
transactions and always commit. In what follows, we explain
how to realize both P-Store and S-DUR in our middleware.

P-Store: Algorithm 5 depicts our realization of P-Store.
This protocol relies on a timestamping mechanism to ver-
sion objects (line 1). Every read operation retrieves asyn-
chronously the latest version of the corresponding object
(line 2). A transaction commits i↵ no new versions of the
objects it read were created concurrently (line 7). Such a
certification test is typical of DUR protocols that ensures
SER. Another classical approach [49] is to rely on cycles
detection in the serializability graph. However, as pointed
by Guerraoui et al. [36], this is expensive.
S-DUR: Unlike P-Store, S-DUR (Algorithm 6) ensures

that every read operates on a consistent snapshot (line 2).
This implies that queries are wait-free (line 5). Upon the
termination of an update transaction Ti, S-DUR atomic
multicasts Ti to the replicas holding an object in ws(Ti) [
rs(Ti). In that case, however, the group communication
primitive only ensures a pair-wise ordering of the transactions
[40], i.e., two processes only deliver transactions they have
in common in the same order (line 4). This design tends to

increase the scalability of the multicast primitive, but comes
at the price of the following drawbacks: (i) More aborts
because an update transaction commits only if there is no
concurrent conflicting committed transaction (line 7), and
(ii) Saeida Ardekani et al. [50] proved that no GPR system
under SER can ensure WFQ. Thus, S-DUR needs to perform
some background propagation to all replicas (line 8). This
propagation consists in sending ⇥(Ti) = max {⇥(xi) : xi 2
rs(Ti) [ws(Tj)} to advance the vector clock maintained at
each process.

6.2 Update Serializability
Update serializability (US) was introduced by Garcia-

Molina and Wiederhold [51], then later extended to aborted
transactions by Hansdah and Patnaik [52]. US guarantees
that update transactions are serialized, and that read-only
transactions see consistent but non-monotonic snapshots.
This last property weakens SER such that the impossibility
of ensuring WFQ in a GPR system is circumvented.
GMU: The GMU transactional system of Peluso et al.

[4] (see Algorithm 7) commits read-only transactions locally
(line 4), and in the case of update transactions, it makes use
of 2PC (line 3). All replicas holding an object read or written
by the transaction participate to 2PC. We note here that
the certification test of GMU (line 6) is the same as P-Store
while this system ensures both GPR and WFQ. This comes
from the fact that, as pointed out previously, US is more
permissive to conflicting transactions than SER.

6.3 Snapshot Isolation
Snapshot isolation (SI) is defined by Berenson et al. [26],

then later generalize by Elnikety et al. [53]. A transaction
executing under SI observes the state of the database at
some point in time. Thus, SI implements de facto WFQ.
This feature, as well as the conceptual simplicity of SI, are
appealing enough that most database vendors implement SI
in their products (e.g., Microsoft SQL-Server, Oracle and
PostgreSQL). However, it has been shown recently that it is
impossible to ensure SI in a GPR system [50].
Serrano: The protocol of Serrano et al. [10] o↵ers non-

genuine partial replication under SI; we depict its pseudo-
code in Algorithm 8. In this protocol, queries commit locally
and update transactions are atomic broadcast to all replicas
(lines 4 and 5). Upon delivering an update transaction,
every replica performs a certification test to avoid concurrent
updates to both commit (line 7). Serrano maintains at
each replica the latest version number of all objects, thus
allowing the protocol to skip the distributed voting phase.
We capture this behavior by the fact that both vote snd obj ()
and vote recv obj () equal the local objects (line 8).

6.4 Parallel Snapshot Isolation
With the emergence of new Internet based applications,

like social networks, the need for highly scalable and geo-
replicated transactional systems has increased substantially
over the past few years. To target this need, Sovran et al. [3]
propose Parallel Snapshot Isolation (PSI), a new consistency
criterion suitable for geo-replicated systems. PSI is close
to SI, however unlike this criterion, PSI does not enforce
monotonic snapshots of transactions. Hence queries might
observe non-monotonic snapshots (as in US). Sovran et al.
[3] identify monotonic snapshots as the main bottlenecks of

Algorithm 8 Serrano [10]

1: choose ⌘ choose
cons

2: ⇥ ⌘ TS
3: AC ⌘ gc

4: xcast ⌘ AB-Cast
5: certifying obj (Ti) ⌘ if |ws(Ti)| = 0 then ?

