Data consistency in 3D

(It's the invariants, stupid)

Marc Shapiro
Masoud Saieda Ardekani
Gustavo Petri

C y 4
U P m informatics g”mathematics
1A A1 SORBONNE UNIVERSITES : W

Shared database

q: Queue
C' Counter
{lg] <c}

L
@E\DL\Q/M% \ éi;nc()

q.push(e)
c.inc()

qg.val()
c.val()

This talk Is about...

Understanding consistency
* Primitive consistency mechanisms
* How primitives compose models
» How models relate / differ
e What they cost

Understanding invariants
* Some interesting classes of invariants

Relating consistency to invariants
* Which primitives guarantee which invariants

Useful intuitions for app. and system designers

Geo-replicated database

g: Queue
C' Counter >~ 0

q:
{lg] <c} c: C
{lag

q: Queue

\ j;\’é ?| C|ounte}r
<C
q.val() !
c.val() qs € Queue?
q1=Qz27?

lg1] <ca?

of

n
>E

Termination Latenc

Update Transactions (

Consistency

More replicas:

» Better read availability, responsiveness,
performance, etc.

* More work to keep replicas in sync

Consistent = behavior similar to sequential:
» Satisfies specs: does g behave like a queue?
* Replicas agree: is g identical everywhere?
« Objects agree: is |q| < c?
e Same flow of time? g1.push() before g2.push()

Costs illustrated

90% Read-only transactions; Disaster Tolerant

250 . :
200 |
150 |-
100 | T -

)
<)
4

o

5000 10000 15000 20000 25000 30000

o

70% Read-only transactions; Disaster Tolerant
T T T

0 W
no
2 O

Credit: Masoud Saeida Ardekani

Consistency

opportunities and costs

CAP
Availability

= Parallelism keeps the hardware busy

= More implem. options, scalable

But consistency constrains order of events:
e Delay delivery
» Stale reads
* Waits, synchronisation (mutual wait)

Keeping track of order requires metadata
Significant!

Strict Serialisability

T1
client 1‘ ’,,D
=)
'} ‘,‘r’ A
Tip—e—o—"", RB——-0—
. T2l—e—e—o—]
R1 - — é H
A A A
o §—a
% v v
T1 T2 T3
Invariant Invariant Invariant

Eventual consistency Strong vs. weak?

Strict Serjglisability

Op1—@-—e— Snapshot Isolation
o Op2 —s—0—0—

R2 S S S W PRAM
R3 L—© A ®

Eventual Consistency

Strong vs. weak? Strong vs. weak?

Low

Strict Serialisability

N

performance

Snapshot Serialis-
|solation ability
PRAM
Eventual Consistency
S Transactional Non-transactional

Adya 1999 Viotti & Vukoli¢ 2016

Three classes...

...of invariant ... of protocol

Gen1 Object value Total order of operations

Relative ordering

= of operations litoilig
EQ State Composition
equivalence

Operation

X=42 /\ /\‘ /\.—>
== o—O—1—eo —()_OI7
X)fl-y20 x+y>0 x:=3 x+y>0 y=-3 -x+y>0 skip

generator. read, compute, generate effector
effector. compute, write side-effect

Sequential execution:
e precondition = invariant
* each effector individually safe

Three dimensions

Genl/,
o Linearisabilit
Mostly orthogonal TOtal‘___Q..':der y
(but not all
combinations
make sense.) .
o Strict
Serialisability - Serialisability
CAP
Snapshot
Isolation
PO / Visibility
Cauéal
Q!
oé\\‘\o(\
coP
Txnl CC

Sequential correctness

X=4 y=_2 y=—2 true
y==2 —e —e —eo—
x+y>0 X:=3 y=-3 skip

generator. read, compute, generate effector
effector. compute, write side-effect

Sequential execution:
e precondition = invariant
* each effector individually safe

(Guarantee vs. semantics

Guarantee:
» Class of invariants that is always true
» Regardless of application code
* Assuming sequentially correct
Application can compensate for absence
of guarantee
* e.g. Inv={ ¢c=0}, app: c.inc()

Replicated operation

u

client — —~>)
origin ‘*“:'m g g
replica L4
ur
Ji m (]
replica
< | U
Upre
i ()
ur

u: state -~ (retval, (state -~ state))

Data types

Register
* Update: assign with constant
» Not commutative
» Absorbing
High-level types
e Counter, ORset, Sequence:
effectors commute
e Stock, Account, Queue: = commute

