
Data consistency in 3D
(It’s the invariants, stupid)

Marc Shapiro
Masoud Saieda Ardekani

Gustavo Petri

[Consistency in 3D]

This talk is about…
Understanding consistency

• Primitive consistency mechanisms
• How primitives compose models
• How models relate / differ
• What they cost

Understanding invariants
• Some interesting classes of invariants

Relating consistency to invariants
• Which primitives guarantee which invariants

Useful intuitions for app. and system designers

2

[Consistency in 3D]

Shared database

Social, web, e-commerce: shared mutable data
Scalability ⇒ replication ⇒ consistency issues

3

q.push(e)
c.inc()

c.inc()

q.val()
c.val()

q: Queue
c: Counter
{ |q| ≤ c }

[Consistency in 3D]

Geo-replicated database

Social, web, e-commerce: shared mutable data
Scalability ⇒ replication ⇒ consistency issues

4

5 ms – ∞

q.push(e)
c.inc()

c.inc()

q.val()
c.val() q3 ∈ Queue?

q1 = q2 ?
|q1| ≤ c4 ?

q: Queue
c: Counter
{ |q| ≤ c } q: Queue

c: Counter
{ |q| ≤ c }

q: Queue
c: Counter
{ |q| ≤ c }

[Consistency in 3D]

Consistency

More replicas:
• Better read availability, responsiveness,

performance, etc.
• More work to keep replicas in sync

Consistent = behavior similar to sequential:
• Satisfies specs: does q behave like a queue?
• Replicas agree: is q identical everywhere?
• Objects agree: is |q| ≤ c?
• Same flow of time? q1.push() before q2.push()

5 [Consistency in 3D]

Consistency
opportunities and costs

CAP
Availability

⟹ Parallelism keeps the hardware busy
⟹ More implem. options, scalable

But consistency constrains order of events:
• Delay delivery
• Stale reads
• Waits, synchronisation (mutual wait)

Keeping track of order requires metadata
Significant!

6

[Consistency in 3D]

Serrano-SI P-Store-SER GMU-US Jessy2pc-NMSI

RC Walter-PSI SDUR-SER

Credit: Masoud Saeida Ardekani

Costs illustrated

7

3×

4.5×

Te
rm

in
at

io
n

La
te

nc
y

of
Up

da
te

 T
ra

ns
ac

tio
ns

 (
m

s)

90% Read-only transactions; Disaster Tolerant

70% Read-only transactions; Disaster Tolerant

[Consistency in 3D]

Strict Serialisability

8

T1

T1

R1
R2
R3

Invariant

client
T1

Invariant Invariant

T3

T3

T2

T2

[Consistency in 3D]

Eventual consistency

9

Op1

R1
R2
R3

Op2

[Consistency in 3D]

High
performance

Low
performance

Strong vs. weak?

10

Hard to
program

Predictable Strict Serialisability

Eventual Consistency

Snapshot Isolation

Strict Serialisability

PRAM

[Consistency in 3D]

High
performance

Low
performance

Strong vs. weak?

11

Hard to
program

Predictable Strict Serialisability

Eventual Consistency

Snapshot
Isolation

Strict Serialisability

PRAM

Serialis-
ability

[Consistency in 3D]

PL-1

PL-2

Cursor Stability (PL-CS) Monotonic View (PL-2L)

Monotonic Snapshot
Reads (PL-MSR)

Consistent View (PL-2+)

Forward Consistent View (PL-FCV)

Snapshot Isolation (PL-SI) Update Serializability (PL-3U)

Full Serializability (PL-3)

Strict Serializability (PL-SS)

Repeatable Read (PL-2.99)

Figure 4-1: A partial order to relate various isolation levels.

previous chapter. Various levels can be ranked according to their “strength”: one level is stronger
than another if it allows fewer histories. In the figure, if level Y is stronger than level X, there is a
directed path from X to Y; if there is no path between two levels, they are unrelated to each other.

For all intermediate levels, we have also developed corresponding guarantees that can be
provided to transactions as they execute. As in the previous chapter, the levels defined for running
transactions are similar to the corresponding levels for committed transactions.