else Objects
6: commute(T

i

,T
j

) ⌘ ws(Ti) \ ws(Tj)
7: certify(Ti) ⌘ 8xi, xj 2 ws(Ti)⇥ db : ⇥(xj)  ⇥(xi)
8: vote snd obj (Ti) = vote recv obj (Ti) ⌘ LocalObjects

Algorithm 9 Walter [3]

1: choose ⌘ choose
cons

2: ⇥ ⌘ VTS
3: AC ⌘ 2pc

4: certifying obj (Ti) ⌘ ws(Ti)
5: commute(T

i

,T
j

) ⌘ ws(Ti) \ ws(Tj) = ?
6: certify(Ti) ⌘ 8xi, xj 2 ws(Ti)⇥ db : ⇥(xj)  ⇥(xi)
7: post commit(Ti) ⌘ M-Cast(⇥(Ti))

to (⇧ \ replicas(certifying obj (T
i

)))

Algorithm 10 Jessy2pc

1: choose ⌘ choose
cons

2: ⇥ ⌘ PDV
3: AC ⌘ 2pc

4: certifying obj (Ti) ⌘ ws(Ti)
5: commute(T

i

,T
j

) ⌘ ws(Ti) \ ws(Tj) = ?
6: certify(Ti) ⌘ 8xi, xj 2 ws(Ti)⇥ db : ⇥(xj)  ⇥(xi)

SI regarding scalability.
Walter: Walter (shown in Algorithm 9) is the transactional

system proposed by Sovran et al. [3] to implement PSI. This
protocol relies on a two-phase commit among the replicas
holding an object written by the transaction (lines 3 and 4).
To satisfy PSI, the certification of Walter ensures that no
two concurrent write-conflicting transactions both commit
(line 6). Once a transaction is committed, Walter prop-
agates ⇥(Ti) in the background to all the replicas in the
system (line 7). As in the case of S-DUR, this background
propagation is crucial to ensure progress.

6.5 Non-Monotonic Snapshot Isolation
As pointed out in the previous section, PSI addresses

some of the scalability issues of SI. Nevertheless, Saeida
Ardekani et al. [50] shows that no PSI system can ensure
GPR. To sidestep this problem, Saeida Ardekani et al. [15]
introduced recently a novel criterion named Non-monotonic
Snapshot Isolation (NMSI). The core di↵erence between
PSI and NMSI is that NMSI allows transactions to take any
consistent snapshot. In particular, a transaction can observe
the e↵ects of transactions that committed after it starts.

Jessy2pc : The Jessy protocol [15] guarantees NMSI. In
this paper, we shall be considering a 2PC-based variation
of Jessy. This protocol, denoted Jessy2pc , is presented
in Algorithm 10. Jessy2pc relies on the PDV versioning
mechanism to compute consistent snapshots (line 2), and it
employs two-phase commit during termination (line 3). Like
Serrano and Walter, Jessy2pc prevents two concurrent write-
conflicting transactions to commit both (line 6). Notice that
because Jessy2pc is GPR, there is no background propagation
in this protocol after the commitment of a transaction.

Source Lines of Code
Protocol Total

Exec.† Term.

† G-DUR† Original

P-Store‡ 45 134 179 6000
S-DUR 199 288 397 N/A
GMU‡ 184 292 476 6000
Serrano 104 247 351 N/A
Walter 322 277 599 30000

Jessy2pc
‡ 155 197 352 6000

Table 2: Source lines of code
†: excluding comments

‡: open source

Key Selec. Operations
Workload Dist. R-O . Update Tran.

A Uniform 2 Read 1 Read, 1 Update
B Uniform 4 Read 2 Read, 2 Update
C Zipfian 2 Read 1 Read, 1 Update

Table 3: Experimental Settings

7. IMPLEMENTATION
We implemented G-DUR, and the realized transactional

protocols in Java. Our implementations closely follow the
published specification of each protocol, and are highly op-
timized. We also implemented a DUR read-committed con-
sistency criterion (RC). RC is a weak consistency criterion
ensuring that a transaction reads a committed version of an
object without any additional guarantee. It is also default
consistency in many databases (e.g., Postgres 9.2.2, MS SQL
Server 2012, and SAP HANA [54]). We use RC to show the
maximum achievable performance in our experiments.
G-DUR can work either with a data persistence layer

(i.e., BerkeleyDB), or without (i.e., an in-memory concurrent
hashmap). To minimize noise, and to focus on scalability
and synchronization, our experiments in this paper are done
using the latter case. Should the user decide to use the data
persistence layer, she can easily implement an interface, and
attach any other data store.

