A Binding Protocol for
Distributed Shared Objects*

Marc Shapiro
INRIA Rocquencourt, projet SORT
and Cornell University, Department of Computer Science
mjs@cs.cornell.edu

1 April 1994

Abstract

A number of actions, collectively known as binding, prepare a reference
for invocation of its target: locating the target, setting up a connection,
checking access rights and concurrency control state, type-checking, in-
stantiating a proxy, etc. Existing languages or operating systems support
only a single binding policy, that cannot be tailored to object-specific se-
mantics for the management of distribution, replication, or persistence.
We propose a general binding protocol covering the above needs; the pro-
tocol is simple (a single RPC and one upcall at each end) but recursive;
however the recursion can be terminated at any point, trading off simplic-
ity and performance against completeness. This comprehensive, unified
protocol is capable of supporting different languages and object models,
and may be tailored to support various policies in a simple manner.

1 Introduction

Any computer system supports some reference mechanism (such as ports, sock-
ets, file descriptors, UIDs, capabilities, or the like) for identifying and accessing
objects so that they can be shared by programs. When applied to large-scale dis-
tributed object-oriented applications, existing distributed reference mechanisms
have serious shortcomings: they do not support garbage collection, type safety,
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object groups, replication, persistence, migration, nor application policies for
managing distributed data in general. The current work examines some of these
issues, and proposes a binding protocol that includes up-calls to application- or
language-specific policy modules. This protocolis used to ensure type safety and
to implement group policies, which in turn support migration and persistent,
replicated, or otherwise fragmented objects.

This study takes place in the context of SSP Chains [21], a light-weight, fault-
tolerant reference mechanism supporting garbage collection; but it is likely that
our ideas could be applied to other reference mechanisms as well.

2 Background and motivations

Current distributed systems support a number of predefined abstractions, such
as files or ports, that can be referenced and shared. We wish to extend such
support to user-defined objects. This has consequences on the reference and
binding system, because objects are of fine grain and arbitrary type; types
change over time; and objects may be composed of distributed fragments.

Our object and reference model (explained later, in Section 3) distinguishes
logical objects (the targets of references) from the lowest-level resources that
implement them, called atoms (identified by address).

2.1 Limitations of existing binding systems

In operating systems, binding means locating a target, checking rights, and
setting up an access path and method from the client to the target. (For instance
Unix primitive open binds a file reference; it locates a file server, checks the user’s
rights, and sets up internal data structures and network channels for future reads
and writes.) The final target is typically outside the client’s address space (e.g.,
a file implemented by the kernel or a service provided by another process).
The binding returns a local OS-provided atom to communicate with the remote
target (e.g., an open file descriptor or a socket or port). An OS binding is done
at run time, is location independent, and relies on an untyped channel.

In language systems, atoms are memory locations; a binding is a mapping
between a variable and such an atom along with the code operating on the
data. A language binding is type safe, but references do not cross address space
boundaries.

Some systems combine features of both operating system and language bind-
ings. For instance in a remote procedure call (RPC) system [6], binding sets
up a typed stub object that hides an untyped connection interface to a server.



Similarly, a persistent object system [16] faults on the first access to an on-disk
object, and copies it into a memory cache object, before the application can
observe that it wasn’t there; the result of binding is the cache, itself bound to a
disk location.

Despite the similarity of mechanism, typically RPC systems do not support
persistent objects, nor vice-versa. In order to transparently share (potentially
persistent) objects in the distributed system, there is a need for a more flexible
and smooth combination of system and language bindings. The mechanism
should be independent of any particular language or application area; it should
support type-safe bindings even for languages not designed for run-time checking
(such as C++). A flexible policy would be furthermore would be extensible to
new uses.

2.2 Requirements of large scale on referencing and bind-
ing

Large scale imposes its own requirements on the reference system. We do not
address the algorithms for efficiently and reliably federating heterogeneous ad-
dressing domains, described elsewhere [20, 21]. We point out that when a ref-
erence crosses a domain boundary, it is necessary to do address translation at
the boundary. For instance, a stub translates a local address to a connection
address.

