An Application-Agnostic Replication System for
Ubiquitous Computing

James O'Brien, Marc Shapiro
Microsoft Research
7]] Thompson Ave.
Cambridge, UK
i-jameso@microsoft.com

Abstract: In this paper we present Joyce, a platform and programming
framework that enables applications to form the kind of variably-connected,
data-sharing group that typifies ubiquitous computing. The platform
captures the semantics of application operations via a system of actions and
constraints, which it distributes to peers in a group using epidemic
propagation. Our system presents several advantages: (1) we capture a rich
semantic model of application usage across all participants in a group, (2) we
persist this rich semantic model independently of the constituent applications,
(3) propagation of the semantic model is tolerant of varying connectivity (4)
we use the semantic model to reconcile concurrent modifications from
separate participants, (5) we encapsulate all of this functionality in a piece of
application-agnostic middleware.

Keywords: mobility, collaboration, reconciliation, frameworks

1 Introduction

There are two implicit themes in ubiquitous computing (‘ubicomp’) that current
applications are ill-equipped to meet. The first is the pervasive sharing of data
between devices and between people in a mobile context. As a user moves
between computational environments, he might be disconnected for long
periods, but he would still like to be able to access and modify his data during
the disconnection.

The second theme is collaborative work. Collaboration infrastructures in
ubicomp must not only support multiple collaborators on a data-set but must
also facilitate a smooth transition between synchronous and asynchronous
collaborative modes, which result either from user choice or from varying
connectivity. Application interaction in both collaborative modes should look
and feel as similar as possible to the user. Moreover, it will be common that both
modes will be in use within the same collaborative group.

This is an inversion of the model used to create applications today (which
we will term the “personal computing’ model). This model assumes that data is
modified by one user using one device and that the data is essentially owned by

and contained within that user/device combination. This assumption is reflected
in the programming frameworks used to construct these applications.

Certain classes of application (most notably PIM applications) have
attempted to solve the varying connectivity problem. However, the techniques
employed have been very specific to the data domain and very intrusive to the
application. The application must dedicate a significant amount of specialized
logic, often to the detriment of its core functionality. Further, these applications
are usually designed around lock-step synchronization of devices and require a
fair amount of user intervention; they do not support the fluid, multi-
synchronous collaboration requirements of an ubicomp environment. Finally,
each application implements its own synchronization logic, leaving them
segregated and incompatible with one another.

Even if all of these systems were already suitable for ubicomp we should
not think of ‘ubicomp applications” but rather applications that happen to be
running in an ubicomp environment. The mechanics of participating in that
environment should be separate from the application; encapsulated in a piece of
ubicomp middleware.

In this paper, we propose just such a system. Our platform, named Joyce,
is an application-agnostic replication system that enables devices to form adhoc,
data-sharing groups. Joyce has application-independent logic for group
formation, variable connectivity, data replication and reconciliation, and multi-
synchronous collaboration. It delivers this functionality to the distributed
applications as unobtrusively as possible, by intercepting the standard Model-
View-Controller interaction cycle.

This paper proceeds as follows. In Section 2 we give a brief description of
the key issues that must be addressed, and from these derive a set of
requirements for the framework. Section 3 gives a system overview and
describes the concepts that underlie the framework. Section 4 describes the
application model defined by our framework. Section 5 describes the
components supplied by the framework to enable applications to participate in
data-sharing groups. Section 6 describes how shared data is kept synchronous.
Section 7 concludes.

2 Key Issues

The kind of ubicomp environment that the community has envisioned since
Weiser introduced the topic [Weiser 91] has been characterized by a proliferation
of mobile devices that form spontaneous, data-sharing networks as they move
through the “computational landscape” [Abowd 00].

Supporting such groups involves several key issues that differentiate
mobile ubicomp applications from isolated, personal computing applications. It
is the role of the framework to deal with these issues while masking the
problems involved from the application logic.

An ubicomp application is never alone in modifying a piece of data, but it
is always a part of a group of participants, even while it is disconnected.
Although the set of members of a group may be fairly static, connectivity
changes dynamically; members may be disconnected for unbounded periods. In
spite of this, applications should be able to access their data whether they are
connected to a group or not and that data should be kept consistent with the
modifications from the rest of the group. Varying connectivity however, rules
out any kind of strong consistency guarantees. Instead, we provide an optimistic
replication system, where data is replicated and each device is allowed to modify
its local copy [Saito & Shapiro 2004]. At some later point, the concurrent
modifications from the different devices are reconciled to create a common state.

