Comparing Optimistic Database Replication Technigues

Pierre Sutra Marc Shapiro
Université Paris VI and INRIA Rocquencourt, France
LIP6, 104, ave. du Président Kennedy, 75016 Paris, France
E-mail: pierre.sutra@lip6.fr, marc.shapiro@acm.org

Keywords:database replication, transaction procest- Introduction
ing, optimistic concurrency control, synchronous

replication and atomic broadcast In order to scale up a database system, several ap-
proaches are possible: buying a bigger machine, di-
viding the work, or replicating the load across sev-
eral remote machines. Replication does not require
costly equipment and enables fault tolerance. How-

Replication is attractive for scaling databases up, @', remote access has a high latency, and the la-
it does not require costly equipment and it enabl&Cy gap only keeps increasing. Furthermore, re-
fault tolerance. However, as the latency gap b@lote access is subject to disconnections. Therefore,
tween local and remote accesses continues to wid@gintaining consistency between replicas is difficult.

maintaining consistency between replicas remains apptimistic replication (OR) is an attempt to ad-
performance and complexity bottleneck. Optimistigress this problem. An OR system caches data. A
replication (OR) addresses these problems. In ORyg@abase executes transactions against its local cache
database tentatively executes transactions agains{diatively Remote databases reconcile after the fact

local cache; databases reconeilposteriorito agree to agree on a common schedule of committed trans-
on a common schedule of committed transactiontions.

We present three OR protocols based on the deferred .

update scheme. The first two are representative ofAmong OR technlq.ues, thgieferrgd quate

the state the art. The third is new: we describe it ﬁ?heme has recently raised an increasing interest of
detail. As all three protocols are expressed withinthe community [EGS03. HSAADE. KADD, SSIP06).
common formal framework, we are able to compaf8 the deferred update scheme a database executes
them, to identify similarities and differences, and {g new |ncom|r.19 tr.ansactlon ?‘Qa'F‘St Its .Iocal cache.
introduce common variants. We show that our er—_the transaction is a query it is immediately com-

tocol behaves better than the other two, with respdgfted; in the other case the database computes a
to latency, message cost and abort rate. logical clock, and the read set, write set and update

values of the transaction. This information is then

“This research is funded in part by the European projes€nt to distant sites to globally commit the trans-
Grid4All and by the French project Respire. action. The deferred update scheme has proven to

Abstract

be efficient, outperforming existing pessimistic a2 ~ System Model
proaches, while maintaining consistency [WIS05].

This paper compares three OR commitment ere consider a distributed system in which any client
tocols based on deferred updates. The first two &@ Submit an operation on shared data, at any site
representative of the state of the art: the epidenfiE@ny time. In the general case, maintaining consis-
protocol of Agrawal et al [AES97], and the Databad€NCY requires a complex concurrency control mech-
State Machine (DBSM) approach of Pedone et &1iSm. However, providing the system with some
[PGS03]. The third one is new. We describe it féMantic knowledge can simplify consistency. For

detail. instance, suppose that all updates commute; in this
case, maintaining consistency reduces to propagat-
Our contributions are the following: ing the update operations to all sites, and executing

them in any order.
e We describe all three protocols in the same for-

mal framework. This clarifies the comparison. ~ Building upon this insight, our model (which is
a refinement of the Action-Constraint Framework

e Using the framework, we can explore commof$BK04]) maintains an explicit graph, where the
variants. For instance, we propose a new variambdes are the actions that access shared data, and
to the Agrawal et al. protocol, ensuring snaphe edges represent semantic links between actions.
shot isolation. A consistency protocol is a particular solution to a

graph problem. The complexity of the problem is re-

* We propose a new OR protocol that baichggeq to the shape of the graph. In our experience,
transactions. This allows it to optimise the abog,r model clarifies the understanding of consistency,

rate. Furthermore, batching amortizes comMmiyayes it easier to compare protocols, and helps with
nication and computation costs. the design of new solutions.

e We show that our protocol improves over the
other two, in terms of latency, message cost aad:L

abort rate. The Action-Constraint Framework

e We propose two variants of our protocol: on8.1.1 Actions, constraints and multilogs
that is more optimistic, and one that ensures

snapshot isolation. We postulate a universal setaftionsA.

The rest of this paper is organized as follows. We Actions are linked each others kgonstraints
present our model in Secti@h 2. Sectidn 3 studies tvbich are relations ovef.. Five constraints are of
Agrawal et al. protocol, and proposes a variant fparticular interest in our frameworks, —, —, < and
snapshot isolation. Secti@h 4 studies the protocol«pfrespectively pronounced “commit,” “abort,” “not
Pedone et al. Sectidd 5 presents our proposal aftér,” “enables” and “non-commuting.” The con-
its variants. We compare the different protocols straints+ and— are unary relations ovek, whereas
Sectior6. Sectiofl 7 surveys related work. We close, <1 and« are binary relations ovef. Their se-
in SectiorB with a discussion. mantics will be explained shortly, in Sectibn211.2.

Our central structure in the Action-ConstrainthatS= (E, <s) is a schedule o, iff :
Framework (ACF) is themultilog. A multilog is a

sextuple(K,+,—,—, <1,#) whereK is a set of ac- va,peK

tions, and+-, —, —, <, # are some sets of constraints a-eM=a¢E

over A. We noteM the universal set of multilogs atfeM=0a€cE

overA. a<BeM= (BecE=0acE)

a—-BeM= (a,BeE=a<sPp)

We define union, intersection, difference, etc.,
between mUltiIOgS as Component'Wise Operatiorﬁ)r some actiorn and a schedul& = (E’<S), we
For instance, leM = (K,+,—,—,<,n) andM’ = gay thato is scheduledn S (noteda € 9 iff o € E.
(K',+,—,— ,<,#) be two multilogs. Then, we notex (M) the set of schedules .
MUM = (KUK, +U+ ,—U— ,—U— ,qU
U+). By abuse of notation, we also use the union Thus the—, +, — and < constraints restrict
operator to add an element to a single componeffich schedules may appear®iM). This defines
which should be clear from the context. For instancéeir semantics.

MU {a} addsa to thek component, .eMU{a} = | contrast, # divides (M) into equivalence
(Ku{a}t,+,—,—,<,x). Similarly, MU{a™} adds classes of schedules. Let= (K,+,—,—,<,«) be

(a,a) to the+ component, andM U {a — B} adds g multilog. Two scheduleSandS of (M) are said
the pair(a, B) to the— component. equivalentaccording tar, notedS~ S, iff:

The notationa™ € M, or just (when clear from va,peK,

the context)a—, are used as a shorthand fdo'; o) { acSeacsS

is in the+ component oM.” Similarly, either{a — (0,B) e AaHBEM= (0 <sP < o <g B)

B} € M or justa — B are shorthands for “The pair

(a,pB) is in the— component oM.”
We notex(M)/~ the quotient set cE(M) by ~,

A .
a S B=a—-BAB—a schedules induced by.

