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Abstract The PerDiS (Persistent Distributed Store) project addresses

the issue of providing support for distributed collaborative engineering

applications. We describe the design and implementation of the PerDiS

platform, and its support for such applications.

Collaborative engineering raises system issues related to the sharing of

large volumes of �ne-grain, complex objects across wide-area networks

and administrative boundaries. PerDiS manages all these aspects in a

well de�ned, integrated, and automatic way. Distributed application pro-

gramming is simpli�ed because it uses the same memory abstraction as

in the centralized case. Porting an existing centralized program written

in C or C++ is usually a matter of a few, well-isolated changes.

We present some performance results from a proof-of-concept platform

that runs a number of small, but real, distributed applications on Unix
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and Windows NT. These con�rm that the PerDiS abstraction is well

adapted to the targeted application area and that the overall perfor-

mance is promising compared to alternative approaches.

1 Introduction

The PerDiS project seeks to support distributed, cooperative engineering appli-

cations in the large scale. It aims to demonstrate cooperative computer-aided

design (CAD) of buildings within a virtual enterprise.1

Single-user CAD applications are in widespread use today in architecture and

building �rms. The design for a building contains numerous �ne-grain objects

(100 bytes{10 Kb each), typically running into megabytes even for a relatively

simple building. Objects are densely interconnected by pointers; for instance a

wall object contains a pointer to its adjacent walls, ceiling, and 
oor, as well as

to its windows, doors, pipes and other �ttings.

In current practice, sharing of information in a VE is mostly limited to faxes

or sending diskettes by post.2 On a smaller scale, an enterprise might share �les

through a distributed �le system over a local network, but is hindered in this

case by the lack of consistency and concurrency control.

The industrial demand for distributed, collaborative CAD tools is high. Many

developments, including one by PerDiS partner CSTB [1], are based on remote

object invocation, using Corba [16], DCOM [29] or Java RMI [34]. A client ap-

plication running on a workstation invokes objects, stored in a server, through

remote references. Applied to the CAD domain this results in abysmal perfor-

mance, and server scalability problems. Remote objects are especially inappro-

priate in the virtual enterprise, where the object server may be located across a

slow WAN connection. Applications must be completely re-engineered (in devi-

ous ways) in order to get decent performance. Furthermore, none of the remote-

object systems adequately address persistence or concurrency control.

Collaborative engineering in a VE raises a number of exciting system issues.

The goal of this research is to address them in a fully integrated, automated,

eÆcient and easy-to-use platform. Application programmers should be able to

concentrate on application semantics, without worrying about system issues.

Existing centralized CAD applications must port easily without complete re-

engineering. The platform should provide fast, consistent access to data, despite

concurrent access. Persistence must be guaranteed for as long as objects are

needed. The platform should automate distribution, storage, and input-output.

The system should work well in the large scale, tolerating faults such as net-

work slowdowns and disconnections, crashes, and providing an adequate level of

security.

1 A virtual enterprise (VE) is a consortium of small enterprises, or of small departments

of larger enterprises, working together for the duration of a construction project. The

members are often geographically dispersed, even located in di�erent countries.
2 Users are limited not only by the absence of interchange standards or of high-speed

networks, but also by a prudent distrust between members of the VE.



"foo"

cluster A cluster B cluster C

"bar"

storage)

"bar""foo"

cluster A cluster B

Application Process 1 Application Process 2

cluster B cluster C

a

b

 cluster
    A

cluster
  B

cluster
   C

cluster
   B

cluster
   D

(shared
memory)

(persistent

Figure1. PerDiS abstractions

In a VE, collaboration follows a stylized, sequential pattern. Typically, a

small group of architects located at a single site do the initial design, performing

many updates during a limited period of time. Then, the design is passed along

to structural engineers, another small group, possibly in a di�erent site. They

then pass their results on to another group, and so on. There is a high degree

of temporal and spatial locality. There is also some real concurrency, including

write con
icts, which cannot be ignored; for instance working on alternative

designs in parallel is common practice.

To better understand the PerDiS approach, consider a typical application sce-

nario from the building industry area. Architects and engineers from di�erent

companies collaborate on a design, working at di�erent locations, either concur-

rently or at di�erent times. Tentative or alternative designs are created, tried

out, abandoned. The constructors on site consult the plans, making on-the-spot

modi�cations, which should be re
ected back to the engineering oÆces.

In response to these requirements, the PerDiS project proposes a new ab-

straction, the Persistent Distributed Store.

This paper is organized as follows. In the next section we present the con-

cepts of PerDiS. Section 3 describes system's layers of functionality. Section 4



describes the architecture and implementation of the PerDiS platform. In Sec-

tion 5 we show how application programmers use PerDiS. We report results of

some experiments in Section 7. Section 8 compares our approach with related

work. We conclude in Sections 9 and 10 with lessons learned and future plans.

2 PerDiS Concepts

Figure 1 presents the conceptual model of a persistent distributed store. An

application process maps a distributed, shared, persistent memory. It accesses

this memory transactionally. The memory is divided into clusters, containing

objects. Named roots provide the entry points. Objects are connected by point-

ers. Reachable objects are stored persistently in clusters on disk; unreachable

objects are garbage-collected.

PerDiS provides direct, in-memory access to distributed and persistent ob-

jects. Application programmers concentrate on application development without

being distracted by system issues. Moreover, knowledgeable programmers have

full control over distribution and concurrency control.