A large scale distributed system, applications execute continuously. New
objects and new types must be accomodated without interruption of service or
recompiling. This creates a need for dynamic instantiation of objects, dynamic
linking of code, and dynamic type checking of references.

Large scale also creates a need to replicate an object or fragment its data
over multiple locations, for availability, performance and/or fault tolerance. We
address the referencing needs of such fragmented objects (FOs) later in this
document (see Section 6).

2.3 A general binding protocol

This paper specifies a general binding protocol that supports the needs stated
above. It is designed to support late binding and language- or application-
specific policies. It is conceptually simple (it consists of two local method calls
and a single RPC) but recursive. An actual implementation may terminate the
recursion at any point, trading off performance and simplicity against complete-
ness. The examples will show that in most common cases, no more than a single
RPC is needed (no recursion).



An outline of the protocol is as follows (a more detailed presentation comes in
Section 5). The unbound reference targets some remote atom of the referenced
object; binding produces a local prozy for the object (for instance, a stub or a
cache) that in turn connects to a further atom (respectively, a remote server or
some on-disk data). Binding invokes method accept-bind of the initial target,
which type-checks the binding and the remote interface, and returns what is
needed to create the proxy and its connection, possibly redirecting it to another
atom. On the client side, instantiation method new is upcalled with the
information returned by the target. This type-checks the local interface and
returns the proxy, instantiated with its connection. As a side-effect, code for
the proxy may be dynamically linked.

An important goal of distributed system design is transparency, e.g., the
target of a reference being accessed independently of its location. From the per-
spective of an object’s client, transparency is a good thing. But the implementor
of an object may need control over location; for instance, a replicated file man-
ager must control replica locations. In our proposal, the target of a reference
controls transparency via accept-bind. The accept-bind default sets up trans-
parent remote access, but we will look at other examples, notably persistent
objects. With the proposed binding protocol, any object is free to implement
its own group, persistency, type and class management.

3 Objects and references

In this section we state the object and reference model assumed hereafter. This
model is relatively strong, but restricted versions of the protocol will run in a
system with a weaker model.

3.1 Objects and references vs. atoms and addresses

Objects are shared dynamically and at a fine granularity: the typical size of a
shared data object in existing persistent object systems is known to be of the
order of tens, sometimes a few hundreds, of bytes [1, 2]. References are used
heavily and must be cheap.

An object is any entity of interest in the computer system. A reference
designates some particular target object. The abstract concept of reference
is implemented by a system-provided object called a handle.! The holder of
a handle (a “client”) may pass it as an argument or result of an invocation,

1In what follows the word “object” is reserved for an application object, as opposed to a

handle.



and may invoke the target. Handles have a well-defined interface, described in
Section 4.

An object is a logically encapsulated entity, possibly composed of sub-objects.
A bottom-level object (a physical resource, such as a memory location, or a sys-
tem primitive, such as a transport connection) is an atom. A handle designating
an atom contains its address. The base level of invocation is the local procedure
call of an atom.

User objects are composed of two kinds of atoms: memory extents (attached
to some class) and OS primitives. The former is identified by a memory address,
the latter by an OS identifier, that we also call an address to emphasize the
efficiency requirement. Such an OS address is normally hidden by a stub. A
stub is a normal memory atom known by its memory address.

3.2 Object, class and type model

We assume very little about objects: only that every object accepts upcalls to
method accept-bind, specified in Section 5.2.

We assume the existence of classes, defined as objects that can create other
objects at run-time, called instances of that class. A class supports upcalls to
the instantiation method new, specified in Section 5.3.

A class carries the code for the instances it supports. Instatiating (i.e.,
creating) the class itself may occur at compile/link time (as in standard C++)
or at run time (as in SmallTalk [12] or CLOS [10, 13], and in C++ extensions
such as SOS/C++ [11]). Run-time instantiation of a class may require dynamic
linking of the code.

