
Cure: Strong semantics meets high availability and low

latency

Deepthi Devaki Akkoorath, Alejandro Tomsic, Manuel Bravo, Zhongmiao Li,

Tyler Crain, Annette Bieniusa, Nuno Preguiça, Marc Shapiro

To cite this version:

Deepthi Devaki Akkoorath, Alejandro Tomsic, Manuel Bravo, Zhongmiao Li, Tyler Crain, et al..
Cure: Strong semantics meets high availability and low latency. [Research Report] RR-8858,
INRIA; Paris 6. 2016. <hal-01270776v2>

HAL Id: hal-01270776

https://hal.inria.fr/hal-01270776v2

Submitted on 19 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
enti�c research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destin�ee au d�epôt et �a la di�usion de documents
scienti�ques de niveau recherche, publi�es ou non,
�emanant des �etablissements d’enseignement et de
recherche fran�cais ou �etrangers, des laboratoires
publics ou priv�es.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01270776v2

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

58
--

FR
+E

N
G

RESEARCH
REPORT
N° 8858
January 2016

Project-Teams REGAL

Cure: Strong semantics
meets high availability
and low latency
Deepthi Devaki Akkoorath, Alejandro Tomsic, Manuel Bravo,
Zhongmiao Li, Tyler Crain, Annette Bieniusa, Nuno Preguiça, Marc
Shapiro

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Cure: Strong semantics meets high availability and
low latency

Deepthi Devaki Akkoorath*, Alejandro Tomsic†, Manuel Bravo‡,

Zhongmiao Li‡, Tyler Crain†, Annette Bieniusa*, Nuno Preguiça§,
Marc Shapiro†

Project-Teams REGAL

Research Report n° 8858 — January 2016 — 19 pages

Abstract: Developers of cloud-scale applications face a difficult decision of which kind of storage to use,
summarised by the CAP theorem. Currently, the choice is between classical CP databases, which provide
strong guarantees but are slow, expensive, and unavailable under partition; and NoSQL-style AP databases,
which are fast and available, but too hard to program against. We present an alternative: Cure provides
the highest level of guarantees that remains compatible with availability. These guarantees include: causal
consistency (no ordering anomalies), atomicity (consistent multi-key updates), and high-level data types
(developer friendly) with safe resolution of concurrent updates (guaranteeing convergence). These guar-
antees minimise the anomalies caused by parallelism and distribution, and facilitate the development of
applications. This report presents the protocols for highly available transactions, and an experimental eval-
uation showing that Cure is able to achieve performance similar to eventually-consistent NoSQL databases,
while providing stronger guarantees.

Key-words: Causal+ Consistency, Distributed Transactions, Distributed Data Store, CRDT

* University of Kaiserslautern
† Inria & LIP6-UPMC-Sorbonne Universités
‡ Université Catholique de Louvain
§ NOVA LINCS

Cure: Comment assurer une sémantique forte en même temps
qu’une disponibilité élevée et une latence faible

Résumé : Les développeurs d’application à très grande échelle (dans le nuage) doivent prendre la
difficile décision de quel type de stockage utiliser, selon le théorème CAP. Aujourd’hui, ils n’ont le choix
qu’entre les bases de données classiques de type CP, qui donnent des garanties fortes, mais sont lentes,
chères, et non disponible en cas de partition réseau ; et les bases de données NoSQL de type AP, qui sont
rapides et disponibles, mais complexifient le développement applicatif. Nous proposons une troisième
voie : la base de données répartie Cure, qui offre les garanties les plus fortes compatibles avec la dispo-
nibilité. Il s’agit des garanties suivantes : cohérence causale (pas d’ordonnancement anormal), atomicité
(mises-à-jour multi-clefs mutuellement cohérentes), et types de données de haut niveau (aidant les dé-
veloppeurs) avec résolution sûre des mises-à-jour concurrentes (garantie de convergence). Ces garanties
minimisent les anomalies causées par le parallélisme et la répartition, et facilitent le développement ap-
plicatif. Ce rapport présente les protocoles utilisés pour rendre les transactions hautement disponibles,
ainsi qu’une évaluation expérimentale, qui montre que Cure atteint des performances proches des bases
de données NoSQL à cohérence à terme, tout en offrant des garanties plus fortes.

Mots-clés : Cohérence causale, transactions réparties, stockage de données distribué, CRDT

Cure: Strong semantics meets high availability and low latency 3

1 Introduction
Internet-scale applications are typically layered above a high-performance distributed database engine
running in a data centre (DC). A recent trend is geo-replication across several DCs, in order to avoid
wide-area network latency and to tolerate downtime. This scenario poses big challenges to the distrib-
uted database. Since network failures (called partitions) are unavoidable, according to the CAP theorem
[23] the database design must sacrifice either strong consistency or availability. Traditional databases are
“CP;” they provide consistency and a high-level SQL interface, but lose availability. NoSQL-style data-
bases are “AP,” highly available, which brings significant performance benefits: for instance, one of the
critical services of the Bet365 application saw its latency decrease by 45�, from 90 minutes to 2 minutes
on the same hardware, when moving from MySQL to Riak [30]. However, AP-databases provide only a
low-level key-value interface and expose application developers to inconsistency anomalies.

To alleviate this problem, recent work has focused on enhancing AP designs with stronger semantics
[27, 28, 33]. This paper presents Cure, our contribution in this direction. While providing availability and
performance, Cure supports: (i) causal consistency, ensuring that if one update happens before another,
they will be observed in the same order, (ii) transactions, ensuring that multiple keys (objects) are both
read and written consistently, in an interactive manner, and (iii) high-level replicated data types (CRDTs)
such as counters, sets, tables and sequences, with an inuitive semantics and guaranteed convergence even
in the presence of concurrency and partial failures.

Causal consistency [6, 27] represents a sweet spot in the availability-consistency tradeoff. It is the
strongest model compatible with availability [8] for individual operations. As it ensures that the causal
order of the operations is respected, it is easier to reason about for programmers and users. Consider, for
instance, a user who posts a new photo to her social network profile, then comments on the photo on her
wall. Without causal consistency, a user might observe the comment but not be able to see the photo,
which requires extra programming effort at the application level; with causal consistency, this cannot
happen.