Shared address space PerDiS supports the Shared Address Space model [11]. It is

simple, natural and easy to use, because it provides the same, familiar, memory

abstraction as in the centralized case. It facilitates the sharing of data between

programs, just by naming, assigning and dereferencing pointers.

PerDiS provides the illusion of a shared memory across the network and

across time, by transparently and coherently caching data in memory and reading

and writing to disk.

Clusters An application allocates an object within a cluster of the shared mem-

ory. A cluster groups together objects that belong together for locality, concur-

rency control, garbage collection and protection.

The intent is that a cluster will be used just like a document or a �le in cur-

rent operating systems, providing the user with mnemonic access to important

data. Applications divide their data among clusters in whatever way is most

natural and provides best locality. For example, in our cooperative engineering

applications, objects for each major section of a building will be stored in a

separate cluster.

Persistence by reachability The PerDiS memory is persistent. Even programs

running at di�erent times share data simply by mapping memory and working

with pointers. The application programmer does not need to worry about 
at-

tening object graphs into �les, nor about parsing ASCII representations into

memory.

An object may point to any other object. The system ensures that pointers

retain the same meaning for all application processes. To combine persistence

with real pointers while retaining 
exibility, many systems do swizzling, i.e., au-

tomatically translate global addresses into pointers [27,33]. PerDiS is designed to



provide swizzling but the current implementation simply relies on �xed address

allocation [11].

Starting from some persistent root pointer identi�ed by a string name, a

process navigates from object to object by following pointers. For instance,

an application might navigate the graph illustrated in Figure 1. Starting from

the root foo in cluster A, one can navigate through the objects, e.g. invoke

foo->a->b->print(). This would access cluster B.

Any object reachable through some path from a persistent root must persist

on permanent storage. This is called Persistence By Reachability (PBR) [3].

Unreachable objects are garbage-collected (see Section 4.4).

Transactions and concurrency control To relieve application programmers from

dealing with the hard issues of concurrent updates, an application runs as a

sequence of one or more transactions. It can read and write memory without

interference from concurrently-running processes. Transactions ensure that if a

single transaction updates multiple clusters, either the transaction commits and

all the updates are applied, or it aborts and it is as if none has occurred.

For completeness, PerDiS supports transactions with the usual ACID trans-

actional semantics. However, the ACID model is not well suited to our applica-

tion area, so we plan to support more sophisticated transactions that allow more

concurrency while reducing the probability of aborts.

Security A VE is a co-operation between di�erent companies, for the limited pur-

pose of designing and constructing some building. These same companies might

be simultaneously competing for some other building. Data and communication

must be protected.

PerDiS poses new security problems because applications access local copies

of objects (via a DSM mechanism) instead of accessing them as remote objects

protected by servers (more details in Section 4.5).

Ease of programming It is a requirement to minimize programming restrictions,

and to support standard, non-modi�ed programming languages and compilers.

Pointers in C and C++ (or even assembly language) are supported; there is no

requirement to use special pointer types (e.g., C++ smart pointers [17]), and

dereferencing a pointer costs the same (once data has been loaded) as in the

machine's native virtual memory. Pointer arithmetic is legal. However, pointer-

hiding (e.g., XORing pointers, casting a non-pointer into a pointer, or a union

of a pointer and a non-pointer) would defeat garbage collection and is illegal.

Our performance goals are modest: within the limits of our locality model

(see Section 1), PerDiS should support applications much better than a remote-

object client-server system. The main focus is on simplicity, ease of use, and

adaptation to the needs of the application area.
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3 Design

PerDiS provides the logical layers of functionality shown in Figure 2. PerDiS is

hosted on traditional operating systems (OS), currently Unix and NT. Of the

host OS, PerDiS uses only the local �le service for storing its data, and TCP/IP

sockets for communication with remote nodes (a node is a machine participating

in a PerDiS platform.) The distributed sharing of data is managed by PerDiS,

independent of the host OS.

3.1 Secure Transactional File System

Layer 1 of the PerDiS design provides a secure, distributed �le system with

transactional semantics [2]. Each cluster is stored in its own �le with access

restricted to the PerDiS Daemon by OS protection.

Each cluster has a PerDiS speci�c access control list (ACL), and an appli-

cation process will gain access to a cluster only if the user presents credentials

matching the ACL. Furthermore, a node will classify other nodes as trusted

or untrusted. Communication with a trusted node uses a lightweight protocol.

When communicating between untrusted nodes, each one double-checks that the

other one is doing the right thing; for instance one node will not accept updates

from a node that cannot prove ownership of a write lock. More details about the

security architecture are in Section 4.5.

The PerDiS platform provides cooperative caching. A cluster can be stored

anywhere, and even saved on local disk for fault tolerance and availability. How-

ever, it is a requirement, for security and legal reasons, that every cluster has

a designated home site. The home site is guaranteed to store the most recent,

authoritative version of the cluster.

3.2 Object Support

Layer 2 provides support for objects, i.e., collections of contiguous bytes. It is

independent of any particular programming language, but it attaches meta-data

to an object, for use by the language-speci�c support of Layer 4 (language-

speci�c runtime service).



Layer 2 knows about the pointers contained in an object; the data is oth-

erwise uninterpreted by this layer. It supports pointer persistence (swizzling),

persistence by reachability, and garbage collection.

It is transparent whether a pointer points within the same cluster or into

another cluster; however cross-cluster pointers are known to be more costly than

intra-cluster ones. Application programmers can control the cost of following

pointers by increasing locality within the same cluster.

3.3 Access Methods

Layer 3, also language-independent, provides naming of roots and access to ob-

jects in memory. The latter is very similar to what is found in a traditional

DSM.