A
as BZ a—pBra<p The following constraints or combinations of
aJB=a<BAB<a constraints are particularly useful for defining appli-

cation semantics. Lavl = (K,+,—,—,<,#) be a

multilog anda, 3 two actions ofK. A —-cycle in

2.1.2 Schedules of multilogs and classes oM (e.g.,a = B) representsaantagonismi.e for any
schedules scheduleS of £(M), eithera isin S orBisin S or
neither of them; the conjunctiop < a meansx de-

. - <
Let E be a subset oft. We call schedule a coupleP€Nds causallpn ; and an<-cycle such ast 3
S= (E, <s) where<s is a strict total order ove. EXPresses an atomic grouping. Finaily: 3 means

We noteS the universal set of schedules over thata and do not commute; ix andp are trans-
actions, this models the isolation constraint (the | of

Given a multilogM = (K, +,—, —,<1,#), we say ACID).

3

2.1.3 Particular subsets of multilogs and con- Durable(M) éAborteo(M) U

cept of soundness
P {a eCommittedM) |

Let M = (K,+,—,—,<,x) be a multilog. The fol- VBeK:(B—aVvB<a)
lowing subsets oK are of particular interest for the = B < Durable(M)}
study of consistency.

Committedactions appear in every schedule @& multilog M is said sound iff CommittedM) N
M. This set is the greatest subseko$atisfying: AbortedM) = &. Observe thak(M) # @ implies
CommittedM) £ M sound.
{aja™ v 3B € CommittedM) : a < B} A multilog M is saiddecidediff DecidedM) =
Aborted actions never appear in a schedule &f-

M. Aborted M) is the greatest subset Kfthat A multilog M is saiddurableiff Durable(M) =K,

satisfies: or equivalently iffM is sound and=(M)/~| = 1.
Aborted M) =

{o] 3By, Pm=0 € CommittedM), 2.2 Formalizing consistency in replicated

a—PBr—...—Pm—0a) systems
Vv 3B € AbortedM) : B < a
vas) We consider an asynchronous distributed system of
n sitesi, j,..., connected through fair-lossy links

Serialized actions are either aborted, or arLIIBCEIgE]('II_hE fallture mOd?I IS f?”'StOp' A globslt
ordered with respect to all non—commutingOC < ICKS al every SIep of any process, bu

constraints against non-aborted action focesses do not have access to it.

SerializedM) a We assume that some shared daFa is replicated at
every site. Initially, at = 0, the data is in the same
state at every site. We make no further assumption

{a|Va,pe K,a«p =

(a—=BVB—a about the data; indeed data does not appear explicitly
V a € Aborted M) in the model, which considers only the actions that
VB € AbortedM))} access the data.

A site contains two processes: an application pro-
Decidedactions are either aborted, or both congess called thelient, and a singleonsistency agent
mitted and serialized: (or justagenthereatfter).

DecidedM) 2 Clients receive and execute user actions accessing

Aborted M) U (CommittedM) N SerializedM))shared data. Agents ensure the consistency of the

A Durableaction is decided, and, if committegSYStem by executing a protocol.

all actions that precede it, either by or by ACF constraints capture both the schedule se-
<, are themselves durable. This is the greatesantics of actions, and the decisions taken by the
subset oK satisfying : protocol.

2.2.1 Site-multilogs and site-schedules 2.2.2 Definition of System and of Commitment
Protocol

At any point in timet, each sitd is entirely defined _
by its site-multilog M(t) = (Ki(t),+i(t),—i(t),— e note a system ofn sites as Sp =
(1)), <ii (1), (t) and itssite-schedule; Q). (M1, 81),- (Mn,).

M (1) is the local knowledae thath time We call protocol a family of algorithms® =
* Mi(t) is the local knowledge thathas at timet Py, P5...} where each? is defined by a set of cou-
of the set of actions and of the semantics linki

them es(ST) € (MxS)?, whereSis a state and a tran-

sition.
Initially, every site-multilog is equal to |n our framework both clients and agents exe-
(2,9,9,0,0,90). cute protocols. Given a systeg, we noteC =

{C41,...,Cn}, (resp. A= {Aq,...,Aq}) the protocol

Site-multilogs grow monotonically over time,' ”* ;)
&cllents (resp. agents) executing at sites. f.

as clients add actions and constraints, aﬂ
agents add constraints. The following rule cap- The client protocol is left mostly unspecified, as

tures this monotonic growth: clients are free to do anything, as long as they do not
put the system into an error state. The agent proto-
Vi € [1,n],vt € T,3M € M, col aims to bring the system to consistency; we refer

to A as acommitmenprotocol. Hereafter, we study
three different commitment protocols, and variants
of each.

We abstract the computation of constraints into

a routine notecaddConstraint§) that takes as 223 Runs

input a multilogM = (K, +,—,—,<,#),andre-

turns a multilogM’ = (K',+,— .=, < .0) A runr of 5, according toC andA is an array ofh
such thatM € M" andK’ = K. Different con- s each rovi representing the evolution over time

currency control differ, in particular, in hOWof(M. S) starting at = 0, and such that :
they computeddConstraint§). ’ ’

Mi(t +1) = Mi(t) UM

Vie[Ln],VteT,3M e M,
e S(t) € Z(Mi(t)) represents the state of shared Mt + 1) (UM
i

data oni at timet. The choice of§(t) is arbi- { (Mi()I\g 1)) (t+1),S(t+1))
A) |
(

M
trary when|Z(M;(t))/~| > 1. If §(t—1) is not = (M t() S(t)7EM7 S(t+1) eC
a prefix of §(t), it represents a roll-back. Mi(t),S(t)) ~a (Mi(t+ 1), (t+ 1))
(M,

(
Agents and clients both have access to the site- { = ((Mi(t),S(1)),(M,S(t+1))) €A

schedule and the site-multilog, but our clock is as- o -
sumed sufficiently fine-grain that betwetsandt +1, AS usual, considering a run we say that a site
only one or the other may access it. We formalise ttikcorrectin riff r{i] is infinite (noted < correct(r));
using transitions(M; (t), S (t)) ~a (M;(t+ 1), S (t+ otherwise we say thats crashedinr (i € crash(r)).

1)) for the agent, andM;(t),S(t)) ~~c (M;(t + A column ofr at timet represents the state of the
1),S(t+1)) for the client. system at timé. We note itSy(t).

We noteR(Sy, C,A) the set of runs of A and C inensures that all sites eventually agree on the deci-

Sn . sions. Mergeability ensures that the system is glob-
ally sound, i.e., no decision ever puts it in an error
state.

2.3 Consistenc
4 If in any run of R(S,,C,A), with at most f

Serialization theory[[BHGE7] considers only finit&"aSes. eventual consistency is attained by every
sets of transactions; accordingly, hereafter we cdfTECt Process, we say thais f-resilient.

sider only quiescent systems. Given a systgma Given a systems, a client C, and a fault-
set of clientsC, and a set of agents, we say that resilience degred we call the problem of finding

a systems, is quiescentiff in any run of §,, both such a protocoh, theconsistency problem

agents and clients eventually stop submitting new ac-

tions: 2.4 Modeling database replication
vr € R(5ﬂ>C>A)7
T e TVt >T e T,Vie [Ln], T_hls section refines the previous model to the spe-
Mi(t+1).K = Mi(t).K cific case of a fully replicated database accessed
through ACID transactions.
whereM.K denotes th& component of multilodM. e model ACID transactions in our framework

Definition (Eventual Consistency)A systems, is at a coarse-grained level, where a single action rep-
eventually consistent (EC) in a run r iff it satisfiefesents a whole transaction. Given a transaclion
the following correctness conditions: we noteRST) its read setWST) its write set and

e Eventual Decision: UV(T) the corresponding update values.