The rest of this chapter is organized as follows. In Section 4.1, we present our specifications for
PL-2+. In Section 4.2, we present definitions for PL-2L. In Section 4.3, we describe specifications
of Snapshot Isolation. We discuss a new isolation level called Forward Consistent View in 4.4 that
has been inspired by Snapshot Isolation. We describe a level that captures the essence of Oracle’s
Read Consistency in Section 4.5 and compare it with level PL-2L. Cursor Stability is presented in
Section 4.6. Section 4.7 describes update serializability, a consistency guarantee that is useful for
read-only transactions, and compares it with PL-2+ and serializability. Finally, in Section 4.8, we
extend our definitions for intermediate levels to provide guarantees for executing transactions.

4.1 Isolation Level PL-2+

Isolation level PL-2+ is motivated by the fact that certain applications only need to observe a
consistent state of the database and serializability may not be required, e.g., a read-only transaction
in an inventory application may simply want to observe a consistent state of the current orders
and in-stock items. It is the weakest level that ensures that integrity constraints are not observed
as violated as long as update transactions modify the database consistently and are serializable.

67

Strong vs. weak?

12

Linearizability

Sequential

Regular

Safe

Eventual

Causal+ Real-time
causal

Causal

Read-your-writes
(RYW)

Monotonic Reads
(MR)

Writes-follow-reads
(WFR)

Monotonic Writes
(MW)

PRAM
(FIFO)

Fork

Fork*

Fork-join
causal

Bounded
fork-join

causal

Fork
sequential

Eventual
linearizability

Timed serial
& ∆,Γ-atomicity

Processor

Fork-based
models

Slow
memory

Per-object
models

Per-record
timeline

&
Coherence

Timed
causal

Bounded
staleness

&
Delta

Weak
fork-lin. Strong

eventual

Quiescent

Weak

k-regular

k-safe

PBS
k-staleness

k-atomicity

Release

Weak ordering

Location

Scope

Lazy release

Entry

Synchronized
models

Causal
models

Staleness-based
models

Per-object
causal

Per-key
sequential

Prefix
linearizable

Prefix
sequential

PBS
t-visibility

Session models

Eventual
serializability

Fi
gu

re
1:

H
ie

ra
rc

hy
of

no
n-

tra
ns

ac
tio

na
lc

on
si

st
en

cy
m

od
el

s.
A

di
re

ct
ed

ed
ge

fr
om

co
ns

is
te

nc
y

se
m

an
tic

s
A

to
co

ns
is

te
nc

y
se

m
an

tic
s

B
m

ea
ns

th
at

an
y

ex
ec

ut
io

n
th

at
sa

tis
fie

s
B

al
so

sa
tis

fie
s

A
.U

nd
er

lin
ed

m
od

el
s

ex
pl

ic
itl

y
re

as
on

ab
ou

tt
im

in
g

gu
ar

an
te

es
.

7

Transactional
Adya 1999

Non-transactional
Viotti & Vukolić 2016

[Consistency in 3D]

Three classes…

13

…of invariant … of protocol

Gen1 Object value Total order of operations

PO Relative ordering
of operations Visibility

EQ State
equivalence Composition

[Consistency in 3D]

Three dimensions

14

Eventual Consistency

Snapshot
Isolation

Txnl CC

Mostly orthogonal
(but not all

combinations
make sense.)

Gen1 /
Total Order

EQ /

Composition

PO / Visibility
Causal

Linearisability

Serialisability
Strict

Serialisability
CAP

[Consistency in 3D]

Operation

generator: read, compute, generate effector
effector: compute, write side-effect
Sequential execution:

• precondition ⟹ invariant
• each effector individually safe

15

x:=3x+y>0
x=4
y=–2

x+y≥0 y≔–3x+y>0 ¬x+y>0 skip

[Consistency in 3D]

Sequential correctness

generator: read, compute, generate effector
effector: compute, write side-effect
Sequential execution:

• precondition ⟹ invariant
• each effector individually safe

16

x:=3
x=4
y=–2

x+y≥0 y≔–3 skip

x=4
y=–2

x=3
y=–2 true

[Consistency in 3D]

Guarantee vs. semantics

Guarantee:
• Class of invariants that is always true
• Regardless of application code
• Assuming sequentially correct

Application can compensate for absence
of guarantee
• e.g. Inv={ c≥0 }, app: c.inc()