The issues above suggest the key problems that should be in the domain
of the framework rather than the application.

» Update propagation: The framework needs to propagate modifications
from one participant to all the others. The propagation scheme used
should ensure that, despite varying connectivity, every group member
will receive the modifications of every other member. Furthermore, since
Joyce is designed to be application agnostic we must represent
modifications in an application-independent way.

* Reconciliation: Replicas may be independently modified in a conflicting
manner. Reconciliation is the process of bringing replicas to a consistent
state by detecting and resolving conflicting concurrent modifications.

The process of detecting and resolving conflicts depends on
application semantics and user intent. Existing reconcilers
[Balasubramaniam & Pierce 1998] are confined to a single data type. Joyce
remains application agnostic, by representing application semantics and
user intents explicitly.

* Consistency: Individual replicated states are allowed to diverge in the
short term. However, all states must eventually be made consistent
according to the results of reconciliation. Joyce has a mechanism for
bringing a state to consistency, concurrent with the user independently
modifying that state. The application must remain as responsive as
possible throughout this process.

» Application Usability: Joyce should not degrade the performance and
responsiveness of the application. This is especially important in several
key areas: transitioning from connected to disconnected states,
transitioning between asynchronous and synchronous collaborative
modes, and bringing a state to consistency.

3 System Overview

Joyce is a middleware framework designed to provide solutions to the
requirements above and decouple the details of those solutions from
applications.

Joyce connects participants that are all working on the same shared data set
and distributes the modifications made by one participant to all the others. It
allows participants to disconnect and reconnect without loss of information or
responsiveness; an application can continue to run while disconnected and
modifications will be propagated to it on reconnection.

There is no fully automatic solution to reconciliation, since resolving
conflicting concurrent actions depends on the application semantics and user
intents. To avoid “wiring in” knowledge of application internals, Joyce is based
on a reified model of application semantics.

In this section, we present a high-level view of how the system works and
the core concepts used.

3.1 Joyce Groups

A Joyce group represents the set of participants working together on some shared
data store. Each participant works with a local, replicated instance of the data.
At any point in time, a member is connected to zero or more other members. A
participant remains a member of its group even when it has no connectivity.

Device A Device B
App App
Joyce Joyce
Joyce
App
Device C

Figure 1 Three applications on different devices use Joyce to form a collaborative group. In this
instance the group is fully connected. Note that the members of the group are the applications
working on the data, not the devices. The applications are still part of the group even if their
devices are disconnected.

3.2 Logging

To participate in the group, applications log their data modifications using
actions and static constraints, which are designed to explicitly articulate the
intended semantics. An action is an object that reifies the invocation of some

application operation, such that it can be transmitted and applied at any
member. A static constraint is an object that reifies a semantic invariant, which
the system is entrusted to maintain.

As a member makes modifications to the shared state, they are recorded
as actions into a log. User intents and application semantics are recorded as log
constraints, a sub-class of static constraints.! The concurrency semantics of shared
objects constitute object constraints, another sub-class of static constraints.

An action has an execut e method that is used to replay a particular
invocation on a state. It may also have a conpensat e method that is used to un-
apply the invocation from a particular state.

Static constraints are semantic relations between actions that must hold,
irrespective of the state that actions are run on. Joyce uses the set of constraints
defined by Preguica et al. [2003a], explained next. Joyce also supports dynamic
constraints, which are assertions about the current state that must hold at run
time.

3.2.1 Object constraints

Object constraints indicate how classes of action relate to each other. Object
constraints are exported as a set of methods comparing two actions. Joyce
currently defines the following set of object constraints:

* Commutes: Do the supplied actions commute? Is the result of executing the
two actions independent of execution order? This information is used by the
Joyce scheduler to optimise both forward execution and rollback.

* Helps: Does running the first action before the second increase the chances of
the second action’s dynamic constraints succeeding? If so, the scheduler will
try to run them in that order.

* Hinders: Does running the first action before the second decrease the chances
of the second succeeding? If so, the scheduler attempts to run them in
opposite order.

* Enables: Can the second action be run only if the first action has succeeded?
If so, the scheduler will schedule them accordingly.