Its link root primitive names a pointer with a URL [4], thus making it a

root. Later, an application can enter the system via any root by providing its

URL to the open root primitive.

Two alternative memory access methods are provided. The �rst is based

on an explicit API, whereby an application process calls the hold primitive to

declare intent to operate on some data. As the application navigates through the

object graph (starting from a root), it calls hold for each object. The arguments

to hold include the extent of the object and the access mode (e.g., read or write).

If the object indicated by hold is in a cluster that has not yet been accessed, this

layer calls Layer 1 to open the new cluster (thereby checking access rights), thus

providing seamless access across cluster boundaries. It calls Layer 1 to perform

transactional concurrency control accessing the byte range in the speci�ed mode,

to record the access with the transaction manager, and to load the data into

memory. It calls Layer 2 (Object Support) to do pointer swizzling, which in turn

up-calls the language-speci�c runtime of Layer 4 to do type-checking.

The second access method, called the \compatibility interface" makes it easy

to make existing centralized C or C++ programs distributed and persistent. A

program can choose not to explicitly call hold. On initial entry via open root,

the corresponding cluster is opened and its pages protected against all access. As

the application follows a pointer, the operating system might signal a page fault

to this layer, which is handled as an implicit hold covering the whole faulting

page.

3.4 Language-speci�c Run-time Services

Layer 4 provides language-speci�c run-time services, such as allocation of typed

objects and type-checking procedures. It takes advantage of the hooks provided

by Layer 2 (object support) to store the type information for each object. The

swizzler, in Layer 2, up-calls this layer at swizzling time to ensure that pointers

are correctly typed.
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4 Architecture and Implementation of the PerDiS

Platform

PerDiS is a large, long-term project with ambitious goals. The major portion

of the design is available in the prototype platform, although some parts are

not implemented yet (see Section 6), most notably swizzling and fault-tolerant

caches.

4.1 Structure

The PerDiS architecture is multi-process and peer-to-peer. Figure 3 illustrates

the breakdown into processes, which isolates crucial platform functions from

applications, and applications from one another, while providing reasonable per-

formance. This breakdown is very much orthogonal to the layered design of

Section 3; indeed, a bit of each layer can be found in each process.

A node runs a single PerDiS D�mon (PD), and any number of application

processes. Applications interact with PerDiS through an API layer, which inter-

faces to the User Level Library (ULL). A ULL communicates only with its local

PD.

The ULL provides memory mapping, transactions, private data and lock

caching, swizzling and unswizzling, and the \creative" part of garbage collection

(see Section 4.4). When the application needs locks or reads or writes stored

data, its ULL makes requests to the local PD.

A PD provides a data and lock cache shared by all applications at this node,

maintained coherent with other PDs. It logs the results of transactions. It also

contains security modules, and the \destructive" part of garbage collection. A

PD communicates with other PDs over the network. They exchange noti�cation

messages for locks, updates and garbage collection. They cooperate to locate the

home site of a cluster.

To illustrate the responsibilities of ULL and PD, consider a typical applica-

tion scenario. An application starts a new transaction. This creates an instance

of a transaction manager in the ULL, and causes the PD to start a log. Then
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the application opens a cluster. When the application performs hold (either ex-

plicitly or through a page fault), and the data is not already cached in the ULL,

the ULL requests the corresponding data from the PD. The ULL also requests

locks to maintain consistency of its cache with the PD. If the PD does not have

some data or lock in its cache, it fetches it from another cache or from the

cluster's home site. When the application commits, it sends garbage collection

information, updates and locks to the PD.

4.2 API

We will illustrate the PerDiS API through a simple example. Figure 4 displays

the data structures, and Figure 5 contains the source code. Suppose that we

represent a building by room and wall objects. Each room points to adjacent

rooms and to its own walls, and each wall points to adjacent walls and to the

rooms it encloses. We arbitrarily decide to store all room objects in cluster pds:

//alpha.inria.fr/rooms and all wall objects in cluster pds://beta.inria.

fr/walls. The URLs identify the cluster's home site and �le name. We give each



transaction *t = new_transaction (&standard_pessimistic_transaction);

// open root, navigate

cluster *room_cluster = open_cluster ("pds://alpha.inria.fr/rooms");

list<*room> *rooms = open_root (list<*room>, "ROOM_ROOT",

intent_shared, room_cluster);

room *r1 = rooms->first();

room *r2 = rooms->second();

// Change dimensions of wall W1 of R1 and recompute surface and volumes

r1->walls->first()->height = 2.72;

r1->walls->first()->length = 3.14;

r1->walls->first()->compute_surface();

r1->compute_volume();

r2->compute_volume();

// commit, and start another transaction

t = renew_transaction (t, &standard_pessimistic_transaction);

// Add new room R3 that shares wall W2 with R2

room *r3 = pds_new (room, room_cluster) room;

rooms->insert(r3);

r3->adjacent_rooms->insert(r2);

r2->adjacent_rooms->insert(r3);

r3->walls->insert(r2->walls->second());

walls->second()->constitutes_rooms->insert(r3);

end_transaction(t, COMMIT);

Figure5. Source code for example

cluster a persistent root (respectively, ROOM ROOT and WALL ROOT) that points to

all its objects.