A type reference characterizes an interface, i.e., the signature of the methods
or operations that apply to objects of that type. An object supports at least all
the operations of its effective type, known at run time. The client will call at
most the methods of the statically-known presumed type of the reference. The
effective type of an object must conform to the presumed type of references to it.
Conformity checking occurs either at compile time (within a statically-linked set
of compilation modules) or at run time (across static checking boundaries). In
order to support dynamic type checking, a handle must store the the presumed
type of the reference, provided by the compiler.

We make no assumption about types. We only assume the existence of type
references,? and that a class has a way to check its conformity with a given

2Conceptually a type reference is the reference of a type object, e.g., one that contains a
description of the type. However, for this work, there is no obligation to keep type objects
around at run time. The implementation of a type reference could just be a hash of its
interface (as in Lynx [18], SOS/C++ [11] and Network Objects [5]), a unique type identifier,



presumed type reference. We do not define conformity, because it is language
dependent.

The preceding object model is rather strong, because it assumes classes and
type references are available at run time. Languages such as Emerald and
CLOS support this model. A standard C++ environment does not, although
extensions have been proposed that do [11].

If the all the features of our object model are not available, they can be
emulated by user-level conventions and discipline. Alternatively, the binding
protocol can be run in a more restricted object model, giving up either dynamic
type checking, or dynamic selection of the proxy class, or both.

3.3 Fragmented objects (FOs)

An object is a single logical encapsulated entity. However, many interesting ob-
jects are actually represented by a group of atoms instantiated at different times
and/or in different locations. For instance, a persistent object (see Section 6.3)
has a disk image (one atom), and zero or more images cached in memory (more
atoms). Another example is a replicated object, formed of the set of replicas.
A remotely-accessed object is similarly logically composed of the “real” atom
(the server) and the remote access stubs. We call any such distributed group
of atoms a “fragmented object” (FO).

A FO is a logical entity only; its physical representation is the set of its
fragments. The only way to access an FO is through one of its fragment atoms.
Binding a reference to an FO yields a local atom, the caller’s prozy for the FO
[19]. We return to FOs in Section 6.

4 Handle primitives

Recall that a handle is the system-provided object that implements the reference
abstraction. The operations on references are listed below (ignoring the obvious
ones such as create, delete, duplicate). A bound handle supports invoking the
reference’s target; binding prepares for invocation. Binding may be explicitly
performed by the application or implicitly upon a fault.

4.1 Binding

The operation bind binds a reference, in order to make later invocations simple
and eflicient. Binding performs some checks and sets up an access chain to the

or some other compact representation (more in Section 7).



target; it yields a handle to be used in place of the original. The checks should
verify the pre-requisites to invocation, e.g., access rights, concurrency control
state, type, etc. The binding protocol is detailed in Section 5.

For instance, the Unix binding operation open takes a pathname and yields a
file descriptor. It sets up an access chain consisting of the sequence: file descrip-
tor number, file descriptor, memory-inode, cache blocks, disk block addresses,
disk blocks. The file descriptor can be further bound by mmap, setting up the
internal mapping tables, and yielding a virtual address where the file is mapped.
Thus the access chain is composed of a sequence of handles and objects, possibly
of different kinds.

The later binding is allowed to occur, the more flexible the system. Binding
may occur end-to-end in one operation, or a bind may be only partial, neces-
sitating another bind later. To support specific policies, our binding protocol
gives some control to the target object.

4.2 Invoking target

A bound handle supports invoking by following down the access path to the
target, and executing one of its methods.

For instance, dereferencing a pointer yields the corresponding memory ad-
dress, in order to load or store the corresponding memory cell. Dereferencing
a Unix file descriptor number occurs when executing a read, write or similar
system call.

Just as every reference resolves to an address, every invocation resolves to a
local atom invocation.

4.3 Faulting

Some systems support implicit binding through feulting: an attempt to invoke
through an unbound handle raises a fault. The fault handler repairs by calling
bind under the covers, and restarts the faulting access. Faulting can make
binding transparent to clients. This is typical of virtual memory systems (page
faults) and persistent object systems (object faults).