Performing multiple operations in a transaction enables to maintain relations between multiple objects
or keys. The operations in a transaction should read from the same snapshot, and any database state
contains either all updates of a given transaction, or none (atomicity). Highly Available Transactions
(HATs) eschew the traditional isolation property, which requires synchronisation, in favour of availability
[9, 15]. Existing HAT implementations provide either snapshots [7, 20, 22, 27, 28] or atomicity [11, 28];
Cure transactions have both. A Cure transaction is interactive, i.e., the objects it accesses need not be
known in advance, unlike the above mentioned recent systems [33]. This is desirable for scenarios where
a user first looks up some information, then acts upon it: with non-interactive transactions, this requires
two separate transactions. For instance, Alice who is enrolling in university, selects a course from list of
available courses, then checks if Sally is enrolled in it. A non-interactive system requires two transactions,
and second one could fail if the course is not available any more, whereas a single interactive transaction
would guarantee both actions occur or neither.

Cure supports conflict-free replicated data types (CRDTs) [32]. CRDTs are guaranteed to converge
despite concurrent updates and failures. CRDT abstractions such as counters, sets, maps/tables and se-
quences are more developer-friendly, but require more underlying mechanism, than the usual key-value
interface with last-writer-wins conflict resolution. For instance, the Bet365 developers report that using
Set CRDTs changed their life, freeing them from low-level detail and from having to compensate for
concurrency anomalies [29].

Combined, the above features make life much easier for developers. The developer may attempt to
compensate for their absence with ad-hoc mechanisms at the application level, but this is tricky and error
prone [10].

Finally, Cure implements a new approach to support parallelism between servers within the data
centre, and to minimising the overhead for causal consistency in inter-DC traffic. Instead of the usual

RR n° 8858

Cure: Strong semantics meets high availability and low latency 4

x; y 2 O Objects
Ti, for i 2 N Transaction with unique id i
ui(x) 2 U Transaction Ti updates x

ri(x) Transaction Ti reads x
S � U Snapshot of the replica
Sr(i) Snapshot read by Ti

ws(i) Updates of Ti

Table 1 – Notation.

approach of checking whether a received update satisfies the causality conditions, which requires to wait
for a response from a remote server, Cure makes updates visible in batches that are known to be safe
[22]. Cure improves on previous work by represent causal dependencies as a single scalar per DC, thus
reducing overhead, improving freshness and improving resilience to network partitions.

The contributions of this paper are the following:
• a novel programming model, based on highly-available transactions, with interactive reads and

writes and high-level, confluent data types (§3);
• a high-performance protocol, supporting this programming model for geo-replicated datastores

(§4);
• a comprehensive evaluation, comparing our approach to state-of-the-art data stores (§5).

2 Background and Definitions
We introduce theoretical background and definitions supporting our system.

We first define causal consistency, and later extend the definition to transactions, that combines read
and update operations. Finally, we discuss convergent conflict handling and the CRDT approach to
address it. Table1 shows the notations used.

2.1 Causal Consistency
For two operations a and b, we say b causally depends on a (or a is a causal dependency of b), expressed
a b, if any of the following conditions hold:

• Thread-of-execution: a and b are operations in a single thread of execution, and a happens before
b.

• Reads-from: a is a write operation, b is a read operation, and b reads the value written by a.

• Transitivity: If a b and b c, then a c.

Accordingly, we say that a data store is causally consistent if, when an update is visible to a client, all
causal dependencies of this update operation are also visible. For example, if at a given replica, Bob, a
user of a social network, removes Alice from his friend’s list and later makes a post on his wall (Alice’s
removal post), then Alice cannot see this post as the removal from the friend list causally precedes the
posting on the wall.

2.2 Transactional Causal Consistency
For Cure, we consider a transactional variant of causal consistency to support multi-object operations: all
the reads of a causal transaction are issued on the same causally consistent snapshot, and either all of a

RR n° 8858

Cure: Strong semantics meets high availability and low latency 5

transaction’s updates are visible, or none is.
A transaction Ti executes on a snapshot Sr(i), namely 8x; ri(x) returns a set fuj(x)juj(x) 2 Sr(i)g.
The set of all consistent snapshots is denoted as �CONS. A snapshot S 2 �CONS if and only if it satisfies

the following properties:

• Atomicity: uj(x) 2 S) 8uj(y) 2 ws(j); uj(y) 2 S

• Consistency: If an update is included in a snapshot, all it causal dependencies are also in the
snapshot.

8ui(x) 2 S; uj(y) 7 u ui(x)) uj(y) 2 S

A system of replicas is transactionally causal consistent if all transactions execute on a consistent
snapshot: 8Ti;Sr(i) 2 �CONS.

2.3 Convergent conflict handling
Concurrent operations are not ordered under causal consistency; two causally unrelated operations can be
replicated in any order in a weakly consistent system such as Cure, avoiding the need for synchronisation.
If two concurrent operations, however, update the same key, then they are in conflict and can lead to
divergence of the system. Such a condition usually requires ad-hoc handling in the application logic
[19, 31, 35].

Alternatively, an automatic conflict handling mechanism can be employed to handle conflicts determ-
inistically, in the same fashion, at every replica. Many existing causal+ consistent systems adopt the
last-writer-wins rule [22, 27, 28], where the updates occurred "last" overwrites the previous ones.

We rely on CRDTs, high-level data types that guarantee confluence and have rich semantics [16, 32].
Operations on CRDTs are not register-like assignments, but methods corresponding to a CRDT object’s
type. CRDTs include sets, counters, maps, LWW registers, lists, graphs, among others. As an example,
a set supports add(item) and remove(item) operations. The implementation of a CRDT set will guarantee
that no matter in which order add and remove occur, the state of the set will converge at different replicas.

3 Cure Overview
We assume a distributed key-value data store that handles a very large number of data items, namely
objects. The full set of objects, namely key-space, is replicated across different geo-locations to provide
availability, low latency, and scalability. We refer to each of this geo-locations as data centre. There is
a total of D data centres. Each of the data centres is partitioned in N parts. pm

j denotes partition m of
data centre j. Thus, each partition within a data centre is responsible for a non overlapping subset of
the key-space. We assume that every data centre employs the same partitioning scheme. Clients interact
through the key-value data store.

The rest of the section firstly described the goals of Cure and briefly explains how we tackle them in
its design. We then describe the system architecture and, finally, we present Cure programming interface.