Two transactions may be related by constraints

Vi € correct(r),vt € 7,Va € Ki(t), derived from their respective read and write sets, and
Jt' € T,a € DecidedM;(t')) from whether they are concurrent or not. Commit-

ment protocols differ on how they compute these

o Mergeability: constraints, as will become apparent later.
We model a set of fully replicated databases as a
(U M) #2 system of sites. A processes that issues transactions
iéﬂq%v”ﬂ is a client, and agents execute the protocol.
The client, Algorithm[JL, models the application
e Eventual Agreement: processes. A client submits a new transaction at
a time to its local replica, by adding it to the site-
3t € 7,vt’ > t,Vi, j € correct(r), multilog.
St ~Sj(t) We divide an agent into three modules that exe-

cute in parallel:

Roughly speaking, eventual decision ensures tha® The executionmodule schedules and executes
the system makes progress. Eventual agreement transactions.

6

Algorithm 1 ClientC; at sitei 6. When sitej receivesT, it examinesWST),

[EnY

o gk wN

M; {the site-multilog ofi } UV(T) andT'’s vector clock, and either aborts
S {the site-schedule a} or commitsT according to a specific certifica-
loop tion algorithm. If it commits, it applie®JV(T)
choose some transactidn to WST).
M =M U{T} In the rest of this paper, we discuss the differences
end loop between commitment protocols, in particular differ-

e The certification module decides which trans-B

ent certification algorithms.

We model bullet§l134 with the execution module.
ullet[d constitutes the propagation module. Bullet 6

actions to abort or commit. constitutes the certification module.

e The propagation module sends and receives

messages to co-ordinate replicas. 241 The execution module

All the commitment protocols considered in this
paper are based on a scheme knownleferred ex-
ecution A transaction first executes at the local sit

Algorithm[2 shows in more detail how, given the cur-
gent site-schedul§, the execution module computes

under local serializability. The system records trfanew schedul&

transaction’s read set, write set and update values.f}§orithm 2 Execution module in the deferred scheme
this point, no remote locks are taken. After the tranSy. "\ Tthe site-multilog of }

action terminates the system contacts remote sites, § {the site-schedule o}

attempts to apply the update values to the write seat loop {executior}

remotely, and to certify the transaction. The transact: chooseSc Z(M;) such that/'T,T’ € K,

tion may commit only if the certification succeeds. 23 TeS=TeSVT cAbortedM;)

(T,T" € SAT >5 TY=T>sT

More formally, leti be a site, and” a transaction (TESAT ¢SAT >sT) } LT e
submitted ai. The deferred execution algorithm is AWST) N (RYT)UWST')) =&
as follows. CommittedM;)
]) 8 forall T,WST)=@do
1. i executesT under two phase-locking (2PL) o. M =M UT+
[BHGB‘/]H 10: end for
2. WhenT terminates without aborting, it keepsllf S =S
. . . 12: end loop
its write locks and releases its read locks.
3. Sitei computesRST), WST) andUV(T), and

Two-phase locking ensures that any new sched-

assigns a vector clock valueTo(see hereafter). 1o eytends the current schedule. Consequently

4. If T is aread-only transaction, it commits. a transaction never rolls back unless it is aborted
5. OtherwiseWST), UV(T) andT’s vector clock (Line [§), and transactions execute in the same or-

der (Line[®). When a transaction terminates, it re-

are sent to siteg # i. : -)
leases its read locks but keeps its write locks; there-

1 with no loss of generality, we can ignore local deadlocksfore any new transaction can execute only if all the

7

transactions with which it conflicts are already com-

i i i : T<T T[T [T<T
mitted (LinelT). Finally read-only transactions com- RSTIN = / ” - =
mit when they terminate (Lirig 9). wsTh£g| T T | T=T | T =T

WST)m ! ! !
WST') £ @ T—-T TnT T —>T

2.4.2 The propagation module
Table 1:An example of constraints computation

The propagation module differs between commit-
ment protocols. In particular they are based on dif- L.

P . _p L y . 5.4.3 The certification module
ferent communication primitives. Consider some

messagen.
The certification modules differs from one commit-

_ _ . _ o ment protocol to another, but they all base their cer-
Epidemic Propagation - consists of two primitives: yijcation on static constraints computed using:
EPsendm) andEPreceivgém). With epidemic prop-
agation, processes have the following guarantees: 1. Read-set and write-set intersection. Two trans-

e Integrity: if j performsEPreceivém), then a actions T and/ T are said to conflict iff

process performedEPsendm) previously. (RYT)nWIT') # /Q) Vv (RYT)NWIT) #

e If a correct proces$ performsEPsendm) in- @)V (WST) NWST') 7 2).

finitely often, andj is correct and performs 2. Thehappens-beforeslation [Lam/8]. Transac-

EPreceiv¢) infinitely often, thenj eventually tion T happens-befor&’, notedT < T/, iff T'is

performsEPreceivém). submitted at some siteafter T has terminated
at sitei, or if there exists a transaction’’ such

Atomic broadcast consists of the primitives thatT < T”AT"” < T'. If neither T < T’ nor
ABcastm) and ABdelivefm), with the following T’ < T the two transactions are said concurrent,
properties: notedT || T".

e Uniform Integrity: for every message every As mentioned previously, commitment protocols
process perform#Bdelive{m) at most once enforce constraints computed lagldConstraints).
and only if a process performedABcastm) These depend on the consistency criterion that needs
previously. to be ensured. Tablg 1 provides an example of such

e Validity: if a correct processi performs acomputation.

ﬁggﬁf/ré?(m) then it eventually performs For instance given two transactiohsandT’ such
o _ thatT || T/, RST) = {x},WST) ={y},RST) =@,

o Agreement . if a correct procedgsperforms andWE{T’) — {X,y}, Table[1 defines the constraints
ABdelivefm), then every othgr correct Proyaiweert andT’ as'T — T/ andT # T'.
cesses eventually perfor&Bdeliverfm).

e Uniform Total order: if a process performs If we consider an empty multilogM, then
ABdelivefm) and ABdelive(nY) in this order, the result of addConstrainttM U{T,T'})
then every process that perforABdelivefm’) is the multlog M’ such that: M =
has previously performedBdeliver(m). ({T.7},2.8,{(T,T)}1L8,{(T.T)}).