To provide faulting, unbound and bound handles appear the same to client
software but the system checks the state of the reference at invocation time.
The check is done by hardware in the case of virtual memory, or in software for
object faulting.



4.4 Unbinding and redirecting

Operation unbind breaks an existing binding; the reference must be bound again
before use. Unbind can be user- or system-initiated, e.g., using an LRU algo-
rithm or timeouts. In general whenever any correctness conditions established
at bind time may have been violated, the binding should be broken. This can
occur either at the client or at the target end of the reference.

To implement unbinding, the system adds some state at both ends of the
access chain and tests this state at each invocation. This state can be the same
as the one used to implement faulting.

Combining unbinding with faulting is one way of supporting redirection of
references. Redirection breaks existing bindings and selects a new target. Run-
time mobility of users, objects, machines, or applications, necessitates redirec-
tion. This same mechanism supports fragmented objects, as will be seen.

Redirection is transparent and atomic, for all clients of the same reference.
Examples include Unix I/O redirection or the SmallTalk become primitive.

4.5 Bound and unbound handles

An unbound reference is one that has not yet been checked and/or connected.
An unbound handle identifies its target (in order to do the binding) but not
necessarily in the most efficient way, and the target may change during the
binding. It is associated with the information (location, access rights, and/or
type) that is to be checked in the course of binding.

A reference may be partially bound, i.e., only some of the attributes are
known to be established. For instance, the access chain is incomplete; or, only
part of the target’s interface has been validated.

A bound handle contains the address of the next element of the access chain,
often an OS-provided open channel address.

Different kinds of handles often co-exist within a single system, for instance
those containing pathnames and those containing addresses. Binding often takes
one kind of handle (say, a pathname) and yields another (say, a file descriptor
number).

5 Binding in detail

This section details the binding protocol. First we specify it without justifica-
tion. Section 5.1 outlines the different steps; Sections 5.2 and 5.3 describe the



up-calls to application- or language-specific modules. In Sections 6 and 7, we
will apply it to a number of interesting examples.

5.1 Specification of the binding protocol

Binding a reference is the execution of the bind method on the handle object
representing that reference:

unbound-handle.bind (application-specific-args)
— bound-handle

The bind method is system-provided. It extracts the presumed type of the ref-
erence from the handle, and locates the target atom. It then performs a remote
invocation of the target’s binding method, passing the application-specific ar-
guments (of which we will see some examples in the course of this paper) and
the presumed type:

target.accept-bind (presumed-type-ref, application-specific-args)
— proxy-class-ref, continuation-ref, initial-data

The accept-bind method is provided by the target object; it returns a reference
to a class (that can create the proxy object), a “continuation” reference, and
some initial data. These results are returned to the client side, where the system
then upcalls:

proxy-class.new (presumed-type-ref, continuation-ref, initial-data)
— proxy-object
This returns a proxy, which will be an initialized atom of the specified class.
The continuation reference connects the proxy to the rest of the access chain.

The default accept-bind returns a stub class for invoking the target (the
server) remotely, an open connection to the target, and null initial data.

Note that proxy-class-ref is a reference to a class object. Before calling new it
must be (recursively) bound, yielding proxy-class (see Section 7). The protocol
will also iterate if the continuation reference is unbound (see Section 6).

5.2 Specification of upcall method accept-bind

The unbound reference designates some initial atom. The binding protocol calls
method accept-bind of that original target, allowing it to control the outcome of
the binding.



The first argument is the presumed type of the reference. If it conforms, then
the target is assured of understanding messages that will later be sent by the
proxy. The target checks this type in some language-specific manner.

The other arguments are (unspecified) “application-specific” arguments. These
could include an access mode, an authenticator, a site identifier, or a transaction
identifier for the caller.

The type of the application-specific arguments is determined by the presumed
type (since accept-bind is part of the target’s interface). However, since binding
has not occurred yet, a presentation protocol for arguments has not yet been
chosen; therefore, there must be a single universal presentation protocol for
accept-bind arguments. If selecting a presentation protocol is desired, this can
be done, either by adding a protocol-type argument, or by using statically-typed
stubs, or by adding another phase to the bind, after instantiating the selected
proxy class. The latter can be ensured by accept-bind returning an unbound
reference. We will see examples in Sections 6.4 and 6.5.