The call to new transaction starts a transaction; the argument requests a

pessimistic transaction using the compatibility interface (see Section 3.3). The

sequence open cluster;open root opens the root of the room cluster. The ap-

plication navigates from the root and changes a wall's dimensions; note that

the wall cluster does not need to be opened explicitly. The application recom-

putes a�ected surfaces and volumes. The primitive renew transaction commits

the current transaction and atomically starts a new one, retaining all its locks,

data, and mappings. Then we create a new room in room cluster; the macro

pds new calls the PerDiS primitive allocate in to reserve space in the cluster,

then calls the C++ initialization directive new. The new room is inserted into

the corresponding data structures. Finally, the program commits. For simplicity,

we (incorrectly) neglected to check for errors; for instance renew transaction

might fail because the �rst transaction cannot commit.



This example shows that the PerDiS approach is powerful and elegant. Thanks

to caching, all data manipulation is local and distribution is transparent. Local

and cross-cluster references are normal pointers. Instead of bothering with distri-

bution, persistence, memory-management, etc., programmers focus on problem

solving and application semantics.

Although the argument to hold is typically an object or a page, it can in

fact be an arbitrary contiguous address range, from a single byte to a whole

cluster. Thus, the application can choose to operate at a very �ne grain to avoid

contention (at the expense of overhead for numerous hold calls), or at a very

large grain to improve response time (increasing however the probability of false

sharing and deadlock, and increasing the amount of data to be logged at commit

time). Programmers have full control, if desired, over distribution through the

hold primitive and through the cluster abstraction.

4.3 Transactions and Caching

An application can request either pessimistic or optimistic concurrency control

[21]. It can also request di�erent kinds of locking behaviour, including non-

serializable data access, but we will ignore this issue here for the sake of brevity.

A PD caches data and locks accessed by transactions executing at its site.

In the current implementation, PDs maintain a sequentially-consistent coherent

cache, along the lines of entry consistency [5]. The granularity of coherence is

the page.

Transactions run on top of this coherent cache. An application process run-

ning a transaction gets a private, in-memory scratch copy of the pages it accesses.

An application may update its scratch copy (assuming its write intents were

granted). The transaction manager (in the ULL) sends changed data regions to

the log (in the PD). When the transaction commits, it 
ushes any remaining

updates, then writes a commit record on the log. The updates are applied to the

cache and to disk.

A scratch copy is guaranteed to be coherent when initially copied in from the

cache, and again at commit: taking a transactional lock on some datum trans-

lates into taking an entry-consistency lock on the corresponding page(s) in the

cache. The timing of the entry-consistency locking is di�erent for optimistic and

pessimistic transactions. A pessimistic transaction takes a read or write lock as

soon as the application issues hold, and releases the locks at commit or abort.

This blocks any con
icting concurrent transaction. In an optimistic transaction,

hold reads each page and its version number atomically. The transaction takes

entry-consistency locks only at commit time; at that time it checks that no

version numbers have changed (otherwise the transaction must abort); it per-

forms its updates and releases the locks. Every commit, whether optimistic or

pessimistic, increments the version numbers of all pages it modi�es. The above

guarantees serializable behaviour for both kinds of transactions.

Once the commit record is recorded in the log, the commit is successful.

Logged modi�cations are then applied to the cache, and �nally to the �les at the

clusters' homesites. Our current implementation guarantees the ACID properties



on both the optimistic and pessimistic transaction models. If a PD or a node

crashes, a recovery procedure reads the log; transactions whose commit record

is on the log are re-done, and those that are still pending are undone. However,

caches are not yet fault-tolerant, and a data request sent to a node that has

crashed will abort the requesting transaction.

4.4 Garbage Collection

Manual space management, implying potential storage leaks and dangling point-

ers, is unacceptable in a persistent store. Any leakage would persist and accumu-

late, overwhelming the store. Dangling pointers (caused by an application pro-

gram erroneously deleting a reachable object) would make the store unsafe, caus-

ing programs to fail unexpectedly, possibly years after the error. In PerDiS in-

stead, storage is managed automatically, using the Larchant distributed garbage

collection algorithm [19,20]. Larchant is based on meta-information that supple-

ments pointers, called stubs and scions. A stub describes a pointer that points

out of a cluster, and a scion a pointer into a cluster. Stubs and scions are also

used by the swizzler.

The algorithm is divided into a \constructive" and a \destructive" part. The

constructive part, known as stub-scion creation [8], detects a new inter-cluster

pointer assigned by the application, creates the corresponding stub, and sends

a message to the downstream cluster requesting creation of a scion. Before a

transaction's updates are commited, they are analyzed by the stub-scion creation

module.

The destructive part, called garbage reclamation, runs in the PD. It traces

the set of clusters currently cached, using their scions and their persistent roots

as starting points for tracing the graph. Objects not visited are unreachable and

are deleted. Any given execution of the reclaimer only detects a subset of the

actual garbage, but as the contents of caches vary over time, most garbage is

deleted with high probability.

The garbage collector must be aware of caching and concurrency, because an

object might not be reachable at a particular site but still be reachable globally.

It must also carefully order its actions because of possible global race conditions.

This is explained in more detail in the Larchant articles [19,20].

4.5 Security

The PerDiS platform protects whole clusters according to user-speci�ed access

rights and provides secure communication between PDs. Communication is se-

cured against eavesdropping, impersonation, tampering and replay by attackers

from within or outside the VE. The VE is composed of several trust domains.

