Conflict-Free Replicated Data Types (CRDTs) were invented to encapsulate and hide the complexity of managing Eventual Consistency. A CRDT is an abstract data type that implements some familiar object, such as a counter, a set or a sequence. Internally, a CRDT is replicated, to provide reliability, availability and responsiveness. Encapsulation hides the details of replication and conflict resolution.

In a sequential execution, the CRDT behaves like its sequential counterpart. Thus, a CRDT is reusable by programmers without detailed knowledge of its implementation. Furthermore, a CRDT supports concurrent updates, and encapsulates some strategy that provably ensures that replicas of the CRDT will converge despite this concurrency. Concurrent updates are never conflicting.
i.e., an untyped memory that an update completely overwrites. Wuu and Bernstein [19] studied more complex data types, the log and dictionary (a.k.a. map or Key-Value Store). The whole area of Operational Transformation (OT) studied replicated strings or sequences, intended for concurrent editing applications [18]. Baquero and Moura [9] identified some convergence conditions for data types used in mobile computing. The Dynamo system is based on a multi-value register construct [9]. Related topics include replicated file systems and version control systems.

The concept of CRDTs was identified by Preguiça et al. [13], formalised by Shapiro et al. [16] and Shapiro et al. [17], and studied systematically in Shapiro et al. [15]. A similar concept, called Replicated Abstract Data Types (RADTs), was proposed independently by Roh et al. [14]. These works consider symmetric replicas, in which concurrent updates must be commutative and associative. In related work, Burckhardt et al. [7] consider so-called Cloud Types with asymmetric main and secondary branches, thus relaxing the commutativity requirement.

The distinction between operation- and state-based CRDTs was established by Shapiro et al. [16]. Burckhardt et al. [8] established lower-bound and optimality results for some representative state-based CRDTs. Delta-CRDTs were proposed to decrease the footprint of state-based CRDTs while keeping most of their advantages [1]. Pure operation-based CRDTs leverage causal-order delivery to streamline the design and implementation of operation-based CRDTs [1].

4 Foundations

4.1 Encapsulating replication and concurrency

In a distributed system, shared data is often replicated to improve the availability and latency of reads. However, requiring strong consistency between replicas will actually degrade the availability and latency of writes. According to the CAP Theorem, to improve write availability and latency requires to relax the consistency requirement: a replica should accept updates without synchronising with other replicas, and propagate them in the background.

If multiple replicas accept updates (a so-called “multi-master” system), inevitably, there will be concurrent updates to separate replicas. Managing and reconciling conflicting concurrent updates, in order to ensure Eventual Consistency, is a major issue of such systems.

CRDTs were invented to resolve this issue, by encapsulating a familiar object abstraction with a mathematically-sound conflict resolution protocol.
4.2 CRDT behaviour

A CRDT supports the interface of the corresponding abstraction. Thus, a register CRDT will support mutation methods such as read and write methods; a counter supports increment, decrement and value methods; a set methods to add, remove and query elements, and so on.

A number of CRDT types have been proposed in the literature. The most basic ones are the LWW Register \[11\] and the Multi-Value Register \[9\]. A widely-studied CRDT is the sequence or list, used in particular for cooperative editing \[13, 14\]. Other common CRDTs include counters \[15\], sets \[15\] and maps \[14\].

Consider for instance a set data type, supporting operations to add and remove elements, ignoring duplicates. An archetypical CRDT set is the so-called Observed-Remove Set (OR-Set). In any sequential execution, it behaves exactly like a sequential set. Concurrently adding and removing different elements \(e\) and \(f\), or adding the same element \(e\) twice, or removing the same element \(e\) twice, commute per the sequential specification. However, to ensure commutativity of two updates that concurrently add and remove the same element \(e\), the OR-Set makes the “add win,” i.e., any replica that observes both operations concludes that \(e\) is a member of the set. To do this, the implementation of the remove operation effectively cancels out those add operations that it previously observed, and only those. We return to this example later in this entry.

4.3 Implementation approaches and requirements

A CRDT is typically designed to behave like its sequential counterpart in any sequential execution. Furthermore, a CRDT is replicated, supports concurrent updates for availability, and encapsulates some strategy to merge concurrent updates and ensure that its replicas eventually converge. One such strategy is the “Last-Writer-Wins” approach \[11\] that uses timestamps to totally order updates and discard all but the highest-timestamped one. Another is to record concurrent updates side-by-side, so that the application can deal with them later, as in the Multi-Value Register of Dynamo \[9\] and in many filesystems or version control systems.