* Prevents: Does running the first action prevent the second action from
succeeding? If so, the scheduler attempts to run them in opposite order.

These object constraints represent the semantic relations between pairs of
concurrent actions, i.e., the concurrency semantics of shared objects.

1 This is in contrast with previous systems, where the log records only the chronological order of operations [Petersen
etal. 1997].

3.2.2 Log Constraints

Log constraints express invariants that must hold between action instances that
share a log (as opposed to object constraints that express invariants between
classes of action). We have factored log constraints into two categories: grouping
constraints and ordering constraints. Currently there are two types of group:

» Parcel: Confers atomicity to the grouped actions (i.e. either all the actions
must be executed or none of them can be.) The scheduler will either
schedule all, or none of them.

» Alternative: Indicates that only one of the grouped actions can be
executed. The reconciler chooses between them.

Ordering constraints indicate that the constrained actions should execute in the
specified order. Following Preguica et al. [2003Db]:
* Strong ordering indicates that, if the predecessor is not executed, then
neither can the successor be.
* Weak ordering indicates that if the successor has already executed, then
the predecessor may not (but the other way around is OK).

Log constraints are typically used to express higher level application semantics
(i-e., a subtask within an application that consists of more than one command) or
user intents within a particular task.

3.3 Epidemic Propagation

Joyce uses an epidemic propagation [Demers 87] scheme to distribute modifications
around the variably connected Joyce group. Epidemic propagation distributes logs by
making a series of pair-wise exchanges between connected peersin the group. Currently,
exchanges may happen as the result of a connectivity status change (for example when a
member joins a group), they may be timed to occur at certain intervals or they may be
timed to happen during an interaction pause (i.e. if no new actions have been appended to
alog after acertain period.)

Epidemic propagation guarantees (with high probability) that each
member receives each other member’s log, possibly through intermediate
members, given sufficient connectivity [Demers 87]. Epidemic propagation is
also well adapted to multi-synchronous collaboration. When connectivity is
good, we propagate modifications frequently, thus minimizing divergence.
When connectivity is nil, we allow the states to diverge until connection is
restored. When connectivity is poor (e.g., over a cell phone connection) we can
still take advantage of available bandwidth to propagate “important” updates
with highest priority. Since the same epidemic mechanism is used in all cases,
we can support a mixture of connectivity modes. [Edwards 97]

Device A Device B

App App
Joyce [j Joyce

o

Figure 2 Participants in a group log their operations. The logged operations are then propagated
to the other participants by Joyce.

3.4 Reconciliation

Modifications on individual participants are made without coordination with the
other members of a group. This helps us maintain the performance of a
participant and allows it to continue working when disconnected. However, the
data on each participant is supposed to reflect a shared state common to all
group members. Every isolated modification causes a participant to diverge from
that common state.

Reconciliation is the act of merging concurrent logs to produce a common,
non-conflicting schedule. Most existing reconcilers merge according to a pre-
determined order (for example timestamp order in Bayou). In contrast, Joyce
builds on our previous reconciliation system IceCube [Preguica et al. 2003a],
which uses the semantic information provided by constraints to produce a best
schedule that preserves the application semantics.

IceCube treats reconciliation as an optimization problem. It merges all the
logs supplied to it into one large semantic graph with actions as nodes and
ordering constraints as edges. A schedule is a traversal of this graph such that all
the static constraints are satisfied. Any actions not traversed are dropped. If a
dynamic invariant fails, the scheduler backtracks and tries a different traversal.
The heuristic scheduling finds a traversal that minimizes the value of the
dropped actions.

One member of the group, the primary, is responsible for reconciling the
logs received from all the members and committing a reconciled schedule. The
actions committed in this schedule generate the common state.

A

Primary

i
1

"

Figure 3 The primary member reconciles concurrent modifications from the other participants into
a commit log, which it then propagates.

Knowledge of the common state is distributed to the non-primary participants by
propagating the commit result in the same way as the other logs. The
participants can synchronize themselves to the common state by running the
committed actions but they may choose not to do so immediately for a number of
reasons:

* Synchronizing to the common state may involve halting interaction as the
committed actions are applied. It may be more important not to interrupt the
user.

* A modification the user has made may conflict with a committed
modification. The user should be given an opportunity to fix the conflict.

* The application may be disconnected from the network. Instead of
disallowing modification when disconnected we should let the user continue
to modify his local data and synchronize to the common state when he
reconnects.