Method accept-bind returns the information necessary to choose or create the
proxy on the client side: a proxy class reference, some initial data, and a contin-
uation reference. Different proxy classes may implement different presentation
and/or transport protocols or different consistency policies.

Normally the initial target will return a bound reference to itself, but it can
also return a null reference if no continuation is needed, or an unbound reference
to itself or another atom. An unbound reference forces the proxy to iterate the
bind protocol again before invoking.

5.3 Specification of proxy-returning upcall method new

After the RPC to the initial target returns to the client, the system upcalls
(at the client side) method new of the specified class, with the presumed type,
initial arguments and the continuation reference.

The new method is supposed to first check the class for conformity with the
presumed type, presumably by calling a language-specific dynamic type checker.

Method new returns the address of a local proxy. It creates one, or possibly
re-uses an existing appropriate proxy. If creating the same proxy twice is to
be avoided, then the arguments must contain enough information to ensure
uniqueness.

The type of the initial arguments is not specified here, but is known by the
class. This need not be type-checked since the class and the arguments are sent
together.
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Figure 1: Fragmented object example. Client has reference to Factory; at bind-
ing, factory initializes Cache, redirects client to Cache, redirects cache’s refer-
ence to Replica 1.

The proxy uses the continuation reference to set up the access chain. For
instance a stub will connect itself to its server; a cache to its file server; a replica
to other replicas.

Note that the RPC to the initial target returned not a class object but
a class reference. In order to call the method new of the class object, the
reference must be bound, recursively invoking the binding protocol. If the class
has already been bound, then the binding protocol can return immediately.
Otherwise is should go to a trusted class repository. The proxy returned by
the class repository contains the actual code for the class (it is a locally-cached,
read-only copy of the contents of the repository).

6 The binding protocol applied to distributed
object management

In distributed systems a logical object is often replicated for availability and
fault-tolerance, or cached for performance. Thus a logical object can be frag-
mented, i.e., constructed as a group of fragments in different locations. Few
existing reference systems support groups or fragmented objects (FOs); those
that do wire in a single binding policy. We show here how the general bind-
ing procotol supports many different forms of fragmented object and different
object distribution policies.

11



6.1 Referencing an FO

In order to reference FOs, we consider four options. We reject two traditional
options, because they do not support our model adequately: referencing individ-
ual fragments and system-resolved group references. The third option combines
the previous two. Our fourth, preferred mechanism relies instead on an object-
provided accept-bind and redirecting references. We now examine and compare
these options.

1. Most existing systems support references to individual atoms only. In
such a system, each fragment of an FO has its own reference. By ex-
porting the reference of an appropriate fragment to each client, it is easy
to control which client binds to which fragment. However, this is early
binding (to be avoided), and fails its purpose if clients pass references to
one another. Furthermore, clients do not see the FO as an encapsulated
unit, but instead have the visibility of the multiple fragments.

2. Some systems, such as the the V-System [8] or Isis [4], reference a group
as a single unit. The system chooses what fragment a reference binds to.
Encapsulation is enforced. But the programmer of the FO cannot easily
distinguish among fragments; and has no control over a client’s binding.
A particular FO cannot select its own binding policy.

3. A third option, used in SOS [22] and in Gaggles [7], combines the above
two. Here, a fragment carries both a fragment identifier and an FO iden-
tifier; if a client uses the FO identifier then binding will go to an arbitrary
fragment; if a fragment identifier is used, then binding will yield that
fragment. This behaviour is confusing to users.

4. Our solution for referencing an FO is to reference a specific factory® frag-
ment; at bind time, the factory’s accept-bind may redirect the reference
to another fragment (possibly creating or migrating it on the fly). For
an example, see Fig. 1. Any fragment will do as a factory, as long as it
implements an appropriate accept-bind. For fault tolerance, the factory
itself may be a replicated object.