T’ € snapshofT) MaXcsnapshar) {V (X)} T’ € workflow(T)
< MaxYesnapshth’){V(Y)} RS{T) QWST’) +@ T =T

RST)H T/ < T ()

WST) #£ @ - _ . .
Table 3:Constraint computation for PCSI

WST)A @ T

WST) # @ -
Table 2:Constraint computation for GSI are sufficient then the system reaches the consis-
tency criterion.
2.4.4 Serializability and Snapshot Isolation For instance, if the system is eventually consistent

in a runr and constraints are computed according to

This paper considers two consistency criteria, SEable[l, then the executianis serializable; if con-
rializability and Snapshot Isolation. ~Serializabilstraints are computed according to Teldle & GSI;

ity (SER) means that the multiversion serializatioand if constraints are computed according to Table 2
graph of committed transactions is acyclic [BHG87I addition to Tabl€y is PCSI.

Snapshot Isolation (SI) is weaker, ensuring that read-

only transactions never block and do not cause up-

date transactions to abort. 3 Database replication with epi-
We also consider Generalized Snapshot Isolation demic propagation

(GSI), whereby a transaction always observes a con-

sistent state of the database, but not necessarily the

latest one[[EZP05], and Prefix Consistent Snapsiarawal, El Abbadi and Steinke propose a family of

Isolation (PCSI), in which a transactions observes@mmitment protocols based on an epidemic com-

least the effects of transactions that precede it in thieinication between sites [AES97]. We first model

same “workflow.” their pessimistic scheme (AES), then consider their
. . . o%timistic variant (AESO).
Sl is used in many commercial databases, suc

as Oracle[[Ora97], PostGres [Glo04] and SQLServer
[MicO5]. In practice, most computations are serial- .
izable under SI[ELO0S]. 3.1 Overview

We introduce Sl and friends into our framewor%) . .
. ES uses a deferred scheme in which sites exchange
as follows. LetT be a transaction. We note

snapsholT) the set of transactions thatreads from epidemically their local logs. AES ensures serializ-

its snapshotsnapshatT) is any subset of T[T’ < ability with a certification tes_t, which ensure_:s thz_;lt
- .. any two concurrent transactions that conflict will
T}). Similarly the workflow of a transactiot is

both abort. When a sitereceives a log containing a
some subset of T'|T’ < T}, notedworkflow(T). . . .)
T =T} W) transactionT, if T is not aborted, its write locks are

SER, GSl and PCSl are mapped to Eventual Cdaken on sitd, and update values df are applied.
sistency: if during a run, the system is eventualheni learns thafl was successfully executed at all
consistent, and the constraints linking transactiosies,T is committed at.

9

Algorithm 3 AES, code for sité
T<T [T[T [T <T _ .
RST)NWST)) 1: M; {the site-multilog of }

o T-T | TST | T ST 2: § {the site-schedule o}
WST) AWST’ _ 3: Loggn] {an array ofn multilogs. Logdi] = M;}
.);é @ ST r o7 ST T =T 4: loop {executior}
true T-T 7] 75T 5. same as Algorithrl2
6: end loop
Table 4:Constraints computation for AES 7|
8: loop {propagation
) o 9: letL={T € S|WST) # J}
3.2 Computing constraints in AES 10: choosek € [1,n]

11: L:={T €L|vT' € Loggk],T — T’ ¢ LoggK]}

. . . 12: EPsendL) to]
Table[4 summarises the constraints used in AES.1I§1 end loop

AES transactions are executed according in the ordgr |

they appear in logs, whether they commute or nak: loop {commitmen}

hence the— relation in the bottom row of the table.16: EPreceivéL) from some procesg

In AES concurrent conflicting transactions cannot B&: Loggj] := addConstrainté_ogsj] UL)
both executed; we translate this with an antagonig® M := addConstrainteM; UL)

(first two rows). Then, as transactions are executé%j forall T €L do

if IT" e M : T = T’ € M then
under 2PL: 21: Mi =M U{T", T}
. . 22 else
e If a committed write happens-before a read W|t§§: if T ¢ AbortedM;) A (Vk € [1,n],3T’ €

which it conflicts, the write is causally before Logskl,T — T') then

the read: 24 M; := M U{T"}
ot 25: end if
=< / 26: end if
T3T
ARST)NWST') £ 0 } - = 27: endfor
28: end loop

e If a committed read or write happens-before a
write, the former is ordered before the write. 3.4 Correctness of our translation and ob-
servations

T<T T T

AWST)N(RST)UWST')) £ @ -l Concurrency control in AES is based on the predi-
cateHasRecvd, T,k). This predicate captures the
fact that sitei knows thatk has received transac-
tion T. We capture this information with an array

3.3 AES of n multilogs, Logs Loggk] contains the knowl-

edge thai has of sitek: HasRecv¢i, T, k) 297/ ¢

Algorithm [3 expresses the AES algorithm. (EachP9SKl{T — T’} € LogskK].
loop iteration is atomic.) A non-query transactions that has executed lo-

10

cally, and has not yet been received by some remétgorithm 4 AESO, code for sité

site, is sent to that site. Formally, transactidris 1: M; {the site-multilog of }

sent to remote sitk if ~HasRecvd, T,k) < (VT' € 2: S {the site-schedule o}

Logsk],T — T’ ¢ Logsk]) (Line[I]). Observe that 3 Logsn] {an array of muttilogs. Logsii] = M;}
this propagation scheme might block when client§’ loop {executior}

e] chooseSe (M) such thatT, T’ € K,
stop submitting new transactions to the system. 6 TecS—TecSvT cAbortedM)

Using HasRecvd AES abortsT and T’ if both 70 (T, T"eSAT >gT)=T >sT’
of them have executed on at least one site, and % S:=3S
they are conflicting and concurrert [AES97]. Selt% end loop

_ X l
Lines[Z0 td211.. 11: loop {propagation

AES defines the predicaommitT,i) such that 12: same as Algorithrfll3
i commitsT if i knows thatT has been received by13: end loop
every site and no concurrent conflicting transactiod$: ||

exist (LinedZB anf24). 15: loop {commitment
16: same as Algorithril3

17: end loop

3.5 The optimistic variant

In AES, an optimistic variant of AES, transaction4 The Database State Machine Ap-

release their write locks at the end of execution. With proach
this modification, cascading aborts may occur, and

read-only transactions (queries) may read unCommfiye gatabase state machine approach [PGS03] uses a
ted values. deferred scheme where the certification test is based
Our model for AESO is almost identical toon atomic broadcast. Two approaches exist: (1)
AES. Indeed <1 captures the existing abort deA classical approach (DBSM) in which an update
pendencies between transactions: Tif <« T/, transaction commits or aborts as soon as it is deliv-
then T € CommittedM;) = T € CommittedM;) ered to sites; and (2) a reordering technique (DB-
and conversely (ii)T € AbortedM;(t)) = T’ € SMR) in which a delivered transaction is re-ordered
Aborted M (t)). Releasing write locks the end ofvith relation to the set of already committed transac-
execution translates to removing Life 7 from Algdions.
rithm[2. The rest is unchanged, see Algorithim 4.

4.1 Static constraints in DBSM

3.6 The Snapshot Isolation variant
In DBSM, all update transactions are ordered. Con-

As an illustration of our framework, we propose aequently any pair of transactions with a non-null
variant of AES that ensures GSI or PCSI. write-set is considered non-commuting.