For these reasons, applications monitor both the local, divergent state and the

common state produced by the primary and should preferably highlight the

difference between them to give the user an idea of how far his state has
diverged.

App
Diverging Common
State State
~_ 7) _}_\
Application Commit
log log
X X

Figure 4 Applications may diverge from the common state. They should preferably give some

visual clue about the extent of the divergence.

4 Application Model

Most current application design is based around the Model-View-Controller
partitioning pattern [Krasner 88]. This design pattern was introduced with
Smalltalk and is encapsulated in frameworks such as the MFC, ATL, WinFX and
Cocoa.

The pattern introduced a standard interaction cycle where input from the
user is evaluated into a set of model modification messages by the controller.
These messages are sent to the model component, which applies them and sends a
set of model change messages to the view. The view reflects the effects of the
model changes on some output device.

—*» Controller View >
A A

A 4

Model [

Figure 5 The traditional MVC interaction cycle

This model simplifies the construction of applications but is insufficient for
mobile, collaborative environments since it assumes that applications are
isolated. More specifically, it assumes that modifications to the model always
come from the local controller (and inversely those modifications from the
controller are always destined for the local model.) The pattern also has the more
subtle assumption that the local controller is the authoritative source of all
modifications and modifications are linear - it has no notion of concurrent
modifications, conflicting modifications or reconciliation.

The interaction cycle in Joyce must not make any of these assumptions.
We expand MVC by introducing another component, the coordinator, which is
responsible for interfacing with the Joyce system.

4.1 The Interaction Cycle in Joyce

In Joyce, the interaction cycle operates in two modes. The most common mode is
active when the user is modifying this local state without regard to the other
participants. That is, he is causing his local state to diverge as outlined in section 3.

This mode is much like the traditional MVC interaction cycle; user
interaction is transformed by the controller into a set of actions and constraints
that are logged and executed on the model.

This cycle (illustrated in figure 6) is called the tentative cycle and the
actions generated are tentative actions. The actions are tentative since they have
only been applied to the local model. For the actions to become permanent they
must be committed by a primary.

v
Controller View

v
Coordinator —»| Model

v

Figure 6 The tentative interaction cycle in Joyce. The controller and sends them to the
coordinator for execution and logging.

Joyce

There follows a brief overview of the pattern components.

4.1.1 Model

The model component encapsulates the application’s state; it is this state that is
replicated across the participants in a group.

Joyce does not need to know anything about the structure of the model. The
interface for modifying it is entirely encapsulated in the set of actions supplied
by the application. The model is modified by applying an action instance to it.

4.1.2 View

Views represent the graphical representation of the model. As with standard
MVC views update themselves in response to notifications. Unlike standard
MVC, our notifications may also refer to status change information from the
Joyce system.

4.1.3 Controller

Controllers translate user input into model modifications that, in Joyce, are
encapsulated as a constrained set of actions. Therefore, the controller’s job is
more specific in our framework - it is responsible for generating a set of actions
and constraints that represent a modification to a state in response to a user
interaction.

4.1.4 Coordinator

The coordinator is the bridge [Gamma 95] between Joyce and the application. It
sits between the controller and the model in the interaction cycle and is
responsible for sending actions to the log and keeping the model consistent with
commitment results.

5 The Framework
The framework supplies both

the coordinator component Application
and the components required Controller View
for interacting with a Joyce ’W
group: JoyceCore | Notfier |

There were two major { Coordinator
considerations when | T
designing]oyce. Firstly we Logging Communication I Reconciliation

must provide a stable API gigyre 7 The architecture of a typical application using the
that is easy to understand, Joyce system. The model, view(s) and controller remain
easy to program to and that Specific to the application whilst the coordinator is supplied
by Joyce.

removes as much of the
reconciliation burden as possible. Secondly, we must ensure that Joyce can
facilitate new research into reconciliation, accommodate improvements from that
research and deliver those improvements to application programmers.

Joyce provides a set of components that implement the techniques
described in section 3 and a library, JoyceCore, that acts as a wrapper facade
[Schmidt 00] between the application and these components. This architecture
allowes improved components to be plugged into JoyceCore without any
changes to the applications. The components cover the following functional
areas:

* Logging: Defines how a group member should log modifications.

* Communication: Describes how modifications are propagated to other
participants in the group. In particular, this area defines the format of the
multi-log used in epidemic propagation.