3.1 Cure Goals and System Overview
Cure’s design aims at enhancing the scalability of the system in two dimensions: (i) as the number of
machines increase within a data centre, and (ii) as the number of data centres increases.

To meet this scalability goal, our protocol adopts two key design decisions. First, the protocol de-
couples the inter-data-centre synchronisation from the intra-data-centre visibility mechanism. The main
idea is to avoid using a centralised timestamp authority which would concentrate a large amount of load

RR n° 8858

Cure: Strong semantics meets high availability and low latency 6

and become a potential bottleneck. Note that for a transactional causally consistent system, this cent-
ralized timestamp authority would be responsible for assigning commit timestamps and making both
remote and local updates visible, in a causally consistent manner while enforcing isolation and atomicity
of transactions. Our protocol completely eliminates the centralized timestamp authority and distributes
the responsibility of the previously listed tasks across the partitions. Second, it has been empirically
demonstrated that basing the implementation of causal consistency on explicit dependency check mes-
sages substantially penalizes system performance [22]. Thus, our protocol relies on a global stabilization
mechanism that supplies partitions with enough information to take decision locally without violating
causality.

The Cure protocol is inspired by Clock-SI [21], which we extended and modified to achieve Trans-
actional Causal+ Consistency in a partitioned and geo-replicated system with support for high-level data
types with rich confluent semantics (CRDTs). Furthermore, the global stabilization mechanism used by
the protocol is inspired by the one proposed in GentleRain [22]. In addition, we extend the metadata used
to enforce causal consistency to improve data freshness under network partitions and data centre failures.

Our protocol assumes that each partition is equipped with a physical clock. Clocks are loosely syn-
chronized by a time synchronization protocol, such as NTP [3], and each clock generates monotonically
increasing timestamps. The correctness of the protocol does not depend on the synchronization precision.

3.2 Architecture
Each partition in Cure mainly consists of the following four components (Figure 1):

• Log: This module implements a log-based persistent layer. Updates are stored in a log, which is
persisted to disk for durability. The module also internally maintains a cache layer in order to make
accesses to the log faster.

• Materializer: This module is responsible for generating the versions of the objects out of the
updates issued by clients. The module is placed between the Log and the Transaction Manager
modules. The goal of the Materializer is to have the versions required by the Transaction Manager
prepared before they are requested. The implementation of this module is cumbersome due to the
extra difficulties posed by the integration of CRDTs into a multi-versioning data store. The module
also incorporates some pruning mechanisms in order to avoid penalizing system’s performance
over time.

• Transaction Manager: This module implements the transactional protocol of Cure (precisely
described in §4). It receives client’s requests, executes and coordinates transactions, and replies
back to clients with the outcome. It communicates to the materializer in order to read objects and
write new updates.

• InterDC Replication: This module is in charge of fetching updates from the Log, and propagating
them to other data centres. Communication is done partition-wise.

3.3 Programming Interface
Cure offers a transactional interface to clients with the following operations:

• TxId start_transaction(CausalClock) initiates a transaction that causally depends
on all updates issued before CausalClock. It returns a transaction handle that is used when is-
suing reads and updates.

RR n° 8858

Cure: Strong semantics meets high availability and low latency 7

Figure 1 – Cure’s Architecture

• Values read_objects(Keys, TxId) returns the list of values that correspond to the
state of the objects stored under the Keys in the version given in the transaction’s snapshot.

• update_objects(Updates, TxId) declares a list of Updates for a transaction.

• commit_transaction(TxId) commits the transaction under transaction handler TxId and
makes the updates visible.

• abort_transaction(TxId) discards the updates and aborts the transaction.

Reads and updates can be composed in an arbitrary way, thus supporting flexible and dynamic interaction
with the system.

4 Protocol Description
In this section we present the transactional protocol used by Cure. The protocol assigns to all consistent
snapshots an id �(S) 2 T , � : �CONS ! T . T = fvjv is a vector of size D}.

Each partition pm
j maintains the following state (Table 2): a vector clock pvcm

j that denotes the latest
snapshot available at partitionm in DC j; a pvcm

j [j] which corresponds to the partition’s local data centre
j and its value is assigned from partition’s physical clock. Furthermore, each partition maintains another
vector clock ssj that denotes the latest consistent snapshot that pm

j knows to be available in all partitions
of its data centre j. The state maintained by each transaction is summarized in Table 3.

Transactions are executed in two steps: 1) A consistent read algorithm guaranteeing that reads are
from consistent snapshot; 2) a transaction execution and replication protocol ensuring that the vector
clock of each partition pvcm

j is correct.
The protocol implements a multiversioning system: If snapshot S is available in a replica then 8S 0 �

S, S 0 is also available.

4.1 Read protocol
The read protocol provides causally consistent snapshots to transactions across multiple partitions. There
are two main aspects to discuss: (i) the assignment of transaction’s consistent snapshot, and (ii) safely

RR n° 8858

Cure: Strong semantics meets high availability and low latency 8

pcm
j current partition’s physical clock

pvcm
j time denoting the latest snapshot available in pm

j

ssj �(s), where s is the latest snapshot available in all partitions of DC j

Table 2 – Partition pm
j state

T:vs 2 T vector clock representing causally
preceding snapshot of T

T:dc 2 f1::Dg DC in which T was executed and
committed

T:c 2 T vector clock which denotes the
commit-time of T .

Table 3 – Transaction T state

making snapshots available at partitions.
Assignment of consistent snapshot. A transaction is first assigned a snapshot time denoted by T:vs

(Alg. 1 line 13). This snapshot is carefully chosen not to violate causal consistency across transactions of
the same client. Thus, client STARTTRANSACTION request piggybacks the largest snapshot seen by that
client (Alg. 1 line 9). The protocol makes sure that the snapshot being assigned to the new transaction
includes all previous snapshots seen by the client (Alg. 1 line 5).

Safe reads. When a partitionm receives a read request, it has to make sure that the requested snapshot
is available locally. A snapshot being available means that once the key’s snapshot version is returned no
further transactions can commit in that or in a previous snapshot. Our protocol masks this into the pvcm

j .
Thus, it waits until its pvcm

j � T:vs (Alg 2, line 6). What remains to discuss is how the protocol ensures
that pvcm

j only denotes available snapshots. The next subsection addresses this question.
Note that if a transaction reads from multiple partitions, it reads from the partial snapshots of the same

snapshot, which is identified by T:vs. Thus the snapshot observed by the transactions 2 �CONS.

