Technical perspective:
Unexpected connections

Marc Shapiro

Sorbonne-Universités-TTPMC-LIPG & Inria Paris
http://lip6.fr/Marc.Shapiro/

Revision 7035 (2017-01-09)

Scalability is the capability of a parallel program to speed up its execution as we
provide it with more CPUs. Back in 1967, Gene Amdahl noticed that the sequential part
of a parallel program has a disproportionate influence on scalability [I]. Suppose that
some program takes 100s to run on a sequential processor. Now let’s run it on a parallel
computer. If we are able to parallelise, say, 80% of the code, with enough CPUs, that
80% would take essentially zero time, but the remaining sequential portion will not run
any faster. This means that the parallel program will always take at least 20s to run, a
maximum speed-up of only 5x. If we are able to parallelise 95% of the code, speed-up is
still limited to 20x, even with an infinite number of CPUs! This back-of-the-envelope
calculation, known as Amdahl’s Law, does not take into account other factors, such as
increased memory size, but remains an important guideline.

In 1967, parallelism was a niche topic, but not any more. To improve program
performance on today’s multicore computers requires the developer to pay serious attention
to scalability. Even more so for basic platform software such as operating systems, the
focus of the our Research Highlight, “The Scalable Commutativity Rule: Designing
Scalable Software for Multicore Processors.” The paper makes the observation that,
when a thread updates some shared data, and another thread wants to read or write the
most recent version of that data (they conflict), this ends up constituting a sequential
bottleneck. This is a general result that does not depend on any particular implementation;
it remains true even with efficient hardware support, for instance the MESI protocol of
cache-coherent processors, as detailed in the paper. Now, shared state is the bread-and-
butter of operating systems. An OS contains a mass of shared state, such as process
state, file system state, memory management state, resource allocation state, and so on;
just about every system call reads or writes some of that data.

Here comes the paper’s main insight. If two concurrent procedure calls commute
(i.e., executing them in either order is equivalent), this means that neither one depends
on the result of the other. Therefore, there is no inherent reason why these calls should
conflict; and it is possible to implement them in a way that scales well, even if it won’t


http://lip6.fr/Marc.Shapiro/

be the most obvious, or the simplest, or the most efficient implementation. Reasoning
about commutativity enables us to reason about scalability independently of a particular
implementation, benchmark or workload. We can design interfaces for scalability by
ensuring that calls commute.

The advantages of commutativity in software have been known for a long time; see
the paper for relevant references. It is only recently however that focus has shifted
from leveraging commutativity to designing for commutativity (shameless plug for my
own work [2H4]). The current paper goes well beyond previous work. First, instead of
simple abstract data types, it considers the much more complex case of an OS with its
intricate interface and massive amount of state. Second, it goes beyond a black-and-white
“commutes/doesn’t-commute” characterisation, and considers calls that may commute
in some cases and not in others. This is especially important when commuting is the
common case, as in many OS calls. Finally, it leverages static program verification
techniques, providing a tool that automates reasoning about commutativity.

*oxokok
simple and powerful idea revisits common assumptions use of static verification
techniques

Fast as long as no shared state (embarrassingly parallel). Shared state is inherent in
many algos (e.g., OS). Non-scalability: coherence protocol (or its software equivalent).
This is a principle, independent of implementation (MESI or other).

commutativity
shared-memory multiprocessor scalability
relate to distributed systems + CRDTs

beyond simple data types: commutative wrt current state. It’s a win if commutativity
is the common case. Many interfaces non-commute only in rare situations (resource
exhausted).

principled, reason about scalability independently of implementation
connection between math theory and OS practice

high-performance data structures don’t scale

use of static verification techniques

built a tool, checks a model of the APIs

designed an OS, most interfaces commute, most commuting interfaces are scalable
(sometimes it’s not worthwhile doing the work).



1

Conclusion

References

1]

Gene Myron Amdahl. Validity of the single-processor approach to achieving large scale
computing capabilities. In AFIPS Conference Proc., volume 30 of AFIPS Conference
Proc., pages 483485, Atlantic City, NJ, USA, April 1967. AFIPS, AFIPS Press.

Marc Shapiro, Nuno Preguiga, Carlos Baquero, and Marek Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Rapport de Recherche
7506, Institut National de la Recherche en Informatique et Automatique (Inria),
Rocquencourt, France, January 2011.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In Xavier Défago, Franck Petit, and V. Villain, editors,
Int. Symp. on Stabilization, Safety, and Security of Dist. Sys. (SSS), volume 6976
of Lecture Notes in Comp. Sc., pages 386—400, Grenoble, France, October 2011.
Springer-Verlag. doi: 10.1007/978-3-642-24550-3_29. URL http://www.springerlink
com/content/3rg3912287330370/.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Convergent
and commutative replicated data types. Bulletin of the FEuropean Association for
Theoretical Computer Science (EATCS), (104):67-88, June 2011. URL http://www/
eatcs.org/images/bulletin /beatcs104.pdf.


http://www.springerlink.com/content/3rg39l2287330370/
http://www.springerlink.com/content/3rg39l2287330370/
http://www.eatcs.org/images/bulletin/beatcs104.pdf
http://www.eatcs.org/images/bulletin/beatcs104.pdf

	Conclusion