This domain-based trust model enables the encryption and authentication mech-

anisms to be optimized for the di�erent levels of trust existing within and be-

tween organizations.
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Access Control We adopt a role-based model for access control, described in

detail in [12]. To summarise: all the cooperative activities carried out by users

are assigned to tasks and access rights are speci�ed for the roles that users may

play within a particular task. A person called a task manager digitally signs role-

in-task certi�cates stating which users may play each role. Delegation of roles is

supported by the use of task-related delegation certi�cates. The certi�cates for

each user-level task are stored in a designated cluster and are therefore accessible

to the PerDiS security system at participating sites.

Access rights for each cluster are speci�ed in an ACL and access control is

applied before a copy is supplied. The access rules are:

{ For a PD to obtain a copy of a cluster from another PD the principal behind

the requestor must have read access rights. This check is applied whenever

a PD attempts to acquire a read lock for a cluster and hence get a copy of

the data.

{ For a PD to obtain a write lock, the principal behind it must have write

access rights.

In both cases the access control check is applied at the PD initiating the

cluster request in order to give immediate feedback to the application, but

because of the lower level of trust between PDs in di�erent domains the

check is also applied at the remote PD before granting a lock. This second

check can be omitted for PDs in the same domain.

{ In addition, a check is needed to ensure that the data accompanying a lock is

a genuine version of the relevant cluster. This will be true if the PD granting

a lock is backed by a principal that has write access rights. (The PD wouldn't

have been able to get the lock without those rights). This check is applied

by a PD whenever it receives a lock.

Figure 6 shows the security management components within a PD and illus-

trates their operation to secure a cluster request from the local Cache Manager

providing data for an application running on behalf of a principal P1.

After P1's rights have been checked locally, the request is signed, (optionally)

encrypted and it is dispatched to the PD currently holding a lock on the required



Table1. Application programming interface. (I, o = input, output parameter. Object

= pointer to an object. Intent = read or write. Kind = pessimistic or optimistic. Error

codes are omitted)

Cluster management API

security name cluster

attribs.

new i i o

open i o

close i

Root management API

name cluster type object intent

link i i i

open i i i o i

unlink i i

Data allocation and access API
cluster type object intent

allocate i i o

hold i i, o i

Transaction API
kind t'action status

new i o

renew i i, o

end i i

data. The security components at the PD receiving the request validate the

request, check P1's credentials and if they allow the access, the second PD returns

a signed (and optionally encrypted) reply. Finally, the credentials of the principal

behind the second PD are checked at the �rst PD before the lock and data are

passed to the Cache Manager.

Trust management Ultimately, the trust between the participants in a collabo-

rative activity rests on the public keys of the individual users. But to avoid the

need for costly bootstrapping of shared keys we establish local trust domains

within which a session key is shared between the PDs involved in any PerDiS

activity. A trust domain might for example comprise a small organisation or a

department of a larger one. The users cooperating on a particular joint task will

not generally all be in the same trust domain.

Within a trust domain the assumption of correct PDs on all local computers

enables a shared session key to be used and removes the need for the duplica-

tion of access control checks described above. But between trust domains the

authentication of replication requests requires the use of public key encryption,

at least to establish secure channels.



Replication requests may be queued and the request queue may migrate

with the lock on a cluster. Hence a PD that sends a replication request cannot

be sure that the reply will come from a PD inside the trust domain. We have

devised a secure protocol that deals with this issue and is optimised for the

local case. Brie
y, the sending PD signs (and optionally encrypts) all request

messages using the shared session key for the local trust domain. A responding

PD in the same trust domain can authenticate the request immediately. If the

responding PD turns out to be in another trust domain, it must initiate an

additional authentication exchange using the public keys of the two principals

involved. The protocol is described in detail in Coulouris et al. [13].

5 Programming with PerDiS

The PerDiS platform supplies application programmers with a whole range of

functionalities: object persistence, distribution, caching, transactions, and secu-

rity. These features are exposed to an application programmer via an explicit

API (see Table 1). The interface is unobtrusive: very few lines of code are needed

to exploit the PerDiS functionality. The PerDiS API consists of four major parts:

cluster and persistent root management, data allocation and access, and transac-

tions. More details can be found in the Programmer's Manual and in the PerDiS

design documents [18,23].

5.1 API

For cluster manipulation, API functions exist to create a new cluster, to open an

existing cluster, and to close an open cluster. Cluster creation requires parame-

ters to specify the security attributes for the cluster, together with its URL.

Since PerDiS' persistence model is based on persistence by reachability, we

o�er API functions to manage persistence roots. Linking a root associates a name

with a pointer. Unlink removes the name; in this case, data reachable only from

that root is eventually garbage collected. Opening a root requires, in addition

to a name and a cluster, the root object's type. This allows veri�cation of the

expected root object type against the actual stored type.

The way data allocation is implemented depends on the programming lan-

guage. For C and C++ applications we provide alternatives to malloc and new,

respectively. To allocate data in a cluster, one passes a cluster and the type of

the object to be allocated. Note that an API for explicit de-allocation of data is

deliberately missing, since this is done by the garbage collector only.

All access to the PerDiS store must occur within the context of a transaction.

Transactions can be started, terminated and re-newed. Renew atomically commits

and starts a new transaction, retaining the locks, data and mappings of the

committed transaction. PerDiS supports di�erent kinds of transactions; starting

a transaction requires parameters setting its behaviour. The main parameters

specify when and how data locks are taken (as explained in Section 4.3).



5.2 Porting Applications

In general, porting an existing centralized C or C++ application to the PerDiS

platform requires data and code conversions, which are both straightforward.

Data conversion requires only small modi�cations to the application's original

I/O modules: (i) create a cluster in place of a �le, (ii) perform memory allocation

within an appropriate cluster, (iii) create at least one persistent root. These

changes can usually be done with very little e�ort.