4.2 Maintaining Correctness of pvcm
j

In order to guarantee that the read protocol always serves consistent snapshots, pvcm
j has to be updated

correctly, when a transaction is successfully committed and updates from a remote DC are received.

Definition 1. pvcm
j is said to be correct if, 8S 2 �CONS : �(S) � pvcm

j) pm(S) � S(pm
j). S(pm

j)
denotes the partial snapshot available currently in pm

j .

Local Commit Protocol. Cure uses a two-phase-commit protocol. First, the coordinator requests
prepare timestamps from all partitions involved in the transaction (Alg. 1 lines 29-32). Each partition m
replies with the current value of pcm

j as its proposed commit-timestamp for Ti denoted by ptmj (i) (Alg.
2 line 11). The local commit-time lci is calculated as max(ptmj (i))8pm 2 Ti:UpdatedPartitions (Alg. 1
line 33). The commit-time of the transaction is generated from T:vs and setting its jth entry to lci. The
coordinator then sends commit messages to Ti.UpdatedPartitions. ws(i) is then included in all snapshots
with id � Ti:c.

Note that when a partition pm
j receives a read/update request from the transaction coordinator of Ti,

it waits until pvcm
j � Ti:vs before executing the request (Alg. 2 line 2). This ensures that no transaction

which has not started its commit phase and that involves pm
j will ever commit in a snapshot which is

suppose to be included in Ti read snapshot.
What remains to prove, regarding the correctness of pvcm

j , is whether transactions which are already
in their commit phase and involve pm

j may commit before Ti read snapshot. The new pvcm
j is calculated

RR n° 8858

Cure: Strong semantics meets high availability and low latency 9

Algorithm 1 Transaction coordinator TC in partition k, DC j

1: function GETSNAPSHOTTIME(Clock cc)
2: for all i = 0::D � 1; i 6= j do
3: vs[i] = ssj [i]
4: end for
5: vs[j] = max(pck

j ; cc[j])
6: return vs
7: end function
8:
9: function STARTTRANSACTION(Transaction T , Clock cc)

10: for all i = 0::D � 1; i 6= j do
11: wait until cc[i] � ssj [i]
12: end for
13: T:vs = GETSNAPSHOTTIME(cc)
14: return T
15: end function
16:
17: function UPDATE(Transaction T , Key k, Operation u)
18: p = partition(k)
19: T .UpdatedPartitions = T .UpdatedPartitions [fpg
20: send EXECUTEUPDATE(T , k, u) to p
21: end function
22:
23: function READ(Transaction T , Key k)
24: p = partition(k)
25: send READKEY(T , k) to p
26: end function
27:
28: function DISTRIBUTEDCOMMIT(T)
29: for all p 2 T .UpdatedPartitions do
30: send PREPARE(T) to p
31: wait until receiving (T , prepared, timestamp) from p
32: end for
33: CommitTime = max(received timestamps)
34: T:c = T:vs
35: T:c[j] = CommitTime
36: T:dc = j
37: for all p 2 T .UpdatedPartitions do
38: send COMMIT(T) to p
39: end for
40: end function

RR n° 8858

Cure: Strong semantics meets high availability and low latency 10

Algorithm 2 Transaction execution at partition m, DC j

1: function EXECUTEUPDATE(Transaction T , Update u)
2: wait until T:vs[j] � pcm

j

3: log u
4: end function
5: function READKEY(Transaction T , Key K)
6: wait until T:vs[j] � pvcm

j [j]
7: return snapshot(K, T:vs)
8: end function
9:

10: function PREPARE(Transaction T)
11: prepareTime = pcm

j

12: preparedTransactionsm
j .add(T , prepareTime)

13: send (T , prepared, prepareTime) to T ’s coordinator
14: end function
15:
16: function COMMIT(transaction T)
17: log (T , commit, T:c; T:vs)
18: preparedTransactionsm

j .remove(T)
19: end function
20:
21: function UPDATECLOCK

22: if preparedTransactionsm
j 6= ? then

23: timestamps = Get prepare timestamps in preparedTransactionsm
j

24: pvcm
j [j] = min(timestamps)� 1

25: else
26: pvcm

j [j] = pcm
j

27: end if
28: end function

by the function UpdateClock (Alg. 2, line 21). The minimum of prepared timestamps of the transactions
in prepared phase is identified. Since the physical clock is monotonically increasing, it is guaranteed
that new prepare requests would receive newer clock times. Hence no new transaction will commit in
partition pm

j with a time less than the current minimum prepared timestamp. Thus, setting the pvcm
j [j] to

the minimum prepared timestamp guarantees that 8Ti; Ti:c � pvcm
j) ws(i) � S(pm

j). Thus pvcm
j is

correct.
Replication Algorithm. Once a transaction is committed locally, its update are asynchronously rep-

licated to other data centres. A partition pm
j sends updates to pm

k independently of other partitions. A
partition is responsible to send only the updates to the keys that are responsible to that partition. Ti=p

m

denotes the set of updates of Ti that belongs to pm, i.e. fui(x)jx 2 pmg.
The updates are send in T:c[j] order. When pm

k receives updates Ti=p
m from pm

j , Ti=p
m is put in to a

queue qm
k [j]. A transaction T = head(qm

k [j]) is applied if T:vs � pvcm
k . This guarantees that the causal

dependency is satisfied and the new partial snapshot is consistent. Since the updates are send in the order:
6 9T : pvcm

k [j] < T:c[j] < Ti:c[j] ^ (T 62 qm
k [j] _ T is not already applied. So we can safely set pvcm

k [j]
to T:c[j].

The local transaction execution at pm
j updates the entry pvcm

j [j] correctly, and the replication al-
gorithm updates the entry for remote data centres correctly whenever it receives updates from other data
centres. Thus it is guaranteed that whenever pvcm

j = s, a transaction can safely read a consistent snapshot
with id � s, thus guaranteeing Transactional Causal Consistency.