* Reconciliation: Describes how the entity providing the reconciliation
service should behave. Defines what the input to a reconciler looks like
and what the output from a reconciler should look like.

We give a brief overview of how each functional component accomplishes its job
followed by a description of the application model used by the framework.

5.1 Logging
This component implements the logging logic used to record application
operations. The format of the log produced has to meet two requirements: firstly,

it must implement the action/constraint graph model described in Section 3.
Secondly, it should be easy to exchange logs and fragments of logs between
nodes in a Joyce group, and such exchanges should be as resilient as possible to
connectivity failures.

In the current implementation a log is implemented as a collection of log
elements, each of which has a monotonically increasing sequence number. Each
log element has a property ori gi nat or | D that identifies the application that
generated the element (for example “com mi crosof t. wor d”) and a property,
nodel D, that identifies the group member on which the element originated.

We currently define two types of log element:

1. Action elements represent an action (as described in section 3). It
contains an identifier, the acti onType, of the command object that
was invoked and the set of parameters it was invoked with.

2. Meta-action elements provide information about actions that precede
them in the same log.

The most common use for meta-actions is to record log-constraints. For example,
consider an application that resolves a drag-and-drop user interaction into two
operations, cut and paste, which must be executed atomically. Figure § shows the
sub-log recording the two actions.

n n+1l n+2
Action: Action: Meta-action:
Cut Paste Type: Group

Group type: Parcel
Members: {n, n+1}

Figure 8 A drag-and-drop is recorded as a parcel containing cut and paste actions. The meta-action specifies the
type of constraint and the sequence numbers of the constrained actions.

Sometime later, the user runs a spell-check that results in the pasted text being
altered. This is resolved into a replace-text operation that must be strong-ordered
after the paste operation (figure 9).

n n+1 n+ 2 n+ m
Adion: Adion: Meta-action: Adion: Meta-ection:
Cut Paste Type: Goup E Replace Type: Qder
Group pe Parcel Order ype: Strong
Members: {n, (n+1) } Predecessor: (0 +1)
Members: { (n+m) }
| A

Figure 9 A replace action caused by a spell-check must be strong ordered after the insertion of
the text it has changed. The meta-action specifies the sequence number of the predecessor and
successor actions.

Log constraint meta-actions can be thought of as instructions to a member
receiving the log about how to build the semantic graph that the log describes.

Using the meta-action scheme allows us to capture all the information about a
log in a sequential collection of elements.

Each log also keeps track of a position in the log called the last-commit
mark. This indicates the point in the log at which this replica was last in a non-
divergent state (viz., when it applied the committed log, explained shortly).
Every log element that was appended after this mark is fentative .

5.1.1 Multi-logs

For each member of a group the Joyce system on that member maintains an
object called the multi-log that represents that member’s view of the group. The
multi-log will contain at least two logs; one for the member on which the table
resides, termed the node log, and one that indicates which actions have been
committed and aborted, termed the commit log. Furthermore, a member retains a
log in its multi-log for every member that it ever has heard from. The multi-log
forms part of the bridge between the Joyce system and the application. When a
coordinator logs actions and constraints it logs them to its local multi-log.

App A App B
Coordinator Coordinator
\ 4 A 4
Multi-log for A Multi-log for B
<c> <c>
A+ A+
B:++ B: ++++

Figure 10 Applications on two devices, though currently disconnected, have entries in their multi-
logs for each other. The commit logs (labeled <c>) are empty.

5.2 Communication

The combination of the multi-log construct and the sequential numbering of
elements in a log allows us implement a very simple scheme for the exchange of
updates. The multi-log is kept up-to-date via a series of pair-wise vector-clock
exchanges between members that have a direct connection.

5.2.1 Vector-clock Exchanges

A vector-clock records how fresh a multi-log is by recording the last sequence
number for each log in the multi-log. Periodically a member will send its vector-
clock to a peer and receive the peer’s vector-clock in return. Both members

examine the vector-clock they receive to see if there are any fresher logs on the
other member. If a member discovers that its peer member has a fresher record
for a log then it asks the peer for all the new log elements in that log. This process
is called a vector-clock exchange.

Consider a case where we have a Joyce group of only three members, we
start at a point where all members are disconnected:

James Marc Caroline
J: *x* J: J:

M: M M:

C: C: C: **

Figure 11 James, Marc and Caroline have been making modifications while disconnected. *
represents a log element. The commit log is omitted for clarity.