6.2 Remote access through a stub

Let us first illustrate the default application of the binding protocol, providing
remote access to a “server” through stubs [6]; see right part of Fig. 2.*

3We use the word factory differently from Meyer [14] for instance. He uses it for a class.
We use it for the manager of a fragmented object instance, that decides in particular when to
create new fragments within that FO.

4In this and the following figures, the arrows represent references, rounded boxes represent
atoms, and thick lines delimit address spaces. The solid items exist initially; the dashed items

12



client 1 o client 2

Figure 2: Persistent object and remote access examples. When binding Client
1’s reference, x4 is copied to X,,, and the reference redirected to X,,. When
Client 2 binds, its reference is redirected to remote-invocation stub x,, itself
bound to X,,.

In this example, the reference of Client 2 to x4 is redirected, at bind time,
to a local stub, itself connected to a remote in-memory server x,,. Thereafter,
the client calls the stub’s methods locally. A stub method marshalls arguments
into a call message, sends the message, and awaits and unmarshalls the return
message. A “stub generator” mechanically generates stubs and scions from
interface specifications.

The default accept-bind (also generated by the stub generator) returns a
client stub class as proxy class, an open connection to the server as continua-
tion reference, and empty initial data. If multiple presentation protocols are
to be supported (as in LRPC [3]), the stub generator will generate multiple
corresponding stub and scion classes; one will be selected at run time.

Binding in existing RPC systems performs a subset of the above protocol.
The “application-specific” arguments would include an authenticator for the
caller. As the presumed type they pass a “version number” set by the writer of
the interface, that should be changed whenever the interface changes (but this is
only a convention, relying on manual action). Most RPC systems support only a
single stub class per type; so, they do not neeed to return a proxy class reference.
however, if more than one presentation protocol is supported, they return an
indication of the selected protocol, that is like our proxy class reference.

appear during the execution of the binding protocol. A reference can be redirected, as in the
case of the x reference in space B, initially directed to x; and later redirected to X, -

13
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Figure 3: Cache manager example (pessimistic implementation). Round I1:
client binds file reference (1a), yielding cache-aware proxy with continuation to
server (1b). Round 2: proxy instantiates empty cache x,,, passing file reference
(2a); proxy binds to file (2b), passing reference to X, (2c); this yields stub x;
connected to cache (2d). Round 3: stub binds to cache, cache binds to file and
is initialized.

6.3 Cached persistent object

We show how the general binding protocol supports distributed access and
caching of a persistent object. This is illustrated by the left part of Fig. 2.
Initially, the persistent object exists as an atom on disk x4, managed by an
object storage server. The initial reference designates the disk atom through
the server; the server implements accept-bind.

The purpose of bind is to copy the on-disk atom into a cache x,,, an in-
memory atom. Thus accept-bind checks the client’s access rights, and allocates
a scion at the storage server, describing the open object. It returns a cache class
with an appropriate interface, an open connection to the storage server to serve
cache misses and to flush updates made by this client, and initial data to prime
the cache. The cache class is instantiated, yielding X,.

6.4 Cache call-back

In the next section (Section 6.5) we will look at some cache consistency policies.
All require a call-back reference from the server to caches. The same binding
protocol supports passing the call-back reference from the client to the server,

14



but this requires a bit of ingenuity. We will describe two implementations, a
pessimistic and an optimistic one.

The pessimistic implementation requires two rounds of binding. The first
creates the cache, and the second passes the cache reference to the server. In
the first round, the server’s accept-bind returns a cache class, empty initial data,
and an unbound reference to itself. This creates an empty cache proxy that will
implement the second round, by faulting at the first access. In the second round,
the application-specific arguments, supplied by the proxy, contain a reference to
the cache, which will be recorded by accept-bind as the call-back. The second
round returns the same cache object, primed this time with initial data to prime
it, and a bound reference to the server. This implementation is fully transparent,
as the client need not be aware that something special is being done to set up
the call-back.