Code conversion can be done in several ways, playing on the trade-o� between

conversion e�ort and concurrency. We outline the simplest conversion, which

takes very little e�ort (but reduces the level of concurrency): (i) embed the

application in a pessimistic transaction that uses the \compatibility interface"

(see Section 3.3), (ii) open persistent roots, (iii) replace writes into a �le with

renew transaction or commit. Again, this involves very few modi�cations at

clearly identi�able places. Thanks to the compatibility mode, data access is

trapped using page faults and locks are taken automatically.

These limited modi�cations bring many gains. In particular, there is no more

need for 
attening data structures, explicit disk I/O, or explicit memory man-

agement. In addition, data distribution, transactions and persistence come for

free.

This approach was used to port the applications presented in Section 7.

6 Status

The PerDiS project started in December 1996 and is scheduled as a three-year

project. It occupies the equivalent of 8 full-time persons in 6 di�erent institutions

across Europe. Time and resources have been obviously insuÆcient to fully im-

plement the ambitious goals listed above, which however constitute the criteria

by which we measure design and implementation decisions.

The source code of the current release is freely available from http://www.

perdis.esprit.ec.org/download/. It contains some 20,000 lines of C++ and

runs on Solaris, Linux, HP/UX and Windows-NT. It is acceptably stable and

supports a number of applications, as reported in Section 7.

The platform is intended as a proof-of-concept implementation, and it is not

surprising that its performance is not satisfactory yet. Some issues that will be

improved are fault tolerant caching, swizzling, type management, performance

and elegance.

7 Applications

In this section we present some experiments with applications. These experi-

ments allow us to evaluate the diÆculty of building distributed and persistent

applications with PerDiS, to compare with other methods and to measure the

platform's performance.



Table2. VRML application. For each test set, we provide: (a) Size of SPF �le (Kb);

number of SPF objects and of polyloop objects. (b) Execution times in seconds: stand-

alone centralized version; PerDiS and Corba port, 1 and 2 nodes. (c) Memory occu-

pation in Kbytes (PerDiS 1st column: in memory, 2nd column: in persistent cluster).

(d) Number of allocation requests, in thousands (PerDiS 1st column: in memory, 2nd

column in persistent cluster)

Test size SPF objects PolyLoops

cstb 1 293 5 200 530

cstb0rdc 633 12 080 1 024

cstb0fon 725 12 930 1 212

demo225 2 031 40 780 4 091

(a) Test applications

Test Std- PerDiS Corba PerDiS Corba

Alone 1 1 2 2

cstb 1 0.03 1.62 54.52 2.08 59.00

cstb0rdc 0.06 4.04 115.60 4.27 123.82

cstb0fon 0.07 4.04 146.95 5.73 181.96

demo225 0.16 13.90 843.94 271.50 1452.11

(b) Test application execution times (s)

Test Std-Alone PerDiS Corba

in mem. pers.

cstb 1 2 269 2 073 710 26 671

cstb0rdc 2 874 2 401 1 469 51 054

cstb0fon 3 087 2 504 1 759 59 185

demo225

(c) Test application memory occupation (Kb)

Test Std-Alone PerDiS Corba

in mem. pers.

cstb 1 62 49 14 1 100

cstb0rdc 128 101 29 2 180

cstb0fon 153 121 35 2 543

demo225

(d) Test application allocations (thousands)



7.1 AP225 to VRML Mapping Application

SPF-AP225 is a standard ASCII �le format for representing building elements

and their geometry; it is supported by a number of CAD tools. The application

presented here reads this format and translates it into VRML (Virtual Reality

Modeling Language), to allow a virtual visit to a building project through a

VRML navigator.

We chose this application because it is relatively simple, yet representative of

the main kernel of a CAD tool. We compare the original, stand-alone centralized

version, with a Corba and a PerDiS version.

The stand-alone centralized version has two modules. The read module parses

the SPF �le, and instantiates the corresponding objects in memory. The map-

ping module traverses the object graph to generate a VRML view, according to

object geometry (polygons) and semantics. The object graph contains a hierar-

chy of high-level objects representing projects, buildings, storeys and staircases.

A storey contains rooms, walls, openings and 
oors; these are represented by

low-level geometric objects such as polyloops, polygons and points.

In the Corba port, the read module is located in a server which then retains

the graph in memory. The mapping module is a client that accesses objects

remotely at the server. To reduce the porting e�ort, only �ve classes were enabled

for remote access: four geometric classes (Point, ListOfPoints, PolyLoop, and

ListOfPolyLoops), and one (Ap225SpfFile) allowing the client to load the SPF

�le and to get the list of polyloops to map. The port took two days. The code

to access objects in the mapping module had to be completely rewritten.

In the PerDiS port, the read module runs as a transaction in one process and

stores the graph in a cluster. The mapping module runs in another process and

opens that cluster. The port took only one day; we used the method outlined

in Section 5.2, with no modi�cation of the application architecture. The PerDiS

version has the advantage that the object graph is persistent, and it is not nec-

essary to re-parse SPF �les each time. The VRML views generated are identical

to the original ones.

The stand-alone centralized version is approximately 4,000 lines of C++, in

about 100 classes and 20 �les. In the Corba version, only 5 of the classes were

made remotely accessible, but 500 lines needed to be changed. In the PerDiS

version, only 100 lines were changed.