For GSI, the change is very simple: in either AES Now let us refine these constraints according to
or AESO, replace Tabld 4 with Tat[é 2 . To obtaithe certification test. Le€Committedj) be the set
PCSI, add TablEl3 to Tallé 2. of committed transactions at sife The certification

11

Algorithm 5 DBSM, code for sité

T<T [T T [T <T _ .
RST)NWST)) ; - 5 1. M; {the §|te-multllog o_fl}
£ @ T-T|T-T|T =T 2: S {the site-schedule o}
WST) Z D 3: loop {executior}
AWST') # @ T—T | TaT | T =T 4: same as Algorithral2
5. end loop
Table 5:Constraints in DBSM 6: ||
7: loop {propagation
test commit transactio at j after it has been deliv- gf Z%‘fg;;?f Mis:t.TESAT ¢ CommittedM;)
ered, iff: 10: end loop
11: ||
VT’ € Committedj), 12: loop {Commitmen}
T/ = T vV W T/ N R T — Q 13: AB'deliVer(T)
8T ST) 14: M;:=addConstraintdV UT)
) _ 15: forall T' € CommittedM;) do
Consequenthyf is aborted iff: 16: Mi =M U{T' =T}
17: endfor
3T’ € Committedj), 18: if T ¢ AbortedM;) then
, , 19: M; ;= MU {T+}
TITVT<T 20 endif

AWST')NRST) # @ 21: end loop

This test ensures that if bothandT’ are commit-
ted, thenT = T’ cannot occur. Consequently sincd.3 DBSMR
T is executed aftel’, this certification test checks
thatT — T’ is not an existing constraint betwe&n In its classical form DBSM leads to a high abort rate
andT’. It follows that: due to the unnecessary order appearing aflihe 16. To
solve this problem Pedone et al. propose a reordering

TiT //\WS(T’)/m RST) #0 } =T — T’ technique based on the deterministic construction of

V(T <T'AWST)NRYT) # 0) a partial order over certified transactions: Algorithm

Moreover, since transactions execute in DBSM

with 2PL, observations appearing in Sectibnl 3.2 However this approach has a drawback : when
hold. Tabld® sums up the constraints. the system becomes quiescent, transactions block in

For the DBSMR reordering technique [PGSO%,Uﬁer B. To preserve liveness, “null” transactions

page 11] a similar reasoning leads to the same tab gye to be sent to sites.

4.2 DBSM 4.4 Snapshot Isolation

Algorithm [H presents the translation of the classicBInikety et al. depict a variant of DBSM to guarantee
database state machine approach in our framewoi®eneralized Snapshot Isolatian [EZIP05].

12

Algorithm 6 DBSMR, code for sité

1:

el e ol el
akrwdhRE O

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

M {the site-multilog of }
S {the site-schedule a}
B {a buffer of sizd }
loop {executior}
same as Algorithral2
end loop
I
loop {propagation
same as Algorithrfal5.
end loop
I
loop {commitmen}
AB-deliver(T)
M; := addConstraintéM; UT)
if
VT’ € CommittedM;),{T — T’} ¢ M;
3j € [0,I —1],
A< Vke[0,j—1],{BK—T}¢M
A (Vke[j,1 —1[,{T — BIK} ¢ M;)
then
forall T € CommittedM;) do
M :=M;U{T" — B[l — 1]}
end for
Mi :=M;U{B[l -1}
forall ke [j,] —1] do
Blk+1] :=BJK]
end for
Bljj:==T
else
Mi:=MU{T}
end if
end loop

We translate this algorithm in our framework sim-
ilarily to what we did with AES. We use Algorithid 5,
and switch from TablEI5 to Table 2.

5 Optimization-Based Replication

The protocols depicted in the previous sections suf-
fer a problematic abort rate as they Kill transactions
more than necessary (AES, Tabl€el3.2), or do not se-
rialize concurrent updates in a good order (DBSM,
Algorithm [, line[16). We also pointed out that they
may experience liveness issues when the system is
under low load (DBSMR, see Sectibnl4.3 and AES,
see Sectiol_3l4). Futhermore, they propagate one
transaction at a time over the network (DBSM and
DBSMR), whereas batch-processing transactions is
possible.

We propose a new commitment protocol to rem-
edy these issues.

Our idea is triple. We batch-process transactions
in the same atomic broadcast. We compute the weak-
est static constraints to preserve serializability and
causality. And we commit transactions trying to min-
imize the number of transactions aborted.

This last computation step is ensured with an
heuristic as the problem is an NP-hard optimization
problem (see futher).

In this section we first present our new protocol
(OBR). Then we expose a more optimistic variant
(OBRO) where we release write locks at the end of
execution. We conclude with a variant for snapshot
isolation.

5.1 OBR: overview

Our protocol works as follows:

13

Decidd€) does not add new transactions:

TT [T[T | T <T Kl — K

! — .
REDAWST) | oy lvo1 |7 T ,

wsmi%vsn/) ° 2t

£ T-T | TuT | T T o — D

Table 6:Static constraints in OBR e d— B=a—PVaup

® i = H
1. Transactions are executed against local cach@ Multilog M"is decided.
using 2PL. Read locks are released at the end. If M is sound, the’ is sound.
of execution, read sets, write sets and logical According to this definition certification loops
timestamps are then computed. Queries are &ppearing in previous sections are all instances of

cally committed. Decidd). However we offer an improveDecide)
.) . algorithm (Algorith that aims at minimizing the
2. sites batch transactions in the same atongé‘lo it rate(g miy) 9

broadcast.
We follow the general guidelines proposed by

3. When a site delivers such a set of transactionsghapiro and Krishn [SKD5]. We decompose deci-
it computes constraints linking transactions agjon into three parts: serialization, conflict-breaking
cording to Tabléb. and validation: serialization orders any non-

4. Theni takes a decision upon these transactioR@Mmuting pairs of transactions, conflict-breaking
with an heuristic:Decidg). We specify this de- @borts at least one transaction in amycycle, and
cision such that: validation commits the remaining set of non-aborted

transactions.

e Non-commuting transactions are serial- i i i
ized. Given T a blindwrite transactionRST) = @),
we serializeT « T’ in T’ — T: lines[3 td3. Indeed,
e All transactions are either committed ofor any transactioil”, T — T” is not possible ac-
aborted. cording to Tabldds. Consequently re-cycle may

The decision process is strictly monotonic, i &Xist serializingT andT"in T’ —T.

each new decision is sound with relation to pre- We serialize the remaining pairs of non-

vious decisions. commuting transactions computing : line[d tolT0.
This relation extends the previous relatiex, mini-
mizing the number of--cycles newly introduced.

5.2 Computing a decision Breaking —-cycles minimizing the number of

)]]) _transactions aborted is stated as follows:
Formally Decidd) is an algorithm whose input is a

multilog M = (K, +,—,—, <,#), and whose output

)) AR ARA N Definition. Consider a graph G= (V,E) where
is a multlogM’ = (K’,+ ,— ,— ,< ,#) such that

(i) each node in V is a transaction T of K
CommittedM) weighted by k, with k equals to one
1. Decid€) adds onlydecisions namely: plus the number of distinct predecessors<pyhat

14

Algorithm 7 DecidgM) 53 OBR

1. {Serializatior}

2: let SER= K\ SerializedM) OBR is depicted in Algorithn18. Each loop is

3: forall TeSER RST)=@do atomic.