The optimistic implementation avoids the first round by instantiating the
cache in advance, for instance at compile time. Based on the presumed type
of the reference, it is bound at compile time to a cache (a partial binding)
that implements the optimistic protocol. The proxy’s bind method allocates an
empty cache at the client end and passes its reference in the application-specific
arguments. The class reference returned by accept-bind normally would be the
same as the statically-bound cache class; if so new just returns the address of
the existing cache, primed with the initial data. If however the class is different,
then another round is necessary, as above.

Existing systems with call-backs, such as AFS [15], install proxies statically.
Our optimistic implementation also binds a caching proxy statically. It has the
advantage over AFS that, if a different policy is decided after compiling the
client, our optimistic implementation automatically falls back to the pessimistic
implementation.

6.5 Shared persistent object caching policies

Multiple caches of the same object must be kept mutually consistent. Many
different consistency policies are possible; most require more than one round of
binding.

The simplest policy is no consistency at all. This is appropriate for mostly-

read objects such as a class.

Another simple policy is to ensure that no more than a single cache exists for
any one object at any particular time, as illustrated in Fig. 2. When the server
has allocated one cache x,, (left-hand side of the figure), it redirects all future
bindings along the call-back to that cache, allocating a remote-access stub x; to

15



the new client (on the right of the figure). The server serializes bind requests
and remembers cache allocations and associated call-backs.

A widely-used policy in distributed file systems, such as AFS [15], is to allow
multiple caches to the same object but ensure mutual consistency. When an
application commits by “closing the file,” updates are sent from the client cache
to the server, and propagated to other caches along the call-backs.

Even when multiple caches are allowed for the same object, no more than one
should be allocated per client or per machine. The Spring binding protocol [17]
is especially designed for cache management and ensuring uniqueness. There is
a single (optional) file cache manager per machine; all clients on one machine
share a single cache to any file, via the cache manager.

Again, the general binding protocol accomodates this. A pessimistic, trans-
parent implementation needs three rounds of binding, as illustrated in Fig. 3.
Initially the client has a reference to a file at the file server. In the first round
the client contacts the file server; the file server returns a proxy class that knows
about cache servers (and an unbound reference to itself). In the second round,
the proxy first asks the local cache server to instantiate a cache x,,, passing
the file reference as an argument; the cache is initially empty and refers to the
server through the (unbound) reference passed by the client. The proxy then
binds, passing the x,, reference as application-specific argument; the file server
responds with the same proxy class and the (unbound) reference to x,, (not to
itself). In the third round, the client binds to a stub x,s, which binds to the
cache, with itself binds to the server, which returns initial data.

As an optimization, if the server already has a call-back reference to the
appropriate cache manager, it responds with a reference to the cache, skipping
the second round. If the cache is already bound, the cache-server binding of the
third round can also be skipped. Also, an optimisitic implementation (along
the lines of Section 6.4) needs only a single round, binding directly to the cache
manager. The optimistic implementation is the same as the binding protocol
used in Spring [17], with the added advantage of automatic fall back onto the
pessimistic implementation in case a different policy is decided at run time.

7 How the recursions in the protocol support
type and class management

In the previous section we showed how the binding protocol supports object-
specific distribution policies. In the current section, we will show how it supports
language-specific code and type management policies.
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7.1 Recursive definition of handles and types

The definition of a handle is recursive, since a handle contains a type reference
for its presumed type, i.e., another handle.

At first glance, the recursive definition of a handle seems to lead to an im-
possibility. Handles can be implemented in practice however, because (i) not all
handles need be implemented identically, and (ii) the recursion may terminate
after any suitable degree.

Remark (i) means that the presumed type handle embedded within an or-
dinary handle may be very short. This takes advantage of the fact that there
are fewer types than ordinary objects; types can be identified relative to the
universe of types, whereas objects are identified relative to the (larger) universe
of all objects.

Remark (ii) means for instance that when type checking is static, the pre-
sumed type may be omitted from handles.