Table 2 compares the three versions for various test sets and in various con-

�gurations. Compared to the stand-alone centralized version, performance is

low, but this is not surprising for a proof-of-concept platform. Compared to

a remote-object system, even a mature industrial product such as Orbix, the

PerDiS approach yields much better performance.3 Memory consumption in the

PerDiS version is almost identical to the stand-alone one, whereas the Corba

version consumes an order of magnitude more memory.

3 Note that in Table 2 the PerDiS numbers do not include commit times so that we can

compare them fairly with the numbers obtained with CORBA, which were obtained

without transactions.



Figure7. PX�g vs. X�g save time. The �gure compares the time to save drawings

using PX�g and X�g (PX�g local/remote = local/remote home site; X�g local/remote

= local �le/NFS �le)

In Table 2, Std-Alone represents the original, stand-alone application; PerDiS-

1 and 2 are the port to PerDiS; both processes run on the same machine, but the

cluster's home is either on the same node or on a di�erent one. Corba-1 and 2 are

the port to Corba, with the server running on the same machine as the client or

on another machine. Size represents the size of the SPF �le in kilobytes. Objects

is the number of objects in the SPF �le, of which Loops represents the number

of elementary polyloops. Execution times are in seconds. Allocation sizes are in

Kbytes, and allocation requests in thousands. The memory allocation numbers

for PerDiS and Corba add up the consumption of both processes.

The one-machine con�guration is a Pentium Pro at 200MHz runningWindows-

NT 4.0. It has 128 Mbyes of RAM and 100 Mbytes of swap space. In the two-

machine con�guration for Corba, the server runs on the same machine as above.

The client runs on a portable with a Pentium 230 MHz processor, 64 Mbytes

RAM and 75 Mbytes swap space, running Windows-NT 4.0. In the two-machine

con�guration for PerDiS, both processes run on the �rst machine, whereas its

home site is on the second one.

This experience con�rms our intuition: the persistent distributed store paradigm

performs better (in both time and space) than an industry-standard remote-



Figure8. PX�g vs. X�g open time. The �gure compares the time to open drawings

locally and remotely (PX�g hot/cold = hot/cold PD cache)

invocation system, for data sets and algorithms that are typical of distributed

VE applications. It also con�rms that porting existing code to PerDiS is straight-

forward and provides the bene�ts of sharing, distribution and persistence with

very little e�ort.

7.2 Persistent X�g

X�g is a simple drawing tool written in C, freely available on the Internet in

source code format. The version ported to PerDiS is X�g 3.2. We call our port

to PerDiS persistent X�g (PX�g).

We choose X�g because it is relatively simple and well-written. We expect it

to be representative of the behaviour of the class of drawing tools. PX�g allows

users to work together on a shared drawing. The port followed the guidelines

presented in Section 5.2.

To convert allocation in a transient heap to allocation in a persistent one, 191

lines of code were modi�ed (0.31% of total). 1809 lines were added to provide a

graphical interface, e.g. to open a cluster containing a drawing and to commit or

abort. We modi�ed 24 source �les, out of a total of 141, and we created 8 new



Table3. PX�g vs. X�g storage requirements. The �elds are: number of objects; size of

X�g text �le (KB) and size of PerDiS cluster (KB)

Objects X�g �le PX�g cluster

sample 1 4511 83.6 181.9

sample 2 21326 274.4 653.4

source �les. PX�g preserves the capability to work with classical X�g drawings.

Consequently, code to parse and 
atten X�g �le format remains in PX�g sources;

if we removed this backward compatibility, at least 4000 lines of code (6.3% of

total) could be deleted.

We present in Figures 7 and 8 a performance comparison between X�g and

PX�g. All the measurements were done on two Sun UltraSparcs at 140 Mhz with

128Mb of memory, running Solaris 2.5 and connected by a 100MB Ethernet. Two

complex X�g drawings, named sample1 and sample2 were used to measure basic

operation speed. Table 3 shows the size and number of graphics objects for each

sample.

For each test, the measurements were repeated with both the explicit and

compatible API but we found no signi�cant performance di�erences (in all cases

we have used only pessimistic transactions). Note also that the results for remote

open and remote save for classical X�g are based on NFS.

The conclusion of this experience is that X�g was quite easy to port, allowing

distributed cooperative edition of X�g drawings. Note the size increase between

X�g and PX�g �les in Table 3, which represents a negative (if not unexpected)

consequence of using a binary format. Performance of PX�g is acceptable for

an interactive drawing tool. We expect future optimizations of the platform to

improve performance signi�cantly.

7.3 Genome Application

LASSAP4 is an application that searches through a database of genome se-

quences for a match with a particular pattern. In the original implementation,

sequences are stored in a text �le, which LASSAP parses at each execution.

We ported LASSAP to PerDiS to see how our system will behave outside

the targeted application area. LASSAP should bene�t from PerDiS by running

multiple searchs in parallel without re-parsing the database every time.

The original version of LASSAP parses the data for a single sequence and

stores it into a statically-allocated object. This object is large enough for the

biggest possible sequence. After comparing one sequence, the next one overwrites

the previous one in the same location.

Porting LASSAP was far harder and less bene�cial than expected. For the

PerDiS port, we kept the same object type, but we dynamically allocate a new

object for each sequence. This in itself required major changes in the code. Since

4 LArge Scale Sequence compArison Package, http://www.gene-it.com



we did not change the object type, and the original is generously sized, a lot of

memory is wasted, causing poor performance because of the cost of allocation

and of the loss of locality. We don't present any �gures here because they do not

provide much insight.

This experience teaches us that applications that use overlayed static data

structures are not easy to port to PerDiS.