4: forall " e SERT«T do i

5: M:=MU{T' =T} Algorithm 8 OBR, code for sité

6: end for 1: M; {the site-multilog of }

7. SER=SER{T} 2. § {the site-schedule o}

8: end for 3: D=(9,0,0,0, 3, d) {a multilog containing previ-

9: choose— such that: ous decisionf
—C— , , 4: loop {executior}
AVT, T € SER ((T,T") €=)V ((T',T) €=~) 5. same as Algorithrll2

10: —i=— 6: end loop

11: {Cycle breaking 7 ||

12: M := breakCyclegM) 8: loop {propagatiof

13: {Validation} 9. letL:=K)\ DecidedM)

14: for all T ¢ DecidedM) do 10: AB-cast()
15: M:=MU{T"} 11: end loop
16: end for 12: ||

13: loop {commitment
14: AB-deliver(L)

T has in M, and (ii) for(v,v') € V, a directed edge 1% D :=addConstraintD UL)

going from v to Vexists in E, iff v— V' is in M. Con- 1673 I'\DA_:iD'\iCLingD)
flict breaking is the problem of finding the minimurjig. 4 Ilc;o_p !

feedback vertex set of G.

The second idea in OBR is to broadcast batches
This problem is an NP-complete optimizatiogf transactions with atomic broadcast: Iiag 10. We
problem, and the literature upon this subject is ingnsyre the growing monotonicity of our decisions
portant [GJ9D]. Consequently we postulate the ex{gith a local variable containing previous decisions
tence of an heuristidoreakCycle§) (line[12). D: lines[I% andT6. OBR ensures serializability and
preserves causality.
At the end of the serialization process and the
conflict breaking, remaining non-aborted transag:4 |ncreasing the optimism
tions are committed: lindsJI4416.
If we release write locks when transactions finish to
Algorithm [@ minimizes the number ofs-cycles execute, we inqrease the transactions throughput of
created when serializing two writes , and reduces ¥ System. This result comes from the fact that we
number of transactions aborted when breaking cdif{ch process transactions in a single atomic broad-
flicts. The abort rate of Algorithfll 7 is consequenti§ast:
lower than AES and DBSM. We futher detail this re- On the other hand, this technique also augments
sult in Sectiorb. the probability that a—-cycle may exist. But OBR

15

is designed to reduce the abort rate. Consequerfity Comparison between AES, DBSM
we may expect that the number of transactions com- qnd OBR
mitted increase. Algorithrl]l9 depicts our proposal,

OBRO.
AES, DBSM and OBR all ensure serializability. In

Algorithm 9 OBRO, code for sité this section we compare them according to fault tol-

1. M; {the site-multilog of } erance and Ilve_ness, time gnd message _complexny,

2. § {the site-schedule 6} abort rate, and implementation considerations.

3: D {a multilog containing previous decisions

g |OOSF;r{neé(Zzu,zl(;%rithrﬁ] 4 6.1 Fault tolerance and Liveness

6: end loop _

7: loop {propagatioth DI_SS_I_/I and OBR are based_on an atomic proadcast

8 letL =K\ DecidedM) primitive. Atomic brqadcast is n_ot solvable in asyn-

o0 L:i=L\{TeLWST)=2} chronous systems with crash-fail proces$es [FILP85].
10: AB-cast() However in a partially synchronous system with fail-
11: end loop ure detectors, atomic broadcast becomes solvable
12: || even in the presence of faulty processes [GT96].

13: loop {commitmen} AES was not designed to be fault-resilient. It
14: same as Algorithril8 blocks if a site crashes, for instance (in a real-case
15: end loop

deployment) during maintenance or if a site discon-
nects.

Similarly to AESO, we release write locks at the |n Sectiond 34 anf 4.3 we pointed out a live-
end of execution: lingl5. Doing so, queries have f@ss problem that could occur with AES and DB-
wait before being committed, since they may see 8VR. The impact of this issue is not negligible as
inconstant state: lirld 9. during quiescent periods the commitment may block.

Conversely, our protocol is designed to not suffer

Interestingly Algorithm[® may also serializethis liveness issue as transactions received by atomic
transactions in a better way than OBR. This resuidtoadcast are immediately decided.
is detailed in Sectiohl 6.

6.2 Time performance

5.5 The impact of Snapshot Isolation We measure the time performance of a distributed
protocol with the latency degree: the smallest num-
ber of non-parallel communication steps required to

Similarly to what we did in Sectioh~3.6, we ensuresolve a problem. The latency degree measures for a

Sl in both of our algorithms by switching from Ta-commitment protocol, the number of communication

ble[@ to Tabld3 and Tabléd 2 in our algorithms. steps to commit or abort a transaction.

16

In AES a transactioil is sent epidemically to ev- Table[T illustrates this matter. We use the nota-
ery distant sites, and decided ortdasRecvdi, T,k) tion of [BHG87]: r1[x] models a read from transac-
holds for evenk. In the best case, it requires 2 contion T1 on data itenx andw2[z] models a write by
munication steps. transactionT 2 on data itenz.

DBSM and OBR are based on atomic broadcast. Table[T depicts a run during which two trans-
This communication primitive has a latency degregtionsT1 and T2 are concurrent t&3. The or-

of 3 [CT96]. If broadcast over IP is possible, thiger of delivery is the following: deliver(T1) <
value is reduced to 1{[PSUCO02]. deliver(T2) < deliver(T?3).

We observed previously that AES and OBR

batch-process transactions when they communicate Recall now that two transactions with a non-
P y ermpty write set, do not commute in DBSMR. Conse-

This idea improves substantially time-performance ently when DBSMR receivé&2, T2 is ordered af-

when the system becomes under medium to hi HrTl. The resulting schedule 1. T2. Now when

charge. T3 is received; DBSMR aborts it as the schedules
T1T2T3, TLT3T2 andT3.T1.T2 are not possi-
6.3 Message complexity ble.

Message complexity is measured as the total number©n the contrary our protocol does not ordet

of messages required to commit or abort a trans@2d T2, andT3 is committed when received. The
tion. AES has a message complexity of DBSM resulting schedule $2.T3.T1.

and OBR 3; 3n decreases ta if broadcast over IP
is available.