The implementation of G-DUR and the realization of the
six protocols takes approximately 104 source lines of code
(SLOC). The communication layer also takes an additional
104 source lines of code. Table 2 details the amount of SLOC
for each protocol. Observe that the G-DUR implementations
take an order of magnitude fewer LOC than the monolithic
originals. This code, the benchmarks, as well as the scripts
we used in our experiments are publicly available [55].

8. CASE STUDY
This section shows the practical usages of our G-DUR

middleware. We divide our study into the following four
parts: (i) a comparison of the protocols realized in Section 6,
(ii) an analysis of the bottlenecks of the GMU protocol, (iii) a
demonstration of the pluggability capabilities of G-DUR, and
(iv) an assessment of the cost of dependability.

8.1 Setup and Benchmark
All our experiments are run on the sites of the Grid’5000

experimental testbed [56]. Latencies between the sites are
between 10 to 20 ms. We always use 4-core machines running
between 2.2 and 2.6GHz with a maximum heap size of 4GB.
We performed our experiments under di↵erent configura-

tions and using various numbers of sites. Although G-DUR
can take care of intra-site replication as well, our experiments

are considering a single replica per site (in a similar spirit
to Sovran et al. [3]). For each replica, two additional client
machines generate the workload; hence, there is no shared
memory between clients and replicas. We perform our exper-
iments in either a Disaster Prone (DP), or Disaster Tolerant
(DT) configuration. In case of DP, objects are stored at a
single site, while DT replicates objects at two sites.

Every replica contains 105 objects, and each object has a
payload size of 1KB. We employ the Yahoo! Cloud Serving
Benchmark [57], modified to generate transactions. Table 3
lists the workloads we use during our experiments. These
workloads have already been employed in several previous
research papers [12, 15]. For a workload, a client machine
emulates multiple client threads in parallel, each running in
closed loop. During an experiment, a client machine executes
at least 106 transactions. Every transaction is interactive,
that is none of the objects it accesses is known in advance,
and global, no replica holds all the objects read or written
by the transaction. We chose this last setting to emphasize
the geo-replicated performance of the protocols.

8.2 Comparing Transactional Protocols
This section compare the realizations of Section 6 in order

to bring out di↵erences between the protocols, as well as
between the consistency criteria they implement.

In Figure 3-a, we depict the performance of each protocol
under Workload A, when using four sites in a DP configura-
tions. We use either 90% (top) or 70% (bottom) of read-only
transactions. Each point plots the termination latency of
update transactions, that is, the average time between the
termination request of an update transaction and the re-
ception of the response by the client, as a function of the
throughput. The termination latency of the update transac-
tions is the most meaningful metric to observe di↵erences
between the realized protocols since(i) all protocols (except
P-Store) implement wait-free queries, and (ii) they all follow
the DUR approach with the same execution phase (except
Serrano).

Jessy2pc is the fastest protocol by being a genuine pro-
tocol, and requiring minimal synchronization: only replicas
holding modified objects are included in transaction certifica-
tion. Although Walter also enjoys minimal synchronization,
being non-genuine results in smaller throughput compared
to Jessy2pc . In GMU, the replicas of both read and modified
objects are involved in the certification. Yet the performance
of GMU and Walter are the same with 90% read-only trans-
actions. With 70% of read-only transactions, Walter requires
more global propagation (due to its non-genuineness), and
starts degrading before GMU.
In P-Store, queries are not wait-free and they have to

go through AM-Cast. This design choice greatly impacts
performance and explains that the throughput P-Store is
the worst among the studied protocols with 90% of read-
only transactions. On the other hand, P-Store compensates
this gap with 70% of read-only transaction, and overtakes
Serrano. This observation underlines again the importance
of supporting GPR for a transactional system. This also
shows that as pointed out by Lin et al. [58], the protocol of
Serrano et al. is more oriented for LAN environments.