The literature distinguishes two implementation strategies for CRDTs. In the state-based approach, a mutation method changes only the state of the origin replica. Periodically, a replica sends its full state to some other. The receiver merges the received state into its own. A state-based CRDT manages its state space as a join-semilattice, where every mutator method is an inflation, and the merge method computes the join (a.k.a. least-upper-bound) of the states to be merged \[8, 10\]. Semi-lattice join is associative, commutative and idempotent. The first two properties ensure that all replicas converge deterministically to the same outcome. The latter ensures that the system tolerates duplicated merges. As long as replicas communicate their state sufficiently often, and the communication graph is connected, replicas eventually converge and each object’s history is causally consistent.
The operation-based approach consists of sending updates rather than states. A mutator method consists of two steps. The generator step reads the state of the origin replica and generates an effector, a state transformation that is sent and eventually applied to all replicas in the second step. Concurrent effectors must commute with one another since they may be received in any order. Associativity is not required but, if available, enables batching multiple effectors into a single one. The operation-based approach requires that the underlying communication layer deliver updates to the object in causal order, and never deliver the same (non-idempotent) update twice.

The state-based approach is generally considered less efficient (state may be very large) but more elegant and simpler to understand. It makes very few assumptions about the underlying network; for instance, the number and identity of replicas may be unknown and variable. Conversely, the operation-based approach appears more efficient but is more complex to implement and requires a more elaborate communication layer.

While CRDTs replicas are guaranteed to eventually converge, this may be insufficient for application correctness. Many applications also require causal consistency to avoid ordering anomalies across objects. Furthermore, maintaining the integrity of structural invariants may require synchronisation to disallow certain concurrent updates

4.4 Example: OR-Set

The following pseudocode, in the style of Shapiro et al.[16], illustrates a state-based implementation of an OR-Set[15]. The local variables of a replica are a set \(E \) of added elements, and a set \(T \) of removed elements or tombstones. Adding an element \(e \) puts it into \(E \) along with a unique tag. The tag remains internal to the implementation and is not visible through the interface. Removing an element \(e \) moves all pairs of the form \((e, _}\) from \(S \) into \(T \). An element \(e \) is contained in the set if there exists a pair of the form \((e, _}\) in \(E \). Merging two states retains the element pairs that are contained in both states, and makes tombstones of element pairs that are tombstones in either state.

```
variables set E, set T

initial \( \emptyset, \emptyset \)
query contains (element e) : boolean b
  let b = (\( \exists n : (e, n) \in E \))
update add (element e)
  let n = unique()
  E := E \cup \{(e, n)\}
update remove (element e)
  let R = \{(e, n) | \( \exists n : (e, n) \in E \)}
```

1 This vocabulary is not standardised. Other names for the generator phase are upstream, prepare, or prepare-update. Alternative names for the effector phase are downstream, effect, effect-update or shadow operation.
\[
E := E \setminus R \\
T := T \cup R \\
\text{merge } (B) \\
E := (E \setminus B.T) \cup (B.E \setminus T) \\
T := T \cup B.T
\]

-- Make pairs observed at origin into tombstone

Unfortunately the memory usage of this specification grows, without bound, with every \textit{add} and \textit{remove} operation. However, observe that adding an element pair necessarily happens-before removing the same pair. Leveraging this observation, Bieniusa et al. \cite{6} propose an implementation whose size is bounded by the number of currently-contained elements; since the state-based approach does not assume any particular delivery order, it is somewhat complex. As the operation-based approach already assumes causal-order delivery, avoiding tombstones is straightforward, as shown next \cite{17}. A replica maintains a set of contained element-pairs \(E \). Adding an element \(e \) creates the corresponding pair, and removing an element \(e \) simply removes all pairs of the form \((e, u)\) observed at the origin replica.

\[
\text{variables set } E \\
\text{initial } \emptyset \\
\text{query } \mathit{contains} \ (\text{element } e) : \mathit{boolean} \ b \\
\quad \text{let } b = (\exists u : (e, u) \in E) \\
\text{update } \mathit{add} \ (\text{element } e) \\
\quad \text{generator } (e) \\
\quad \quad \text{let } u = \mathit{unique}() \\
\quad \quad \text{effector } (e, u) \\
\quad \quad \quad E := E \cup \{(e, u)\} \\
\text{update } \mathit{remove} \ (\text{element } e) \\
\quad \text{generator } (e) \\
\quad \quad \text{let } R = \{(e, u) | \exists u : (e, u) \in E\} \\
\quad \quad \text{effector } (R) \\
\quad \quad \quad E := E \setminus R
\]

5 Usage

Several implementations of CRDTs have been reported, in languages such as C++, Clojure, Erlang, Go, Java, Python, Ruby, and Scala.

The Riak NoSQL database, as of Version 2.0, implements a number of replicated data types, including flags, registers, counters, sets and maps \cite{5}. Bet365, a large online betting company, which manages 2.5 million simultaneous users with Riak OR-\text{Sets}. League of Legends, an online multiplayer game, implements online chat for 70 million users with Riak sets. Tom\text{T}om extend Riak’s CRDTs to share navigation data between a user’s different devices. SoundCloud uses a Go implementation on top of the Redis database to store time-series information.
6 Cross References

CAP Theorem.
Causal Consistency.
Eventual Consistency.
Multi Datacenter Consistency.
Optimistic Replication and Resolution.
Weak Consistency Models for Replicated Data.

Recommended Reading