T1={wl[x|} T2<T1
T2={r2]y],w2[Z]} T1||T3
Once again, batch-processing transactions in T3 ={r3[x,w3y]} T2| T3
AES and OBR, decreases the message cost to comr geliver(T1) < deliver(T2) < deliver(T3)
mit a transaction since we send them many at a time.
Table 7:Unnecessary ordering of transactions with DB-
SMR

6.4 Abort rate
o _ DBSMR serializes concurrent writes according to
AES aborts all concurrent conflicting transactionghe order they are received with atomic broadcast. In

DBSM and OBR try to minimize them; and DBSMRyarticular it does not serialize blindwrite transactions
reorders transactions whereas DBSM not. It folygperly.

lows that AES aborts more transactions than DBSM

which aborts more transactions than DBSMR. We Table[® illustrates such a situation. Three con-
now compare DBSMR with OBR. current transaction$ 1, T2 andT3 are delivered in

the following order: delivenT2) < deliverT1) <

First of all observe that Tablé 5 is a strict augmenr .
. eliver(T3). DBSMR computesl 2, thenT2.T1,
tation of Tabldb. Consequently DBSMR computes (T3) P

. . and finally abortsT 3.
stronger constraints than OBR to obtain the same re- y
sult: serializability. But as DBSMR computes more On the contrary OBR schedulésl and T2 in

constraints, it may also abort more transactions. T1.T2 when it receives the blindwrite transaction

17

T2. Then it compute§ 1.T3.T2 whenT3 is deliv- T1={rlx,wily]} T2<T1
ered.. T2={w2[x,r24} T1|T3
T3={w3[x,r3y]} T2|T3

Tl={wli,rlly} — T1|T2 o

T2={w2X,w2[} T1|T3 Table 10:Serialization in OBRO

T3={w3[y],r3[7} T2 T3
delivenT2) < deliver(T1) < deliver(T3)

ordered beford 1 is received. Now sincé2 — T3
Table 8:Serialization of blindwrite transactions does not create more>-cycles thanT3 — T2, T2
andT3 may be serialized im2 — T3; and whernT 1
Batch-processing transactions induces a lowermreceived, the constrain®s3 — T1,T1 — T3, and
abortion rate. Indeed we can compute a greater nult8" induce thafl 1 is aborted.
ber of schedules when transactions are received set

by set, than one by one. If we consider the execution with OBRO, and that
To illustrate this claim, we consider a run del 1 andT2 are sentin the same atomic broadcast,

picted TabldD. In this ruT 1 has already been re2ndT3 are serialized if 3 — T2 as it minimizes the
ceived. andT2. T3 are received within a set. Sinc&umber of—-cycles: all transactions are committed.
T2 andT 3 are batch-processed, we obtain the result-

ing scheduld 1.T2.T 3 where all the transactions are

committed.

.. 6.5 Implementation considerations
On the contrary, suppose that we deliver in two

distinct messageB3 thenT 2 (it is possible sincd 2

release its read locks, and the two atomic broadcagtgrbage collecting transactions in logs is encom-
are independent). The serializationTdf andT2 can passed in our concept of durable actions: an action
lead toT2.T1, as both order§1.T2 andT2.T1 do s durable if it is decided and its predecessors-by

not abort any transaction. But when we deliVigd, gnd < are durable. Consequently given a muna

we must abort it. certain pointt of r, and a transactions € M;(t), T
1= Wiy, 1227 TI[T2 is durablt_a i_nr, if T € Durable(M;(t)) holds, and in
T2={r2jx,w2[4} T1 T3 the remaining of the run, no new predecessors of
T3={w3x,w3ly]} T2<T3 appear invl;.

delivenT1) < deliverT2,T3)

) , In our framework according to Tablé 4, a trans-
Table 9:Batch-processing transactions reduce abort ralesionT is durable in a run of AES as soon as it is

o) ~_executed on every sites (and hence committed). This
We said in Sectioh 54 that OBRO may serializg \yhat Agrawal et al. do i [AESY7]; they garbage-

transactions in a better way than OBR, Telble 10 {ig)ect transactions as soon as they are committed.
lustrates this.

LetT1, T2 andT 3 be three transactions such that In DBSM and OBR the durability of a transaction
T2 9 T1,T24T3 andT3 — T1. OBR keeps lock is achieved similarly. Indeed according to Taldlés 5
at the end of execution, consequentlg andT3 are and®, if every site execufE, T is durable.

18

7 Related work Wiesmann and Schiper performed a quantitative
comparison between the protocol of Kemme et al.,

Holliday et al. propose a quorum-based variant ﬁl:l) SMand existing pessimistic approachies [WS05],

AES to lower the abort rate of concurrent and con- eir work show that the deferred update technique

- . . . outperforms pessimistic approaches.
flicting transactions[[HSAACQ3] . This variant does P P PP

not ensure serializability, but only external consis-
tency. Moreover the drawbacks of the approach '8 Conclusion
main: concurrent and conflicting transactions are an-

tagonist, and the protocol still suffers a liveness is-
sue This paper depicts a detailed comparison between

two existing optimistic database replication tech-
Pedone et al. propose initially the database staigues: AES [[AES97] and DBSM_[PGS03], and
machine approach as a reordering technique for dishew solution: OBR, that we describe in detail.
tributed databases.[PG3S97]. Oliveira et al. revidihese techniques all implement the deferred update
the 1-copy equivalence of DBSM and point out thacheme, a database replication techniqgue managing
session guarantees such as read-yours-writes areamytvhere-anytime-anyway updates.

ensured lOPAaCA()G] To solve the prObIem they our Comparison emphaSizeS the basic bUIIdIng

introduce a semantic link between reads and writgg, s of the deferred update scheme viz. the execu-
causally preceding them; this solution is very siMiz,n module, the propagation module, the certifica-
lar to what we depicted in Sectign2.4.4 to introduGgy, module, and the static constraints computation.
Prefix Consistent Snapshot Isolation. It furthermore alleviates the design of new variants:
The idea of considering optimistic replication a8 Shapshotisolated variant for AES and OBR, and an

an optimization problem was firstly proposed in IcéPtimistic variant for OBR.

Cube [PSMO03a]. The IceCube approach was appliedIn our new commitment protocol OBR, we refine

to databases in mobile environmerits [PSMO03b], atitk consistency problem: serializability or snapshot
in P2P environments_[MPD6]. However the recofisolation, as a graph problem, and solve it with an
ciliation process was always centralized to a primaheuristic: Decid€). We also batch process transac-
site. tions in a single communication primitive whereas

revious approaches only send transactions one by

IceCube is based on coarse-grained constralrﬁﬁ.e. We finally show qualitatively that our solution

Shapiro et al. refine these constraints and intrwu&&tperforms DBSM and AES with respect to latency
the Action-Constraint Framework to ease the und(?Tr]- ’

) L essage cost and abort rate.
standing of replication [SBK04].
In a shorter term, we plan to corroborate these re-

Kemme et al. propose a novel approach to implggits with an implementation into our ACF middle-
ment eager replicatiorl [KAQO]. This commitmenjare Telex [T€l]. In particular we intend to analyze
protocol is based on the deferred update technigi@ tradeoff between releasing write locks (OBRO)

and atomic broadcast, but a single site decides ifad keeping them at the end of execution (OBR), ac-
transaction commits or aborts, and only one transagrding to different workloads.

tion at a time is sent in a single atomic broadcast.