S-DUR always delivers a better throughput than Serrano.
This di↵erence points out that, unlike the general credence,
SER can be faster than SI, provided the protocol implement-
ing SER ensures wait-free queries. Finally, the performance

gap between Serrano and Walter clearly motivates the use
of PSI over SI in a geo-replicated setting. This assesses
empirically the original argument of Sovran et al. [3].
We note that while PSI is weaker than SI [3] and US

is weaker than SER [27], neither US and PSI nor SI and
SER are mutually comparable [15, 27]. Thus, an anomalistic
comparison between the two criteria would not explain their
performance di↵erences. On the contrary, the realization of
the protocols inside G-DUR allows us to fairly compare them
in terms of throughput and latency.
To better understand the di↵erences among the proto-

cols ensuring weaker consistency criteria, we evaluate them
in Figure 3-b using Workload B and in a disaster tolerant
configuration. Under 90% of read-only transactions, the
performance of Walter, and Jessy2pc are similar. This is
due to the fact that transactions contain more operations in
Workload B, hence the non-genuineness of Walter does not
impact performance in comparison to Jessy2pc . The per-
formance of GMU also degrades with Workload B. This is
mainly due to the abort rate. With 1024 client threads, and
90% read-only transactions, the abort rate of GMU reaches
12% while the abort rates of Walter and Jessy2pc stay be-
low 0.1%. With 30% update transactions, the abort rate of
GMU deteriorates to 48%, and the abort rate of Jessy2pc

and Walter reach around 1%.

8.3 Understanding Bottlenecks
In this section, we explain how a developer can study

the costs of the di↵erent components implementing a trans-
actional protocol in order to locate its bottlenecks. Our
approach consists in a careful substitution of the versioning
and certification plug-ins with trivial ones. We plot our
results for the GMU protocol in Figure 4.
As depicted in Algorithm 7, GMU takes consistent and

fresh snapshots during the execution phase. In GMU*,
we turned o↵ this versioning component, replacing it with
choose

last

. However, metadata required for taking consis-
tent snapshots is still sent during the execution phase. We
observe in Figure 4 that both GMU and GMU* follow the
same trend, and that the overhead of taking consistent snap-
shots in GMU is around 5%. With GMU**, we turn o↵
the certification test, and all the transactions now pass the
certification test. The resulting protocol follows the trend
of RC, while still exhibiting a small performance gap. This
di↵erence is explained by the overhead of marshaling and
sending metadata related to snapshots that GMU** inherits
from the original protocol. Thus, at the light of these re-
sults, we can conclude that the certification test is the main
bottleneck of the algorithm of Peluso et al. [4].

8.4 Pluggability Capabilities
G-DUR allows a developer to replace the plug-ins that

compose a transactional protocol. Such a feature helps to
finely understand a protocol and in turn paves the way to
improve it. In this section, we demonstrate this usage with
P-Store [11].
In P-Store, read-only transactions have to go through a

certification test. Following an analysis similar to the one we
conducted in the previous section for GMU, we can show that
this mechanism is an important bottleneck of the protocol. In
general and as explained in Section 6.1, this bottleneck cannot
be overcome since P-Store is a genuine algorithm. However,
P-Store can safely commit a read-only transaction without

Workload A on 4 sites with DP (90% Read-only Transactions)

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000T
e

rm
.

L
a

t.
 o

f
U

p
d

.
tx

n
 (

m
s)

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000T
e

rm
.

L
a

t.
 o

f
U

p
d

.
tx

n
 (

m
s)

Throughput (tps)

Workload A on 4 Sites with DP (70% Read-only Transactions)

Serrano
RC

P-Store
Walter

GMU
S-DUR

Jessy2pc

(a) Disaster Prone Configuration

Workload B on 4 Sites with DT (90% Read-only Transactions)

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000

Throughput (tps)

Workload B on 4 Sites with DT (70% Read-only Transactions)

(b) Disaster Tolerant Configuration

Figure 3: Performance Comparison

 45

 50

 55

 60

 65

 70

 0 2000 4000 6000 8000 10000 12000 14000A
ve

ra
g
e
 t
xn

 la
te

n
cy

 (
m

s)

Throughput (tps)

Workload B on 4 Sites with DP (90% Read-only Transactions)