RR n° 8858

Cure: Strong semantics meets high availability and low latency 11

Algorithm 3 Replication Algorithm at the sender, running in partition pm
i

1: function REPLICATETODC(j)
2: loop
3: t = pvcm

i [i]
4: Transactions = {T | T:c[i] � t, T:dc = i, not propagated to DC j yet g
5: if Transactions = ? then
6: heartbeat = new Transaction()
7: heartbeat.c[i] = t
8: heartbeat.dc = i
9: heartbeat.vs = pvcm

i

10: send heartbeat to pm
j

11: else
12: sort Transactions in ascending order of T:c[i]
13: send Transactions to DC j
14: end if
15: end loop
16: end function

4.3 Extensions
We have extended the basic protocol as follows in order to guarantee progress, wait-free snapshot reads
and guarantee monotonic reads even when clients connects to different data centres.

First we introduce stable snapshot ssj which denotes the latest snapshot available at all partition in
data centre j. ssj is calculated in Alg 4, lines 22-26. As we have seen in the replication protocol, each
partition is replicated independently of other partitions. This may result in some partitions having more
recent snapshots and other partitions having older snapshots. This might require a transaction which
reads a later snapshot from a partition to wait until it can read from another partition which has an older
snapshot. In order to avoid this waiting, the transaction’s snapshot time is assigned from ssj . Since the
clocks of partitions within the same data centre are less likely to be out of sync for a long time, we can
assign T:vs[j] to be the physical clock of the partition running the transaction coordinator, so that T can
see the latest committed transactions in data centre j.

Secondly, in case of data centre failures, clients can optionally move to other data centre and provide
its cc, which is the last observed snapshot by the client. If a client clock cc is provided, the transaction
coordinator would wait until the stable snapshot of data centre j has reached cc, ensuring that clients will
always observe monotonically increasing snapshots.

Third, if a partition pm
j does not execute any new transaction for a long time, the remote partition pm

k ’s
entry pvcm

k [j] will not be increased, resulting in a large gap compared to vector clocks of other partitions.
Then the value of ssk[j] will not be updated, resulting in transactions reading old snapshots. In order to
avoid this, partitions send a periodic heartbeat message with their latest pvcm

j to other remote partitions.

5 Evaluation
In this section, we evaluate Cure’s implementation in terms of latency, throughput, and remote update
visibility latency under different workloads and number of partitions. We compare Cure to Eventual Con-
sistency (EC) and an implementation of state-of-art causal consistency, i.e., Eiger [28] and GentleRain
[22].

RR n° 8858

Cure: Strong semantics meets high availability and low latency 12

Algorithm 4 Replication Algorithm at the receiver, running in partition pm
j

1: queue[i]: A queue for transactions received from DC i
2:
3: function RECEIVETRANSACTION(ListofTransactions Transactions, DC i)
4: for all T in Transactions do
5: enqueue(queue[i], T)
6: end for
7: end function
8:
9: function PROCESSQUEUE(i)

10: . This function is repeatedly called to process transactions from DC i
11: T = getFirst(queue[i])
12: T:vs[i] = 0
13: if T:vs � pvcm

j then
14: if T is not a heartbeat then
15: log T
16: end if
17: pvcm

j [i] = T:c[i])
18: remove T from queue[i]
19: end if
20: end function
21:
22: function CALCULATESTABLESNAPSHOT

23: for all j = 0::D � 1 do
24: ssi[j] = mink=0:::P �1 pvck

i [j]
25: end for
26: end function

RR n° 8858

Cure: Strong semantics meets high availability and low latency 13

5.1 Setup
We build Cure on top of Antidote [1], an open-source reference platform that we have created for fairly
evaluating distributed consistency protocols. The platform is built using the Erlang/OTP programming
language, a functional language designed for concurrency and distribution. To partition the set of keys
across distributed physical servers we use riak-core [4], an open source distribution platform using a
ring-like distributed hash table (DHT), partitioning keys using consistent hashing. Key-value pairs are
stored in an in-memory hash table with updates being persisted to an on disk operation log using Erlang’s
disk-log module.

In addition to Cure, we have implemented eventual consistency, Eiger and GentleRain for comparison.
Our implementation of Eventual consistency is a single-versioned key-value store, supporting last-write
wins registers, where the ordering of concurrent updates is determined by local physical clocks. Eiger
supports causal consistency using last-write wins registers and tracks one-hop nearest dependencies, re-
quiring explicit dependency checks. GentleRain supports causal consistency using a global stable time
mechanism, requiring all-to-all communication for updates from external DCs to become visible (local
updates are visible immediately). In addition to last-write wins registers, Cure and GentleRain support
CRDT objects. All three causally consistent protocols provide (static) read-only and atomic update trans-
actions, with Cure additionally supporting interactive read and update transactions as described in section
3.3.

Objects in Cure, Eiger, and GentleRain are multi-versioned. For each key, a linked-list of recent
updates and snapshots is stored in memory with old versions being garbage collected when necessary. An
update operation appends a new version of the object to the in-memory list and asynchronously writes a
record to the operation log. If a client requests a version of an object that is no longer available in memory
then it is retrieved from the operation log on disk.

Hardware All experiments are run on the Grid5000 [24] experimental platform using dedicated servers.
Each server runs 2 Intel Xeon E5520 CPUs with 4 cores/CPU, 24GB RAM, and 119GB SSDs for storage.
Nodes are connected through shared 10Gbps switches with average round trip latencies of around 0.5ms.
NTP is run between all machines to keep physical clocks synchronized [3].

All experiments are run using 3 DCs with a variable number of servers per DC. Nodes within the
same DC communicate using the distributed message passing framework of Erlang/OTP running over
TCP. Connections across separate DCs use ZeroMQ [5] sockets running TCP, with each node connecting
to all other nodes to avoid any centralization bottlenecks. To simulate the DCs being geo-located we add
a 50ms delay to all messages sent over ZeroMQ. Lost messages are detected at the application level and
resent.

Workload generation The data set used in the experiments includes ten thousand key-value pairs per
partition (where the number of partitions is equal to the number of servers per DC) with each pair being
replicated at all 3 DCs. All objects are last-write wins registers with eight byte keys and ten bytes values.