Let’s pause a moment to look at this argument the other way around. If a
handle contains a presumed type, and a type is represented by a handle, then
a type-handle contains a type-type-handle, and so on. What then is the type
of a type? One reasonable interpretation is to consider an object universe with
a partitioned type universe. For instance, each site in the system manages a
separate schema; then the type-type identifies the schema. Two types with
different identifiers in different schemas may still conform; if a global schema
oversees the local schemas, then recursively invoke the global conformity checker.

The same idea could possibly type check across different programming lan-
guages by recursing to a “super type system”, provided for instance by a “uni-
versal” interface definition language.

The recursion terminates by a (static) decision not to implement any higher
levels. For instance, for those references that can be type-checked statically, the
presumed type can be left out of handles, and the corresponding run-time check
omitted. In a system that needs dynamic type checking but supports only a
single type system, then type-types (and higher levels) are omitted.

In general, different representations of handles can co-exist when appropriate,
if there is no risk of confusion. For instance, a type can be identified by its string
name, or by its registration number within a type registry; this assumes that a
normal handle will never appear in lieu of a type handle. (Alternatively, a type
identification can consist of a hashcode computed from its interface —assuming
a single universe-wide hashing function— as in Lynx [18], SOS/C++ [11] or in
Network Objects [5].)

There is clearly a trade-off between flexibility and potential complexity of
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a type check; it is doubtful a real system would need any more than a small
number of levels. For instance, Spring uses a single level; the SOS bind is
recursive but only a single level is ever used in practice. Similarly, the CORBA
specification implicitly assumes an optimistic implementation [9].

7.2 Dynamic linking and recursive binding of classes

The binding protocol itself is recursive since binding a reference returns a class
reference, which in turn must be bound before use.

The first level of recursion ensures that the class of an object is loaded before
creating instances of that class. A class manager class class loads new classes,
i.e., reads the class code from a class repository, and dynamically links it into
the client’s address space. The recursion terminates there if the class manager
is statically linked (this is the case in SOS for instance [22]). If however mul-
tiple class managers were needed (for instance to support different object code
formats) then the binding for a class-object would return the reference for the
corresponding class-class object, causing another level of recursion.

Again, class references can use a specialized representation, such as string
name or registration number in the class repository, when there is no possible
confusion with other handles. Multiple representations can be distinguished
from one another by recursion.

Again there is a trade-off between flexibility and complexity. Dynamic linking
can be avoided entirely if all classes are known statically. Or, dynamic linking
can be supported, but under control of a statically-linked class manager, class
class.

7.3 Grouping

Grouping makes possible a further simplification. For instance, one could as-
sume that all the type references in a particular module or space are relative to
the same schema. Then a single reference to the schema for the whole module
replaces individual references per handle.

If there is a single schema for the whole system, its reference can eliminated
altogether.
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8 Conclusion

We have presented a simple but comprehensive binding protocol for references
to distributed shared objects. This protocol consists of one RPC from client
to target, one up-call to the target object’s accept-bind, and one up-call to the
language-support run-time new at the client’s end. The latter up-call is directed
by the data returned by the former.

We have shown many examples of useful applications of the general protocol;
by appropriate action in accept-bind and new, objects can select between many
different distribution policies, e.g., data shipping (caching) or function shipping
(remote access). Similarly, the protocol enables the language-support runtime
to perform run-time type checking and/or loading of code efficiently and safely.

The efficiency of the protocol can be questioned, since it is based on unlimited
recursive RPCs. However, the examples make it clear that in most cases, an
optimistic implementation uses a single RPC, emulating the binding protocols of
systems such as RPC systems, SOS, Spring, or CORBA. However, our optimistic
implementation is also more versatile, since it automatically falls back on the
pessimistic approach when the static assumptions are false. It does this at the
price of some local checking.

The work described is part of the Soul distributed object support system.
The reference system of Soul (SSP Chains) has been implemented; however it
currently supports only a simplistic version of the binding protocol. At the time
of this writing, the protocol and the examples are specified on paper only, but
are we plan to integrate these ideas into Soul and check them out in practice.

Related papers are accessible by anonymous FTP on host ftp.inria.fr, directory INRIA/
Projects/SOR.
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