GMU
GMU*

GMU**
RC

Figure 4: Study of Bottlenecks in GMU -GMU: Consistent

Snapshot & Certification, GMU*: Trivial Snapshot & Certifica-

tion, GMU**: Trivial Snapshot & Trivial Certification

certifying it when the transaction accesses a single data
partition (typically a single site). We implement this feature
as follows:Instead of reading the latest committed value
during the execution phase, we take a consistent snapshot.
We achieve this in G-DUR by using the choose

cons

component
implemented with partitioned dependency vectors (PDV).
We change the realization of certifying obj (Ti) such that
it returns ? in the case where Ti is a query accessing a
single partition. Figure 5 plots the throughput of our locality
aware P-Store, denoted P-Storela, in comparison to the
original algorithm of Schiper et al. [11]. We can observe
that, depending on the ratio of local read-only transactions,
P-Storela is 20 to 70% faster than the original protocol.

8.5 Dependability
As pointed out in Section 5, termination based on group

communication primitives orders a priori conflicting transac-
tions, whereas the use of 2PC relies on a spontaneous ordering
of the network. The two approaches also di↵er in terms of
fault-tolerance. The former requires either a crash-recovery
model or perfect failure detection to ensure liveness, whereas
the later can accommodate with faults. In this section, we
compare them empirically in our geo-replicated environment.
To this goal, we picked P-Store and changed its atomic

commitment protocol from AM-Cast to 2PC. The rationale
of this choice is that the versioning mechanism of P-Store

 0
 2
 4
 6
 8

 10
 12
 14

10% local txns 50% local txns 90% local txns

M
a

x.
 T

h
ro

u
g

h
p

u
t

(K
tp

s) Workload A on 4 Sites with DP (90% Read-only Transactions)

P-Store
P-Storela

Figure 5: Throughput improvement of P-Store

has the smallest overhead compared to other protocols, and
that this protocol certifies both read-only and updates trans-
actions. Both features reduce noise during our measurements
since we limit the amount metadata used by the system, and
all the transactions go through the termination phase.

8.5.1 Disaster Prone

In a disaster-prone scenario, every object is replicated at a
single site. Hence, when a site goes down, the system has to
wait that it becomes available again. Figure 6-a compares the
2PC and AM-Cast variations of P-Store in this configuration.
With Workload A, the abort ratio of both protocols is almost
null and 2PC outperforms AM-Cast by a factor of at least
two. Under a highly contended workload (Workload C), the
abort ratio of both protocols increases similarly, and 2PC
still outperforms AM-Cast. As a consequence, in such a
scenario, ordering transactions a priori has a limited positive
e↵ect on the abort ratio. and it does not pay o↵.

8.5.2 Disaster Tolerant

In a disaster-tolerant setting, every object is replicated
at two sites. Therefore, the system can tolerate a complete
site failure. The results of this experiment are shown in
Figure 6-b. Like the previous scenario, 2PC still outperforms
AM-Cast with Workload A. However, under Workload C,
once the sites become saturated, the abort ratio of 2PC
increases drastically, due to the preemptive aborts (line 4 in
Algorithm 4). Thus, in such a situation, pre-ordering the
transactions in the commitment phase pays o↵.

 0
 20
 40
 60
 80

 100
 120

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
g
e
 t
xn

 la
te

n
cy

 (
m

s)

Throughput (tps)

Workload A on 4 Sites with DP (90% Read-only Transactions)

SER + AM-Cast
SER + 2PC

 0
 20
 40
 60
 80

 100
 120

 0 500 1000 1500 2000 2500 3000 3500 4000

Throughput (tps)

Workload C on 4 Sites with DP (90% Read-only Transactions)

 0

 2

 4

 6

 8

 0 50 100 150 200 250 300

A
b

o
rt

 r
a

tio
 (

%
)

Concurrent Transactions

Workload C on 4 Sites with DP (90% Read-only Transactions)

(a) Disaster Prone Configuration

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
g
e
 t
xn

 la
te

n
cy

 (
m

s)

Throughput (tps)

Workload A on 6 Sites with DT (90% Read-only Transactions)

SER + AM-Cast
SER + 2PC (Multi-master)

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000

Throughput (tps)

Workload C on 6 Sites with DT (90% Read-only Transactions)

 0
 10
 20
 30
 40
 50
 60
 70

 0 50 100 150 200 250 300

A
b
o
rt

 R
a
tio

Concurrent Transactions

Workload C on 6 Sites with DT (90% Read-only Transactions)