Each member of the Joyce group has been making modifications whilst
disconnected. James has generated 3 log elements, Marc has generated 4 and
Caroline 2. Because of the disconnection, no node is aware of peer modifications.
Now a link is established between Caroline’s node and Marc’s node and they
exchange vector-clocks. After examining the vector-clock she received, Caroline
asks Marc for the updates that she does not have, and vice-versa.

Caroline Marc Caroline Marc
Send[J:0,M:0,C: 2]
P

<Send: [J:0,M:4,C:0]
Request M: 1-4

Request C: 1-2

< g

Respond: C: 1-2 Respond: M: 1-4

Figure 12 Caroline sends her vector clock to Marc and receives Marc’s in return. She sees that
Marc has a fresher record for his own log and requests sequence numbers 1 — 4 from that log. In
parallel, Marc examines the vector clock that initiated the exchange, sees that is contains a
fresher log for C and requests the updates for that log.

At the end of the exchange Marc and Caroline’s multi-logs mirror each other:

Figure 13 After the exchange Marc and Caroline’s multi-logs are the same.

James Marc Caroline
J; J: J:

M M *%k%k% M****

C: C** C: **

Sometime later, James contacts Marc and a similar exchange happens, this time
however James discovers that Marc has fresher records for two logs and so makes
two requests for updates. These update requests may also happen concurrently:

James Marc

| Request C: 1-2
’4 Respond: C: 1-2

James Marc
| Request M: 1-4
}1 Respond: M: 1-4

Figure 14 James discovers Marc has fresher records for two logs and so makes two concurrent
update requests.

The result after this exchange will be:

James Marc Caroline
J; wxx N J:

M *k%k% M *k%k% M *k%k%
C: ** C: ** C: **

Figure 15 Caroline’s changes have propagated to James.

Caroline’s changes have propagated to James despite the fact that no direct
connection has been made between them; it is this technique that allows us to
accommodate varying connectivity.

5.3 Reconciliation

Reconciliation creates a Reconciler | 1. updates Multi-log
schedule of actions from the >

. . e 2. schedule
multi-log that satisfies the

constraints. Commitment is the
act of irrevocably selecting a
reconciliation schedule (out of
the many possible ones) for
execution on every site, in order to make them consistent. The schedules that
have been committed are recorded in the multi-log as the commit log. The commit
log consists of commit and abort meta-actions that identify the actions that are
committed (irrevocably scheduled for execution) or aborted (irrevocably
excluded from execution). The commit log may also contain ordering constraints,
providing an irrevocable ordering of non-commuting committed actions.
Schedules are generated by a reconciliation engine provided by the
framework. This reconciliation engine is a strategy object [Gamma 95]
implementing a reconciliation algorithm & driven by the multi-log. The engine

Figure 16 The multi-log of a primary node will have a
reference to a reconciliation engine. The engine
takes in and produces an update to the commit log

takes the tentative updates from the multi-log and splits them into those that are
executed and those that are rejected. If the user is satisfied with the schedule it is
appended to the commit log and propagated.

6 Commit Log Updates

The tentative cycle is interrupted when the application decides to apply a
commit log update (i.e. when the application synchronizes its state to the
common state).

The commit log represents the authoritative version of the replicated state
via the actions that must be run to generate that state. It is updated by either a
local reconciliation (if the member is primary) or a vector-clock exchange. Either
way, a commit log update indicates that the application should synchronize its
local state with the commit log if it wishes to stop diverging.

When applying an update we have a range of meta-actions bounded by
the commit log’s last commit mark and its current position mark that need to be
applied to the model via the coordinator. We must also bear in mind that any one
of these actions may conflict dynamically with a tentative action in the node log.

Since applying a commit log update involves looking-up the actions
referenced by it, Joyce must ensure that those actions are already in the multi-log.
On the primary member, this is not an issue since the commit log update was
generated from actions already in the primary multi-log. On members that are
not primary, Joyce preserves this property by appending updates to peer
member logs before it applies updates to the commit log (epidemic propagation
ensures that authoritative updates do not arrive before the peer updates they
reference.)