Composed data
e + structural invariants

ed

—

Sharded, geo-replica

DCs - ey
writes
AC\.P x=0
Dvy=0
PRY)
) —)
; v/ y7+:1
v —(k E—
1
Xo \‘ yot+=1 sharded,
DC» Vo / @ parallel
Zo —

concurrent
updates

Type EQ invariants EQ: transactional
composition

A=B

X.friendOf (y) & y.friendOf (x)) Airplane reservation
X + y = constant Allocate a seat to me

South v Boat w North * Pay for the fl?ght
= [sheep, dog, wolf } Two EQ relations:
: . * paid = have_seat
Jomt gpdate fo two O.bJeCts e my $$ + airline $$ = constant
Atomicity (all-or-nothing) property of trangé:»

Protocol: singl dat Ad-hoc grouping
rotocol singie update message (This txn also needs TO + snapshot)
* Asynchronous

EQ/Composition axis EQ/Composition axis

Transaction groups operations Transaction groups operations
All-or-nothing effects: All-or-nothing effects:
0 = Independent * Deliver effectors indivisibly 0 = Independent * Deliver effectors indivisibly
spereens » packaged together operatons » packaged together

All-or-nothing
effects

effects
Snapshot reads:
* all generators read from

same set of effectors
» maintain versions

EQ/Composition axis

Transaction groups operations

All-or-nothing effects:

0 = Independent * Deliver effectors indivisibly
operatens » packaged together

: * + same TOE
All-or-nothing .
» =~ 2-phase commit

Snapshot reads:
* all generators read from
same set of effectors
» maintain versions
* +same TO, VIS guarantees
» coordination

PO: transitive / causal
visibility

x = 100; y = 100

Inv={x2y}

Ex 1: X
e P1: x+=100 y{\
o P2:if x > ythen y += (x-y)/2 \)-(/_Q. \
e P3:x2y? G .
 Transitive visibility vis* ¢ vis X yi

Type PO invariants

e employee.manager.salary > employee.salary
51,52, 53= 51« 52« S3
doge S« sheepe SAwolfe S

Referential integrity
“inode references disk block”
e ACL (u, p) < access (u, p)

Demarcation Protocol:
1. increase LHS by ¢
2. increase RHS by ¢c'<c¢
= ordered delivery

No svnchronisation: Available

PO: transitive / causal
visibility
x = 100; y = 100
Inv={x=>y}

OX!
[) .y/
N\ X
/ client is
Ex 2: X part of DB
* P1: x+=100; d = 100 L7 Y
e P2:if d > 0then y += d/2 < N_ Y
e P3: x>)/7 \ a \

Causal visibility (vis; po)* c vis

PO/Visibility axis

Visibility
* Which writes visible to Sender not delayed =
reads writes available
Transitive closure property Stale data = reads
* Metadata available

» System-wide

Transitive, causal vis.

e Effector: metadata identifies set of
predecessor effectors

Delay delivery after predecessors

» Read stale data

Graph: unbounded

Vector clock: 104—106 entries x 8 bytes!

Approximate VC: stron” dentis Ner

part of DB

!
X A e
i . Q .
L] L) -
! o, .
. . :
! | © ©
i !
\
N \
\© O

Monotonic client

* Read My Writes
¢ Monotonic Reads

Often assumed
» Buffer

—y & —s

Total/external causal

Total order extends causal order
Metadata: 1 single scalar

e but cost of total order
External: real-time clock

X
\°©®
— —> —> 0@@?’
Ry

CAP

Gen1 invariants

Inv="0 < x”
U! — “X = X_1u
{Inval<xtu{lInv)

Predict that /nv will be true after ur

* Sequential: weakest precondition

* Generalises to bounded concurrency
Unbounded concurrency: no sufficient

precondition

* Invariant is not stable

e Limit concurrency: escrow

* No concurrency: order updates

0 = unordered

Do replicas observe events in
the same order?
Pick a unique number

I
I
|
|

T No: concurrent
0 = Concurrent
e Commute = converge
e Stable precondition = Invariant

Gen: total order

Do replicas observe events in
the same order?

Geny | TOgeneraor - | Pick a unique number

N

TO generators + TO
effectors

Gapless TO
effectors

CAP

Total order,
capricious

0 = Concurrent

Capricious TO effectors

Do replicas observe events in
the same order?
Pick a unique number

I 7
. .
T \o } o—>
o —

T 10

cap Pick a number locally: capricious
Gap: will arrive later?
AR * Non-monotonic: rollback

* Monotonic
» Wait for gap to fill (Lamport 78)
» Lost updates (LWW)

Capricious TO effectors

Do replicas observe events in
the same order?
Pick a unique number

O
10
cap Pick a number locally: capricious

Gap: will arrive later?
capricious

!
! s
1

» Lost updates (LWW)

TO generators

Do replicas observe events in
the same order?