(b) Disaster Tolerant Configuration

Figure 6: 2PC vs. AM-Cast

9. CONCLUSION
Deferred update replication (DUR) is a classical technique

to construct transactional datastores. Protocols that follow
the DUR approach share a common algorithmic structure
consisting in a speculative execution phase followed by a ter-
mination phase, and at core, they only di↵er by instantiating
a few generic functions in each phase. This paper presents
G-DUR, a generic deferred update replication middleware
built upon this insight. G-DUR brings several benefits to
practitioners and researchers in the field of transactional
storage:

• It allows to easily fast prototype a transactional proto-
col following the DUR approach. Section 6 presented the
implementation of six state-of-the-art replication protocols
published in the past few years [3, 4, 10–12, 15]. Each proto-
col in our middleware requires less than 600 lines of code.

• G-DUR fosters apples-to-apples comparison of transac-
tional protocols. We illustrated this in Section 8.2 by present-
ing an empirical evaluation in a geo-replicated environment.
To the best of our knowledge, such a fair comparison never
appears elsewhere in literature. The key reason is that it is
either hard (or impossible) to be performed with the original
implementations as source codes are generally not compa-
rable, nor always publicly available. In addition, mastering
each protocol requires a large amount of time.

• With G-DUR, a developer can study in details the lim-
itations and overheads of her protocol. In Section 8.3, we
illustrated this point with the protocols of Peluso et al. [4].
Then, we presented in Section 8.4 a variation of P-Store [11]
that leverages workload locality. Our variation performs up
to 70% faster than the original protocol.

• Finally, G-DUR allows us to study the cost of various
degrees of dependability. In Section 8.5, we evaluated in
practice the di↵erence between commitment based on group
communication primitives and 2PC in a disaster-prone and
a disaster-tolerant setting.

The result of our empirical comparison in Figure 3 shows
that each consistency criterion has a distinct performance
domain. This illustrates in two real-word scenarios how the
CAP theorem of Brewer [59] impacts transactional datastores.
In a near future, we plan to refine this study by supporting
additional criteria and protocols (e.g., read atomicity [2] or
opacity [60]). Another direction of interest is the dynamic
adaptation of consistency to the workload. To that regard,

we believe that G-DUR can greatly improve our development
and evaluation time thanks to its library of execution and
termination plug-ins.

References
[1] J. C. Corbett et al., “Spanner: Google’s Globally-

Distributed Database,” in OSDI. Hollywood, CA, USA:
usenix, 2012, pp. 251—-264.

[2] P. Bailis et al., “Scalable atomic visibility with RAMP
transactions,” in SIGMOD, 2014.

[3] Y. Sovran et al., “Transactional storage for geo-
replicated systems,” in SOSP. New York, NY, USA:
ACM, 2011, pp. 385—-400.

[4] S. Peluso et al., “When Scalability Meets Consistency:
Genuine Multiversion Update-Serializable Partial Data
Replication,” in ICDCS. Macau, China: IEEE, 2012,
Paper, pp. 455–465.

[5] M. Patiño Mart́ınez et al., “Scalable Replication in
Database Clusters,” in DISC. Springer, Oct. 2000,
pp. 315–329.

[6] B. Kemme et al., “A new approach to developing
and implementing eager database replication protocols,”
Trans. on Database Systems, vol. 25, no. 3, pp. 333–379,
Sep. 2000.

[7] C. Amir, Yair and Tutu, “From total order to database
replication,” in ICDCS. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 494–503.

[8] F. Pedone et al., “The Database State Machine
Approach,”Distributed and Parallel Databases, vol. 14,
no. 1, pp. 71–98–98, Jul. 2003.

[9] N. Schiper et al., “Optimistic algorithms for partial
database replication,” in OPODIS, M. M. A. A.
Shvartsman, Ed., vol. 4305. Berlin, Heidelberg:
Springer, Dec. 2006, pp. 81–93.

[10] D. Serrano et al., “Boosting Database Replication Scala-
bility through Partial Replication and 1-Copy-Snapshot-
Isolation,” in PRDC. IEEE, Dec. 2007, pp. 290–297.

[11] N. Schiper et al., “P-Store: Genuine Partial Replication
in Wide Area Networks,” in SRDS. IEEE, Oct. 2010,
pp. 214–224.