A custom version of Basho Bench [2] is used to generate workloads with clients repeatably run-
ning single operation transactions of either a read or an update using a uniform random distribution over
all keys. The ratio of reads and updates is varied depending on the benchmark. For Cure, Eiger, and
GentleRain dependencies for ensuring causality are stored at each client, and are sent with each request
and updated on commit. Clients are run on their own physical machines with a ratio of one client server
per three Antidote servers with each client server using 120 processes to send requests at full load. Each
instance of the benchmark is run for two minutes with the first minute being used as a warm up period.
Google’s Protocol Buffer interface is used to serialize messages between Basho Bench clients and Anti-
dote servers.

RR n° 8858

Cure: Strong semantics meets high availability and low latency 14

Figure 2 – Scalability of Cure using 3 DCs with 3 and 6 nodes per DC

5.2 Cure’s scalability
To evaluate the scalability of Cure (figure 2) we run a 3 DC configuration with 3 and 6 servers per DCs (9
and 18 Cure servers in total). In both cases the read/update ratio is varied from a 99 percent read workload
to a 99 percent update workload. For all workloads Cure scales approximately linearly when going from 3
to 6 nodes. Specifically in the 99 percent read workload the throughput increases from 111196 ops/second
to 192208 ops/sec (a 1:73x increase) and in the 99 percent update workload the throughput increases from
30326 ops/sec to 51971 ops/sec (a 1:71x increase). This increase in scalability is expected as transactions
are completely distributed and only the stable time calculation becomes more expensive as the number
of servers increases. To calculate the stable time each node within a DC broadcasts it vector to the nodes
within the DC at a frequency of 100ms. Additionally, heartbeats between DCs are sent at a rate of 100ms
in the absence of updates. Using these intervals, most updates become visible in external DCs after
approximately 200ms.

The median latency for reads is about 1ms for all workloads with the latency for writes increasing
from 3ms to 5ms as the update ratio increases. The writes are more expensive than the reads as they
require both updating in memory data structures and writing to disk. Additionally, given that all updates
are replicated 3 times they create a much larger load on the system than reads.

Figure 3 – Comparison of Cure with other systems using 3 DCs

RR n° 8858

Cure: Strong semantics meets high availability and low latency 15

5.3 Comparison to other systems
To evaluate the performance of Cure (figure 3) when compared to other protocols we run a 3 DC bench-
mark with 6 servers per DC, varying the update and read ratio. Unsurprisingly eventual consistency
performs better than all other protocols in all workloads, outperforming Cure by approximately 30 per-
cent across all workloads. Both reads and updates are cheaper in eventual consistency as they are single
versioned and do not require causal dependency calculations.

In the 99 percent read workload Eiger outperforms both Cure and GentleRain, achieving performance
closer to eventual consistency. Both Cure and GentleRain have the overhead of periodically calculating
the stable time and well as calculating calculating slightly stale versions of objects, which is not necessary
in Eiger.

As soon as the update rate is increased to 10 percent, the cost of explicitly checking dependencies
overtakes the cost of calculating the stable time and the throughput of Eiger drops below that of the
other protocols. This trend continues and remains throughout the high update rate workloads. At the 50
percent update workload Eiger performs approximately 40 percent slower than Cure but it catches up
in the 99 percent update workload to be only 30 percent slower. The reason for this is that Eiger tracks
dependencies only up to the previous update, thus mostly only needing a single dependency check per
update here, while requiring at least two in the 50 percent update workload.

When comparing the performance of Cure and GentleRain, they are mostly comparable, with Cure
performing better in four of the five workloads. One interesting point though is that GentleRain performs
worse than Eiger in the 99 percent update workload, we expect this is due to GentleRain needing to
compute slightly older snapshot versions of objects than Cure because of its larger remote update visibility
latency (to support CRDTs we generate the correct version of the object before updating it), increasing
the cost of multi-versioning by a significant factor when the list of versions is being modified frequently.
This update visibility latency is described in more detail in the following section.

5.4 Remote update visibility latency
As described previously, Cure and GentleRain use a stabilization mechanism to make updates visible at
remote data centres while respecting causality. GentleRain uses a scalar global stable time and Cure a
version vector.

We define the visibility latency of an update operation as the amount of time elapsed from the moment
it is committed at its local DC (its commit time), and the time at a remote’s replica server when the
computation of the stable time at that DC allows that update to be safely read without violating causality.
The use of a single scalar penalizes GentleRain in that, in order to make an update that originated at remote
DC visible locally it must wait until it hears from all other servers at all other DCs with a heartbeat with
a time greater than that of the update. By using a vector clock to time-stamp events, Cure is able to make
a remote update from a DC i with a commit vector clock vcc visible when servers in j have received all
updates up to vcc[i] from replicas at DC i at the cost of slightly increase meta-data. In other words, in
GentleRain, update visibility latency at a DC is dependent on the latency to the furthest DC. In contrast,
in Cure it is only dependent on the latency to the DC where the update originated. In our evaluation, all
DCs have a 50ms delay between them, thus visibility is only minimally increased in GentleRain when
compared to CureṪhe heartbeats within DCs are broadcast at an interval of 100ms and heartbeats between
DCs are sent at a rate of 100ms in the absence of updates. Using these intervals, most updates become
visible in external DCs after approximately 200ms in Cure and between 200ms and 300ms in GentleRain.

5.4.1 Progress in the presence of network failures

As explained before, the use of a single scalar limits GentleRain to make updates visible that, in the
presence of a DC failure or network partition between DCs, will stop making remote updates from every

RR n° 8858

Cure: Strong semantics meets high availability and low latency 16

remote DC visible. Hence, under this situation, the state a DC is able to see from remote DCs will freeze
until the system recovers from the failure, while local updates will continue to be made visible. In the
case of Cure updates from healthy DCs can continue to be made visible under network partitions, and
only updates from the failed or disconnected DC remain frozen until the system recovers.