Joyce applies commit log updates with the following algorithm:
1. Roll back all node log actions that were appended after the node log’s last
commit mark.
For each action A referenced by a commit/abort meta-action
If A is committed execute it via the coordinator.
Set the last commit mark in A’s log to be immediately after A.
For each action N after the node’s last commit mark
Attempt to execute N against the new model using the coordinator
If N has a dynamic failure
Mark this action as invalid against the new model.

PN RN

Consider the multi-log James which has just appended meta-actions referring to
“def GHI” to its commit log but has yet to apply them (figure 11)

James James
Commit:abc.defGHI Commit:abcdefGHl
James:abc-defjkl James:abcdef .kl
Marc: .-G H | Marc: G H | <

Figure 17 The multi-log for James before and after applying a commit update

The first step in applying the auth update is to return to the last commit mark in
the node log. We then enumerate over the actions referenced by the commit log,
executing the committed ones. Finally we must re-run the node log actions “j k
17, these are tentative actions that have yet to be reconciled and may conflict
dynamically with “GH1".

During the application of a commit update we must suspend the tentative
cycle. The actions referenced by the update are applied to the model in the same
way as the actions from the local controller (via the execut e method) but we
must briefly halt the supply of actions from the controller while this takes place,
this causes an interruption to the application circuit as illustrated in figure 17.

Controller View

Coordinator |——p Model

Multi-log

Figure 18 When a commit update arrives the tentative cycle is suspended. The application state
and view is updated to reflect the commit log.

6.1 Invalid Tentative Actions

Suspending the supply of actions from the controller whilst applying a commit
update does not necessarily imply pausing interaction with the application. The

user interface may remain responsive and tentative actions may continue to be
constructed whilst a commit update is applied in the background. However, it
may be the case that tentative actions become invalid in the time it takes the user
to generate them.

Say we have a calendar application in which the user creates an
appointment by selecting some cell corresponding to the appointment time and
entering the details of the appointment. He selects the cell corresponding to 10:00
and starts creating an appointment. In the background however, an update to the
commit log arrives that contains a committed 10:00 appointment. When the user
completes his 10:00 appointment it will be submitted as part of a log fragment to
the coordinator and (if the application is written correctly) will fail a dynamic
precondition constraint.

Commit (10:00 Caroline) 9:00

>

10:00
Mall

11:00
Youssef

12:00

Figure 19 A commit arrives that will invalidate the action being constructed

When this happens the coordinator will detect the precondition failure and mark
the failed action as invalid by appending an invalidation meta-action that references
the failed action to the submitted fragment. The controller must also mark as
invalid any other actions in the fragment that are dependent on the failed action
(via an ordering or parceling constraint.) Further, if coordinator has already
applied actions that are parceled with the failed action it must un-apply them
using compensation actions. If any of the un-applied actions do not have
compensation actions the coordinator must try to restore the model in some
other way, typically this will involve rolling back to the last committed milestone
and rolling forward over all the tentative actions less the failed ones.

6.2 Preventing Invalid Tentative Actions

Obviously, invalid tentative actions are undesirable. Applications should try to
prevent invalid tentative actions being generated by listening for committed action
and aborted action coordinator notifications which are fired during application of
a commit update. If an application is alerted to a condition that will lead to an
invalid action it should notify the user in some way and, preferably, have the
user change his input so that the action no longer conflicts.

In the example above, the application is aware that the user has started
constructing a 10:00 appointment. If the application has registered for the
committed action notification it will be alerted when the 10:00 (Caroline) action
arrives and should highlight the 10:00 cell in some suitably alarming way. To
resolve the potential conflict the application should prompt the user to drag the
appointment he is constructing to a free cell (say 12:00.)

Preventing tentative actions can become more complex when the action under
construction will become invalid because of a dependency, for example if the
action under construction is a strong successor of the action that has become
invalid. The application designers may use the logging functionality provided by
Joyce to detect the invalidation or they may depend on their own logic. Either
way they must balance the complexity of attempting to detect the invalidation
beforehand against letting the under-construction action go and fixing the
invalidation after the coordinator has detected it.

6.3 Do we need Invalidation Meta-Actions?

Invalidation meta-actions are not strictly necessary, if they were not present the
invalid tentative actions would fail at reconcile time (with the same dynamic
failure that happened at tentative execution) and would be aborted. Invalidation
meta-actions are designed to be a guide to log implementations and log editing
tools. For example if we know that a tentative action will abort and the user
attempts to put a later tentative action in a parcel with it we can inform the user
that this later action will never be committed.