[12] D. Sciascia et al., “Scalable Deferred Update Replication,”
in DSN. IEEE Computer Society, 2012, pp. 1–12.

[13] S. Peluso et al., “SCORe: a scalable one-copy serializable
partial replication protocol,” in Middleware. Springer,
Dec. 2012, pp. 456–475.

[14] D. Sciascia et al., “Geo-replicated storage with scalable
deferred update replication,” in DSN, 2013.

[15] M. Saeida Ardekani et al., “Non-Monotonic Snapshot Iso-

lation: scalable and strong consistency for geo-replicated
transactional systems,” in SRDS, Braga, Portugal, Oct.
2013, pp. 163–172.

[16] G. Alonso, “Partial database replication and group com-
munication primitives,”Euro. Res. Seminar on Advances
in Dist. Sys., 1997.

[17] M. Wiesmann et al., “Comparison of database replica-
tion techniques based on total order broadcast,” IEEE
Trans. on Knowlege and Data Eng., vol. 17, no. 4, pp.
551–566, 2005.

[18] R. Schmidt et al., “A formal analysis of the deferred
update technique,” in OPODIS, 2007, pp. 16–30.

[19] A. Bieniusa et al., “Consistency in hindsight: A fully
decentralized STM algorithm,” in IPDPS. IEEE, 2010,
pp. 1–12.

[20] P. Felber et al., “Time-based software transactional mem-
ory,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 12,
pp. 1793–1807, 2010.

[21] M. Wiesmann et al., “Understanding replication in
databases and distributed systems,” in ICDCS. IEEE
Computer Society, 2000, pp. 464–474.

[22] M. Wiesmann et al., “Database Replication Techniques:
a Three Parameter Classification,” in SRDS. IEEE
Computer Society, 2000, pp. 206—-.

[23] M. Nicola et al., “Performance modeling of distributed
and replicated databases,” IEEE Trans. on Knowl. and
Data Eng., vol. 12, no. 4, pp. 645–672, Jul. 2000.

[24] Oracle, Getting Started with Berkeley DB. Oracle.
[25] Microsoft Corporation, “SQL Server 2012,” 2012.
[26] H. Berenson et al., “A critique of ANSI SQL isolation

levels,” in SIGMOD. New York, New York, USA: ACM
Press, 1995, pp. 1–10.

[27] A. Adya, “Weak Consistency: A Generalized Theory
and Optimistic Implementations for Distributed Trans-
actions,” Ph.D., MIT, Cambridge, MA, USA, Mar. 1999.

[28] A. Adya et al., “Generalized isolation level definitions,”
in ICDE, no. March. IEEE Comput. Soc, 2000, pp.
67–78.

[29] M. Patiño Martinez et al., “Middle-R: Consistent
database replication at the middleware level,” ACM
Trans. Comput. Syst., vol. 23, no. 4, pp. 375–423, Nov.
2005.

[30] J. Correia, A. et al., “Akara: A flexible clustering
protocol for demanding transactional workloads,” in On
the Move to Meaningful Internet Systems: OTM 2008,
ser. LNCS, R. Meersman et al., Eds. Springer-Verlag,
2008, vol. 5331, pp. 691–708.

[31] J. Bernabé-Gisbert et al., “Managing Multiple Isolation
Levels in Middleware Database Replication Protocols,”
in Parallel and Distributed Processing and Applications,
ser. Lec. Notes in Comp. Sc., M. Guo et al., Eds.
Springer, 2006, vol. 4330, pp. 511–523.

[32] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,”Commun. ACM, vol. 21, no. 7,
pp. 558–565, 1978.

[33] F. Mattern, “Virtual time and global states of
distributed systems,” in Proc. Workshop on Parallel and
Distributed Algorithms, C. M. et al., Ed., North-Holland
/ Elsevier, 1989, pp. 215–226.

[34] D. S. Parker et al., “Detection of mutual inconsistency
in distributed systems,” IEEE Trans. Softw. Eng., vol. 9,
no. 3, pp. 240–247, May 1983.

[35] J. Almeida et al., “Bounded version vectors,” in
Distributed Computing, ser. LNCS, R. Guerraoui, Ed.
Springer-Verlag, 2004, vol. 3274, pp. 102–116.

[36] R. Guerraoui et al., “Permissiveness in transactional
memories,” in DISC, 2008, pp. 305–319.