6 Related Work
A large amount of research has been destined to understanding consistency vs. availability tradeoff in-
volved in building distributed data stores. As a result, there is a number of systems providing differ-
ent semantics to application developers. On one extreme of the spectrum, strongly-consistent systems
[12, 17, 18, 33, 36] offer well-defined semantics through a simple-to-reason-about transactional inter-
face. Unfortunately, due to the intensive communication among parties required, these solutions penalise
latency in the general case and availability in presence of failures and network partitions. Systems such as
Spanner [17], Walter [33], Calvin [36] and Granola [18], aim at reducing the inter-datacentre synchron-
isation. However, none of them is yet capable of achieving low-latency operations. On the other side of
the spectrum, there is eventual consistency, of which examples are Dynamo [19], Voldemort [34], Riak
[4] and some configurations of Cassandra [26]. These systems offer excellent scalability, availability and
low-latency at the cost of providing a model to programmers that is hard to reason about. They lack
clear semantics and programming mechanisms (as transactions) that simplify application development.
Cure takes an intermediate position in this tradeoff by embracing transactional causal+ consistency se-
mantics. Many previous system designers have acknowledged the usefulness and applicability of causal
consistency. Early examples that had a profound impact in research are the ISIS toolkit [14], Bayou [31],
lazy replication [25], causal memory [6] and PRACTI [13]. Unfortunately, these solutions are limited to
single-machine replicas which make them not scalable to large geo-replicated data centres.

More recently, a number of causally-consistent, partitioned and geo-replicated data stores have been
proposed [7, 20, 22, 27, 28]. These solutions offer a variety of limited, but interesting, transactional
interfaces that aim at easing the development of applications. COPS [27] introduced the concept of
causally-consistent read-only transactions, which other solutions, such as ChainReaction [7], Orbe [20]
and GentleRain [22], adopted. In Eiger [28], this read-only transactional interface was extended with the
introduction of the causally-consistent write-only transaction concept. Cure provides programmers with
stronger semantics, i.e., general transactions and support for confluent data types (CRDTs).

Implementing causal consistency comes with a cost. Causally-consistent systems need to perform
different verifications at each site in order to decide when updates coming from remote datacentres can
be made visible without breaking the rules of causality. COPS, Eiger, ChainReaction and Orbe use
different mechanisms that rely on piggybacking dependency information with propagated updates and
exchanging explicit dependency check messages at remote datacentres. Even when they employ various
optimisations to reduce the number of the size of dependencies and the number of messages, their worst-
case behaviour remains linear in the number of partitions [22]. In recent work, Du et al. identified
that most of the overhead introduced by implementing causal consistency in previous solutions comes
from explicit dependency check messages [22]. Their work presented GentleRain, a system that avoids
such expensive checks. Instead, it uses a global stabilisation algorithm for making updates visible at
remote datacentres. This algorithm increases throughput, reaching numbers close to eventually consistent
systems, at the cost of penalising remote update visibility. Cure follows this design choice and achieves
throughput close to eventual consistency, while providing stronger semantics. Furthermore, as we have
shown in §5, by versioning objects using a vector clock sized with the number of datacentres, our protocol
is able to reduce remote update visibility latency and is more resilient to network partitions and datacentre
failures when compared to GentleRain.

Finally, SwiftCloud [37] addresses the challenge of providing causally consistent guarantess and fault-

RR n° 8858

Cure: Strong semantics meets high availability and low latency 17

tolerance for client-side applications. Although the semantics provided by SwiftCloud are similar to ours,
this work is orthogonal to Cure, since our focus is on making server-side causally consistent systems with
rich semantics highly scalable, a problem that is not tackled by SwiftCloud.

7 Conclusion
We have introduced Cure, a distributed storage system presenting the strongest semantics achievable
while remaining highly available. Cure provides a novel programming model: causal+ consistency and
CRDT support through an interactive transactional interface.

We have presented a highly-scalable protocol implementation over a partitioned geo-replicated set-
ting. We have evaluated Cure showing that it presents scalability compatible with eventual consistency
with both the number of servers per DC and the total number of DCs in the system, while offering stronger
semantics. Our results also show that, when comparing Cure to existing causally-consistent systems that
provide similar but weaker semantics under different workloads, it presents higher performance while
achieving better update visibility latency and tolerance to full DC and network failures.

8 Acknowledgements
We would like to thank Christopher Meiklejohn for his contributions to the codebase as well as his
guidance in using Erlang and Riak Core. Additionally we would like to thank Michał Jabczyński and
Santiago Alvarez Colombo for their contributions to the codebase. This research is supported in part by
European FP7 project 609 551 SyncFree (2013–2016).

References
[1] Antidote reference platform. http://github.com/SyncFree/antidote, 2015.

[2] Basho bench. http://github.com/SyncFree/basho_bench, 2015.

[3] The network time protocol. http://www.ntp.org, 2015.

[4] Riak distributed database. http://basho.com/riak/, 2015.

[5] Zeromq. http://http://zeromq.org/, 2015.

[6] AHAMAD, M., NEIGER, G., BURNS, J. E., KOHLI, P., AND HUTTO, P. W. Causal memory: definitions, implementation,
and programming. Distributed Computing 9, 1 (Mar. 1995), 37–49.

[7] ALMEIDA, S., LEITÃO, J., AND RODRIGUES, L. ChainReaction: a causal+ consistent datastore based on Chain Replication.
In Euro. Conf. on Comp. Sys. (EuroSys) (Apr. 2013).

[8] ATTIYA, H., ELLEN, F., AND MORRISON, A. Limitations of highly-available eventually-consistent data stores. In Symp. on
Principles of Dist. Comp. (PODC) (Donostia-San Sebastián, Spain, July 2015), ACM, pp. 385–394.

[9] BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, I. Highly available transac-
tions: Virtues and limitations. Proc. VLDB Endow. 7, 3 (Nov. 2013), 181–192.

[10] BAILIS, P., FEKETE, A., FRANKLIN, M. J., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, I. Feral concurrency
control: An empirical investigation of modern application integrity. In Int. Conf. on the Mgt. of Data (SIGMOD) (Melbourne,
Victoria, Australia, 2015), Assoc. for Computing Machinery, pp. 1327–1342.

[11] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, I. Scalable atomic visibility with RAMP
transactions. In Int. Conf. on the Mgt. of Data (SIGMOD) (2014).

RR n° 8858

http://syncfree.lip6.fr/
http://github.com/SyncFree/antidote
http://github.com/SyncFree/basho_bench
http://www.ntp.org
http://basho.com/riak/
http://http://zeromq.org/

Cure: Strong semantics meets high availability and low latency 18

[12] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J., KHORLIN, A., LARSON, J., LEON, J.-M., LI, Y., LLOYD, A.,
AND YUSHPRAKH, V. Megastore: Providing scalable, highly available storage for interactive services. In Proceedings of the
Conference on Innovative Data system Research (CIDR) (2011), pp. 223–234.