8 Related Work

Given that the distributed sharing of objects is an active research area, PerDiS

can be compared to many di�erent kinds of systems.

8.1 Distributed File Systems and DSMs

The di�erences between PerDiS and a distributed �le system (DFS) should now

be clear: Layer 1 of PerDiS provides a DFS; its other layers add support for

objects, for DSM functionality, and for language-speci�c functionality.5

Di�erences with a DSM are also clear. DSMs have been most successful in

supporting multi-threaded parallel programs, whereas PerDiS facilitates sharing

between di�erent programs.

Many of the ideas in PerDiS are direct descendents of the so-called Single-

Address Space Operating Systems (SASOS) such as Opal [11], Grasshopper [14],

or EOS [22]. The main di�erence with PerDiS lies in the integration of persis-

tent object systems and object-oriented database concepts, e.g., transactions,

persistence by reachability and garbage collection. This is why our system uses

transactions and incorporates a security architecture. We also provide persis-

tence by reachability, essential for the long-term safety of the store.

8.2 Object-oriented databases, persistent object systems and

object-based systems

Object-oriented databases (OODBs) [35] such as O2 [15], Thor [25], GemStone

[9], or ObjectStore [24] share many of the same goals as PerDiS. OODBs sup-

port complex data types, persistently preserving the structure and type of data.

However, they are very heavyweight, and often come with their own specialized

programming language.

Moreover, an OODB typically manages a database as a tightly encapsulated

data unit, residing on a speci�c server entrusted with crucial functions such

as security, recovery and schema enforcement. Transactions can access multi-

ple databases, but this is an infrequent and heavyweight action. In contrast,

5 Let us emphasize that, in contrast to well-known DFSs such as NFS, AFS, or Sprite,

our Layer 1 is a transactional and secure DFS. Our experience shows that trans-

actions cannot be eÆciently layered on top of a standard DFS, and that security

permeates the whole system and cannot be added as an afterthought.



the PerDiS shared object world is di�use, being composed of clusters which are

dynamically opened according to application navigation. PerDiS accommodates

this world of data without frontiers by distributing server functions across co-

operative caches, performing schema validation incrementally, and permitting

applications to customize their transaction semantics.

As an example, compare PerDiS and ObjectStore. Both provide coherent

distributed access to shared objects, exploit client caching, and rely on page fault

interception to swizzle pointers. However, ObjectStore is a full-featured system

for database management, whereas PerDiS is intended to support object sharing

for a diverse range of applications, of which CAD is the primary motivating

example.

Persistent object systems such as Mneme [26], Shore [10], Texas [31] and

PJama [28] have a similar lightweight approach to PerDiS. However, most of

these such systems do not address the issues of distribution and security, they

are mostly client-server based, and are limited to traditional transaction models

which are too restrictive to the applications we are considering.

Object-based systems such as Comandos [32], SOS [30], or Emerald [7], for

example, have tried to simplify the construction of applications that handle

persistent and distributed data. However, they do not support replicated data,

they are mostly client-server based, objects are acessed by remote invocation,

and security has not been fully considered from the beginning.

8.3 Remote Object Systems

Remote object systems such as Corba [16], DCOM [29] or Java RMI [34] let

a client invoke objects located on a remote server by Remote Procedure Call

(RPC) [6]. RPC solves the problems of identi�cation and remote access. How-

ever, every remote data access is burdened with communication to the server,

which becomes a performance and availability bottleneck. This makes the client-

server architecture inadequate for interactive CAD and cooperative applications,

especially upon the WAN connections typical of a VE. In addition, RPC does

not support coherence of data viewed by multiple clients. Finally, it imposes an

interface de�nition language to program remote data access, separate from the

programming language. Some of the above systems provide transactional and/or

persistence services, but they are poorly integrated into the system, being very

heavy-weight and awkward to use.

9 Future Work

Concurrent engineering transactions are of long duration; they sometimes need

to read data that is being actively modi�ed by another transaction. They are

interactive, implying that aborts are perceived as intolerable by users.

In future work, we plan to allow a transaction that would abort under the

standard ACID policy, to be committed tentatively until its results are either



reconciled with the store or de�nitely abandoned. Thus, the work done within a

transaction might not be completely lost.

We also have a list of functionalities which are planned for future research.

These include support for versioning and reconciliation of write con
icts, sharing

data between heterogeneous machine types, schema evolution, and automatic

reclustering. We plan to provide each cluster with its own choice of policies, for

replication and coherence control, concurrency control, swizzling and garbage

collection.

Some open questions remain. For instance, persistence by reachability is the

cleanest persistence model, but it is not clear how programmers can make the

most e�ective use of it.

10 Conclusion

We presented PerDiS, a new persistent distributed store providing support for

cooperative applications in the framework of a virtual enterprise.

PerDiS automatically manages distribution, persistence, memory manage-

ment, caching and security in a well de�ned, integrated, and automatic way.

Distributed programming is very simple because PerDiS provides the same mem-

ory abstraction as in the centralized case. Although on the one hand the platform

provides transparency to programmers who prefer to let the system take care of

the diÆcult issues, it also provides powerful primitives that provide full control

to the knowledgeable application programmer.

PerDiS integrates in a novel fashion di�erent techniques, such as distributed

shared memory, transactions, security, and distributed garbage collection. This

unique combination makes porting of existing centralizaed applications very easy.

In addition, these applications have an increased functionality because they can

make full use of PerDiS. We also achieve good overall performance because we

cache data, taking advantage of the locality characteristics of the application

area.
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