[37] S. Peluso et al., “On Breaching the Wall of Impossibility
Results on Disjoint-Access Parallel STM,” Virginia

Tech, Tech. Rep., 2014.
[38] R. Guerraoui et al., “On obstruction-free transactions,”

in SPAA. New York, NY, USA: ACM, 2008, pp.
304–313.

[39] M. Saeida Ardekani et al., “The space complexity of
transactional interactive reads,” in HotClouds. New
York, New York, USA: ACM Press, Apr. 2012, pp. 1–5.

[40] X. Défago et al., “Total order broadcast and multicast
algorithms: Taxonomy and survey,” ACM Comp.
Surveys, vol. 36, no. 4, pp. 372–421, Dec. 2004.

[41] F. Schintke et al., “Enhanced Paxos Commit for
Transactions on DHTs,” in CCGrid. Washington, DC,
USA: IEEE, May 2010, pp. 448–454.

[42] M. Blasgen et al., “The convoy phenomenon,” SIGOPS
Oper. Syst. Rev., vol. 13, no. 2, pp. 20–25, Apr. 1979.

[43] T. D. Chandra et al., “Unreliable failure detectors for re-
liable distributed systems,” Journal of the ACM, vol. 43,
no. 2, pp. 225–267, 1996.

[44] R. Guerraoui et al., “Genuine atomic multicast in asyn-
chronous distributed systems,” Theoretical Computer
Science, vol. 254, no. 1-2, pp. 297–316, Mar. 2001.

[45] N. Schiper, “On multicast primitives in large networks
and partial replication protocols,” Ph.D. dissertation, U.
of Lugano, 2009.

[46] N. Schiper et al., “Genuine versus Non-Genuine Atomic
Multicast Protocols for Wide Area Networks: An Em-
pirical Study,” in SRDS. IEEE, Sep. 2009, pp. 166–175.

[47] L. Lamport, “Lower bounds for asynchronous consen-
sus,”Distributed Computing, vol. 19, no. 2, pp. 104–125,
October 2006.

[48] D. Dolev et al., “Early-deciding consensus is expensive,”
in PODC. New York, New York, USA: ACM Press,
Jul. 2013, p. 270.

[49] P. Sutra et al., “Fault-tolerant partial replication in
large-scale database systems,” in Euro-Par, Las Palmas
de Gran Canaria, Spain, Aug. 2008, pp. 404–413.

[50] M. Saeida Ardekani et al., “On the Scalability of Snap-
shot Isolation,” in Euro-Par, F. Wolf et al., Eds., vol.
8097, Aachen, Germany, Aug. 2013, pp. 369–381.

[51] H. Garcia-Molina et al., “Read-only transactions in
a distributed database,” Trans. on Database Systems,
vol. 7, no. 2, pp. 209–234, Jun. 1982.

[52] R. C. Hansdah et al., “Update serializability in locking,”
in Lec. Notes in Comp. Sc., ser. Lec. Notes in Comp.
Sc., G. Ausiello et al., Eds. Springer, 1986, vol. 243,
pp. 171–185.

[53] S. Elnikety et al., “Database Replication Using
Generalized Snapshot Isolation,” in SRDS. IEEE
Computer Society, Oct. 2005, pp. 73–84.

[54] P. Bailis et al., “Highly Available Transactions : Virtues
and Limitations,” in VLDB, 2014.

[55] M. Saeida Ardekani et al., “Jessy -
https://github.com/msaeida/jessy ,” 2013.

[56] Grid’5000, “Grid’5000, a scientific instrument [. . .],” ,
retrieved April 2013.

[57] B. Cooper et al., “Benchmarking Cloud Serving Systems
with YCSB,” in SoCC. New York, NY, USA: ACM,
2010, pp. 143—-154.

[58] Y. Lin et al., “Consistent data replication: Is it feasible in
wans?” in Euro-Par 2005 Parallel Processing, ser. LNCS,
J. Cunha et al., Eds. Springer Berlin Heidelberg, 2005,
vol. 3648, pp. 633–643.

[59] S. Gilbert et al., “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,”
SIGACT News, vol. 33, no. 2, pp. 51–59, 2002.

[60] R. Guerraoui et al., “On the correctness of transactional
memory,” in PPoPP. New York, NY, USA: ACM, 2008,
pp. 175–184.