[13] BELARAMANI, N., DAHLIN, M., GAO, L., NAYATE, A., VENKATARAMANI, A., YALAGANDULA, P., AND ZHENG,
J. Practi replication. In Proceedings of the 3rd Conference on Networked Systems Design & Implementation - Volume 3
(Berkeley, CA, USA, 2006), NSDI’06, USENIX Association, pp. 5–5.

[14] BIRMAN, K. P., AND RENESSE, R. V. Reliable Distributed Computing with the ISIS Toolkit. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1994.

[15] BURCKHARDT, S., FÄHNDRICH, M., LEIJEN, D., AND SAGIV, M. Eventually consistent transactions. In Euro. Symp. on
Programming (ESOP) (Tallinn, Estonia, Mar. 2012).

[16] BURCKHARDT, S., GOTSMAN, A., YANG, H., AND ZAWIRSKI, M. Replicated data types: specification, verification,
optimality. In ACM SIGPLAN Notices (2014), vol. 49, ACM, pp. 271–284.

[17] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST, C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE,
D., QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D.
Spanner: Google’s globally-distributed database. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2012), OSDI’12, USENIX Association, pp. 251–264.

[18] COWLING, J., AND LISKOV, B. Granola: Low-overhead distributed transaction coordination. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference (Berkeley, CA, USA, 2012), USENIX ATC’12, USENIX Association,
pp. 21–21.

[19] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN,
S., VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s highly available key-value store. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles (New York, NY, USA, 2007), SOSP ’07, ACM, pp. 205–220.

[20] DU, J., ELNIKETY, S., ROY, A., AND ZWAENEPOEL, W. Orbe: Scalable causal consistency using dependency matrices
and physical clocks. In Symp. on Cloud Computing (Santa Clara, CA, USA, Oct. 2013), Assoc. for Computing Machinery,
pp. 11:1–11:14.

[21] DU, J., ELNIKETY, S., AND ZWAENEPOEL, W. Clock-si: Snapshot isolation for partitioned data stores using loosely
synchronized clocks. In Proceedings of the 2013 IEEE 32Nd International Symposium on Reliable Distributed Systems
(2013), SRDS ’13, pp. 173–184.

[22] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL, W. GentleRain: Cheap and scalable causal consistency with
physical clocks. In Symp. on Cloud Computing (New York, NY, USA, Nov. 2014), ACM, pp. 4:1–4:13.

[23] GILBERT, S., AND LYNCH, N. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.
SIGACT News 33, 2 (2002), 51–59.

[24] GRID’5000. Grid’5000, a scientific instrument [. . .]. https://www.grid5000.fr/, retrieved April 2013.

[25] LADIN, R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S. Providing high availability using lazy replication. Trans. on
Computer Systems 10, 4 (Nov. 1992), 360–391.

[26] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44, 2
(Apr. 2010), 35–40.

[27] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDERSEN, D. G. Don’t settle for eventual: scalable causal
consistency for wide-area storage with COPS. In Symp. on Op. Sys. Principles (SOSP) (Cascais, Portugal, Oct. 2011), Assoc.
for Computing Machinery, pp. 401–416.

[28] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDERSEN, D. G. Stronger semantics for low-latency geo-replicated
storage. In Networked Sys. Design and Implem. (NSDI) (Lombard, IL, USA, Apr. 2013), pp. 313–328.

[29] MACKLIN, D. Can’t afford to gamble on your database infrastructure? why bet365 chose riak. http://basho.com/
bet365/, Nov. 2015.

[30] MACKLIN, D. Private communication. Nov. 2015.

RR n° 8858

https://www.grid5000.fr/
http://basho.com/bet365/
http://basho.com/bet365/

Cure: Strong semantics meets high availability and low latency 19

[31] PETERSEN, K., SPREITZER, M., TERRY, D., AND THEIMER, M. Bayou: Replicated database services for world-wide
applications. In Proceedings of the 7th Workshop on ACM SIGOPS European Workshop: Systems Support for Worldwide
Applications (New York, NY, USA, 1996), EW 7, ACM, pp. 275–280.

[32] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZAWIRSKI, M. Conflict-free replicated data types. In Int. Symp.
on Stabilization, Safety, and Security of Distributed Systems (SSS) (Grenoble, France, Oct. 2011), X. Défago, F. Petit, and
V. Villain, Eds., vol. 6976 of Lecture Notes in Comp. Sc., Springer-Verlag, pp. 386–400.

[33] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J. Transactional storage for geo-replicated systems. In Symp. on Op.
Sys. Principles (SOSP) (Cascais, Portugal, Oct. 2011), Assoc. for Computing Machinery, pp. 385–400.

[34] SUMBALY, R., KREPS, J., GAO, L., FEINBERG, A., SOMAN, C., AND SHAH, S. Serving large-scale batch computed data
with project voldemort. In Proceedings of the 10th USENIX Conference on File and Storage Technologies (Berkeley, CA,
USA, 2012), FAST’12, USENIX Association, pp. 18–18.

[35] TERRY, D. B., DEMERS, A. J., PETERSEN, K., SPREITZER, M. J., THEIMER, M. M., AND WELCH, B. B. Session
guarantees for weakly consistent replicated data. In Parallel and Distributed Information Systems, 1994., Proceedings of the
Third International Conference on (1994), IEEE, pp. 140–149.

[36] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO, P., AND ABADI, D. J. Calvin: Fast distributed transactions
for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2012), SIGMOD ’12, ACM, pp. 1–12.

[37] ZAWIRSKI, M., PREGUIÇA, N., DUARTE, S., BIENIUSA, A., BALEGAS, V., AND SHAPIRO, M. Write fast, read in the
past: Causal consistency for client-side applications. In Proceedings of the 16th Annual Middleware Conference (2015),
Middleware ’15, pp. 75–87.

RR n° 8858

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background and Definitions
	Causal Consistency
	Transactional Causal Consistency
	Convergent conflict handling

	Cure Overview
	Cure Goals and System Overview
	Architecture
	Programming Interface

	Protocol Description
	Read protocol

	Evaluation
	Setup

	Related Work
	Conclusion
	Acknowledgements