@ Pick a unique number

N

TO generators + TO
effectors
TO effectors

+ TO generators
1 » separate from effectors
I

» same order as effectors

CAP

f

Gapless TO effectors

Do replicas observe events in
the same order?
Pick a unique number

Gapless:
* No lost updates
» Consensus, 2PC to uniquely
allocate next free number
cap | = not available .
1 @*

Three dimensions

Gen1 / Total

TQ.gerierators =
" effectors

TO generators + TO
effectors
Gapless TO
effectors

N

CAP

" Total order,
capricious

0 = Concurrent

/% PO / Visibility

Three dimensions

Gen1 / Total

TQ.gerierators =
"~ effectors

TO generators + TO
effectors

G&pless TO
effectors

CAP

- Total order,
capricious

0 = Concurrent

S\ ostio”
g0l ¢ &
5 /)88
S S o
S/ PO / Visibility
~ *

Three dimensions

Gen1 / Total Ordert

TQ.gerierators = L /'/’7
“" effectors

TO generators + TO
effectors

G&pless TO SSER
effectors
N

- Total order,
capricious

CAP

0 = Concurrent

\%3
o
3
\4

PO / Visibility

Three dimensions

Gen1 / Total Ordert :
TO.getierators = L/n
© effectors

TO generators + TO
effectors

effectors

CAP

- Total order,
capricious

0 = Concurrent

o%\"\o(\ S Y
co® Yy Se %
«Q \ ST 2
Sole L& k)
s //LS/ NS
é@ &§@ Q// Q
§ fILS o
S//Y PO / Visibility
& *

Three dimensions

Gen1 / Total Ordert

TQ.gerierators = /_/'/7
“" effectors

effectors
S E R """"""" Gapless TO™ S S E Fl)

effectors
N

CAP

- Total order,
capricious

0 = Concurrent

PO / Visibility

Three dimensions

Gen1 / Total

TQ.gerierators =
" effectors

TO generators + TO|
effectors

effectors

CAP

SER -~ capressTo SSER

" Total order,
capricious

- PO/ Visibility

Three dimensions

Gen1 / Total

TO.gerterators =
" effectors

TO generators + TO|
effectors

GEpIsss TO
effectors

N

CAP

- Total order,
capricious

0 = Concurrent

Txnl CC-—"

~Lin

Three dimensions

Gen1 / Total

TQ.geriérators =

effectors

TO generators + TO
effectors

SER

~Lin

Total Order

Composition

Rollbacks Monotonic

Visibility
Transitive

PO / Visibility

Causal External

TOG=TOE

Gapless TOE

Capricious TOE

Concurrent Ops

All-or-Nothing + Snapshot
All-or-Nothing Effectors
Single Operation
All-or-Nothing + Snapshot
All-or-Nothing Effectors
Single Operation
All-or-Nothing + Snapshot
All-or-Nothing Effectors
Single Operation
All-or-Nothing + Snapshot
All-or-Nothing Effectors
Single Operation

Bayou
Lww

RC
EC PRAM

SER

NMSI

SSER

SC LIN
PSI S50

Causal HAT

SsSssSsssSS

CcC

Summary

Distributed, replicated data
* Improves read availability
» Parallel updates may violate invariants
» Guarantee: invariants maintained by system
* System vs. application cost trade-off
» Tools needed
3D consistency design space
 Total order (effectors, generators)
* Visibility order
* Transactional Composition
Work in progress

[Consistency in 3D]

Creative Commons
Attribution-ShareAlike
4.0 Intl. License

You are free to:

e Share — copy and redistribute the material in any medium
or format

* Adapt — remix, transform, and build upon the material
for any purpose, even commercially, under the following terms:

Attribution — You must give appropriate credit, provide a
link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way
that suggests the licensor endorses you or your use.

@ ShareAlike — If you remix, transform, or build upon the
material, you must distribute your contributions under the
same license as the original.

[Consistency in 3D] 50

4 session guarantees
causal

Monotonic reads Read My Writes
r2 r3 wi r2
(I D> *b LN 9 > (4'
O—e—>»0O s O—e— T
\ w1 LW \ wl >
® U ® U

Client / No rollback: r3 must include w1

Monotonic writes

Client / RMW: r2 must include w1

Writes Follow Reads

1 2 ro 3
= R)
N ¢" * 0 4 : ‘- 0
l: /i.wh . 'l" :/—‘.W / i O “* :

< '/_‘.WZJ \ :'/—‘.@!

0¥ o'L AN

Global / No rollback: r3 must include w1
[Consistency in 3D]

Global / WR dependence: w3 must follow w1
52