At first glance the process of preventing invalid actions may look similar to the
process of fixing aborted actions (see above.) The key difference is that only the
primary can fix aborted actions and cause a re-reconciliation whereas preventing
invalid actions happens on every type of member. If the Joyce group is
configured such that all the members are primary then obviously the application
is free to choose whether to alter the aborted action or the tentative action on a
case-by-case basis.

7 Discussion and Future Work

The increased concentration on ubiquitous or pervasive computing has already
resulted in growing numbers of applications that collaborate over some shared
data. A centralized, application-specific approach to consistency in such
situations is often infeasible due to the high degree of mobility in the
participating devices.

In contrast, we have described our application-agnostic reconciliation
system. We provide a programming framework and set of services that mobile

applications can use to distribute their modifications within a variably connected
group of collaborators.

Many of the design choices used in Joyce have been seen before. For
example, application-agnostic reconciliation came from our previous IceCube
[Kermarrec 01] project and Bayou [Edwards 97] employed an epidemic
propagation system to distribute writes to a replicated database. The
contribution of Joyce is to employ these methods in a programming framework
that enables applications to be written or modified to participate in data-sharing
groups with the minimum of effort.

We define an application model that introduces the concept of non-local,
non-authoritative modifications into the well-established MVC partitioning
pattern and we supply a flexible set of components behind this model to handle
the various aspects of participating an adhoc, mobile, collaborative group.

The greatest challenge when writing applications for Joyce is describing
functionality in our actions and constraint model. As we gain experience writing
applications future work will involve extending the framework or layering new
frameworks on top of Joyce that automate the extraction of constraints from a
given data domain.

8 References

[Abowd 00] Abowd GD, Mynatt ED: Charting Past, Present and Future Research
in Ubiquitous Computing. ACM Transactions on Human-Computer Interaction 7:29-
58, 2000

[Balasubramaniam & Pierce 1998] S. Balasubramaniam and C. Pierce: What is a
File Synchronizer? In Int. Conf. On Mobile Comp. And Netw. (MobiComp 98).
ACM/IEEE, Oct. 1998

[Demers 87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker. HH.
Sturgis, D. Swinehart, and D. Terry: Epidemic Algorithms for Replicated Database
Management. In Proceedings Sxth Symposium on Principles of Distributed Computing,
Vancouver, B. C., Canada, August 1987, pages. 1-12

[Edwards 97] W.K. Edwards, E. D. Mynatt, K. Petersen, M.]J. Spreitzer, D. B.
Terry, and M. M. Theimer. Designing and Implementing Asynchronous

Collaborative Applications with Bayou. Proceedings User Interface Systems and
Technology, Banff, Canada, Oct 1997, pages. 119-128

[Gamma 95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns,
Elements of Reusable Object-Oriented Software, Reading Massacheusetts.
Addison-Wesley, 1995

[Kermarrec 01] A.-M Kermarrec, A. Rowstron, M. Shapiro and P. Druschel: The
IceCube Approach to the Reconciliatino of Replicas, in 20" Symposium on
Principles of Distributed Computing (PODC), pp. 210-218, Aug 2001

[Krasner 88] G.E. Krasner, S. T. Pope: A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk 80 System. Journal of Object-
Oriented Programming 1:26 —49, 1998

[Preguica et al. 2003a] Nuno Preguica and Marc Shapiro and Caroline Matheson:
Semantics-based reconciliation for collaborative and mobile environments. In
Proc. Tenth Int. Conf. on Coop. Info. Sys. (CoopIS), Nov 2003

[Preguica et al. 2003b] Nuno Preguica and Marc Shapiro and]J. Legatheaux
Martins: Automating semantics-based reconciliation for mobile Transactions.
CFSE'3, conference francaise sur les systemes d'exploitation, Oct 2003

[Saito & Shapiro 2004] Y. Saito and M. Shapiro: Optimistic Replication, Tech. Rep.
MSR-TR-2003 — 60, Microsot Research, Cambridge, UK, Oct 2003

[Schmidt 00] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann: Pattern-Oriented

Software Architecture volume 2, Patterns for Concurrent and Networked
Objects, Chichester Sussex, Wiley, 2000

[Weiser 91] Weiser M: The Computer of the 21st Century. Scientific American, 265,
3, 66-75, 1991