19

References

[AES97]

[BCBT96]

[BHG87]

[CT96]

[EZPO5]

[FLO*05]

[FLP85]

[GJ90]

D. Agrawal, A. El Abbadi, and R. C.
Steinke. Epidemic algorithms in repli-

cated databases (extended abstract). In
PODS '97: Proceedings of the sixteenttb|oo4]
ACM SIGACT-SIGMOD-SIGART sympo-

sium on Principles of database systems

pages 161-172, New York, NY, USA[HSAAO3]

1997. ACM Press.

Anindya Basu, Bernadette Charron-Bost,

and Sam Toueg. Solving problems in

the presence of process crashes and lossy
links. Technical Report TR96-1609, Cor-

nell University, Computer Science DeparttKA00]
ment, 1996.

Philip A. Bernstein, Vassos Hadzilacos,

and Nathan GoodmarConcurrency Con-

trol and Recovery in Database Systems
Addison-Wesley, 1987. [Lam78]

Tushar Deepak Chandra and Sam Toueg.
Unreliable failure detectors for reliable
distributed systemsJournal of the ACM

43(2):225-267,1996. [Mic05]

Sameh Elnikety, Willy Zwaenepoel, and
Fernando Pedone. Database replicati(WPOG]
using generalized snapshot isolation. In
SRDS '05: Proceedings of the 24th IEEE
Symposium on Reliable Distributed Sys-
tems (SRDS'05)pages 73-84, Washing-

Michael R. Garey and David S. Johnson.
Computers and Intractability; A Guide to
the Theory of NP-CompletenesaN. H.
Freeman & Co., New York, NY, USA,
1990.

Global Development Group. PostGreSQL
7.4 Documentation, 2004.

JoAnne Holliday, Robert Steinke, Di-
vyakant Agrawal, and Amr ElI Ab-
badi. Epidemic algorithms for replicated
databaseslEEE Transactions on Knowl-
edge and Data Engineerind5(5):1218—
1238, 2003.

Bettina Kemme and Gustavo Alonso. A

new approach to developing and imple-
menting eager database replication proto-
cols. ACM Transactions on Database Sys-
tems 25(3):333-379, 2000.

Leslie Lamport. Time, clocks, and the or-
dering of events in a distributed system.
Communications of the ACM1(7):558—
565, July 1978.

Microsoft Corporation. Yukon Release
Microsoft SQL Server, 2005.

Vidal Martins and Esther Pacitti. Dynamic
and distributed reconciliation in p2p-dht
networks. InEuropean Conf. on Paral-

lel Computing (Euro-Par)Dresden, Ger-

many, 2006. Springer.

ton, DC, USA, 2005. IEEE Computer So{OPAaCA06] Rui Oliveira, José Pereira, Jr Afranio Cor-

ciety.

Alan Fekete, Dimitrios Liarokapis, Eliz-
abeth O’Neil, Patrick O'Neil, and Den-
nis Shasha. Making snapshot isolation se-
rializable. ACM Trans. Database Syst.
30(2):492-528, 2005.

Michael J. Fischer, Nancy A. Lynch, an&Ora97]
Michael S. Patterson. Impossibility of dis-
tributed consensus with one faulty procesfPGS97]
Journal of the ACM32(2):374-382, April

1985.

20

reia, and Edward Archibald. Revisiting 1-
copy equivalence in clustered databases. In
SAC '06: Proceedings of the 2006 ACM
symposium on Applied computingages
728-732, New York, NY, USA, 2006.
ACM Press.

Oracle corporation. Data concurrency and
Consistency, Oracle8 Concepts, 1997.

F. Pedone, R. Guerraoui, and A. Schiper.
Transaction reordering in replicated
databases. IrProceedings of the 16th

[PGS03]

[PSMO03a]

[PSMO3b]

[PSUCO02]

[SBKO4]

[SKO5]

Symposium on Reliable Distributed Sy§SSPO06]
tems (SRDS-16Durham, North Carolina,
USA, 1997.

F Pedone, R Guerraoui, and A Schiper.
The database state machine appro&is-
trib. Parallel Databasesl4(1):71-98, July
2003.

Nuno Preguica, Marc Shapiro, and
J. Legatheaux Martins. SqIIceCubeﬂ.
i . " Tel]
Automatic semantics-based reconciliatio
for mobile databases. Technical RepoffWS05]
TR-02-2003 DI-FCT-UNL, Universidade
Nova de Lisboa, Dep. Informéatica, FCT,
2003.

N. Preguica, Marc Shapiro, and J. Legath-
eaux Martins. Sqlicecube: Automatic
sematics-based reconciliation for mobile
databases. Technical Report 2, Departa-
mento de Informatica FCT/UNL, 2003.
URL=http://asc.di.fct.unl.pt/ nmp/papers/sqlice3-
rep.pdf.

Fernando Pedone, André Schiper, Péter
Urban, and David Cavin. Solving agree-
ment problems with weak ordering or-
acles. In EDCC-4: Proceedings of
the 4th European Dependable Comput-
ing Conference on Dependable Comput-
ing, pages 44-61, London, UK, 2002.
Springer-Verlag.

Marc Shapiro, Karthikeyan Bhargavan,
and Nishith Krishna. A constraint-based
formalism for consistency in replicated
systems. IrProc. 8th Int. Conf. on Prin-
ciples of Dist. Sys. (OPODIShumber
3544 in Springer-Verlag, pages 331-345,
Grenoble, France, December 2004.

Marc Shapiro and Nishith Krishna. The
three dimensions of data consistency. In
Jourrées Francophones sur la Cefence
des Donkes en Univers &parti (CDUR)
pages 54-58, CNAM, Paris, France,
November 2005.

21

Nicolas Schiper, Rodrigo Schmidt, and
Fernando Pedone. Optimistic Algorithms
for Partial Database Replication. Idth
International Conference on Principles
of Distributed Systems (OPODIS’2006)
pages 81-93, 2006. Also published as a
Brief Announcementin the Proceedings of
the 20th International Symposium on Dis-
tributed Computing (DISC’2006).

Telex, http://gforge.inria.fr/projects/telex2/.

Matthias Wiesmann and André Schiper.
Comparison of database replication tech-
niques based on total order broadcast.
IEEE Transactions on Knowledge and
Data Engineering17(4):551-566, 2005.

	Introduction
	System Model
	The Action-Constraint Framework
	Actions, constraints and multilogs
	Schedules of multilogs and classes of schedules
	Particular subsets of multilogs and concept of soundness

	Formalizing consistency in replicated systems
	Site-multilogs and site-schedules
	Definition of System and of Commitment Protocol
	Runs

	Consistency
	Modeling database replication
	The execution module
	The propagation module
	The certification module
	Serializability and Snapshot Isolation

	Database replication with epidemic propagation
	Overview
	Computing constraints in AES
	AES
	Correctness of our translation and observations
	The optimistic variant
	The Snapshot Isolation variant

	The Database State Machine Approach
	Static constraints in DBSM
	DBSM
	DBSMR
	Snapshot Isolation

	Optimization-Based Replication
	OBR: overview
	Computing a decision
	OBR
	Increasing the optimism
	The impact of Snapshot Isolation

	Comparison between AES, DBSM and OBR
	Fault tolerance and Liveness
	Time performance
	Message complexity
	Abort rate
	Implementation considerations

	Related work
	Conclusion