17 [Consistency in 3D]

Data types
Register

• Update: assign with constant
‣ Not commutative
‣ Absorbing

High-level types
• Counter, ORset, Sequence:

effectors commute
• Stock, Account, Queue: ¬ commute

Composed data
• + structural invariants

18

[Consistency in 3D]

Replicated operation

u: state ⤻ (retval, (state ⤻ state))
Read one, write all (ROWA)
Deferred-update replication (DUR)

19

origin
replica

u!

u!

u?

client u

replica

uPRE

u!
replica

v? v!

uPRE

uPRE

[Consistency in 3D]

Sharded, geo-replicated

20

x1y1
z1

x2y2
z2

DC1

DC2

z2%2=0

x2:=0

x1:=0x1>0

y2+=1

y1+=1

x=1
y’=1

x=0
y=0

DC3 ¬ read my
writes

arbitrary origin

sharded,
parallel

concurrent
updates

[Consistency in 3D]

Type EQ invariants
• A = B
• x.friendOf (y) ⟺ y.friendOf (x)
• x + y = constant
• South ⨄ Boat ⨄ North

= { sheep, dog, wolf }
Joint update to two objects
Atomicity (all-or-nothing) property of transactions
Protocol: single update message

• Asynchronous

21 [Consistency in 3D]

EQ: transactional
composition

Airplane reservation
• Allocate a seat to me
• Pay for the flight

Two EQ relations:
• paid = have_seat
• my $$ + airline $$ = constant

Ad-hoc grouping
(This txn also needs TO + snapshot)

22

[Consistency in 3D]

EQ/Composition axis
Transaction groups operations
All-or-nothing effects:

• Deliver effectors indivisibly
‣ packaged together

• + same TOE
‣ ≈ 2-phase commit

Snapshot reads:
• all generators read from

same set of effectors
‣ maintain versions

• + same TO, VIS guarantees
‣ coordination

23

All-or-nothing
effects

+ snapshot

0 = Independent
operations

[Consistency in 3D]

EQ/Composition axis
Transaction groups operations
All-or-nothing effects:

• Deliver effectors indivisibly
‣ packaged together

• + same TOE
‣ ≈ 2-phase commit

Snapshot reads:
• all generators read from

same set of effectors
‣ maintain versions

• + same TO, VIS guarantees
‣ coordination

24

All-or-nothing
effects

+ snapshot

0 = Independent
operations

Serialisability
Snapshot Isolation

Trans. Causal

RC

Linearisability
PRAM

[Consistency in 3D]

EQ/Composition axis
Transaction groups operations
All-or-nothing effects:

• Deliver effectors indivisibly
‣ packaged together

• + same TOE
‣ ≈ 2-phase commit

Snapshot reads:
• all generators read from

same set of effectors
‣ maintain versions

• + same TO, VIS guarantees
‣ coordination

25

All-or-nothing
effects

+ snapshot

0 = Independent
operations

Serialisability
Snapshot Isolation

Trans. Causal

RC

Linearisability
PRAM

[Consistency in 3D]

Type PO invariants
• employee.manager.salary ≥ employee.salary
• S1; S2; S3 ≣ S1 ⟸ S2 ⟸ S3
• dog ∈ S ⟸ sheep ∈ S ∧ wolf ∈ S
• Referential integrity
• “inode references disk block”
• ACL (u, p) ⟸ access (u, p)

Demarcation Protocol:
1. increase LHS by c
2. increase RHS by c' ≤ c
⟹	ordered delivery

No synchronisation: Available
26

[Consistency in 3D]

PO: transitive / causal
visibility

x = 100; y = 100
Inv = { x ≥ y }
Ex 1:

• P1: x += 100
• P2: if x > y then y += (x–y)/2
• P3: x ≥ y?
• Transitive visibility vis* ⊆ vis

Ex 2:
• P1: x += 100; d ≔ 100
• P2: if d > 0 then y += d/2
• P3: x ≥ y?

Causal visibility (vis; po)* ⊆ vis

27

x!

x!

x!y!

y!

x!

[Consistency in 3D]

PO: transitive / causal
visibility

x = 100; y = 100
Inv = { x ≥ y }
Ex 1:

• P1: x += 100
• P2: if x > y then y += (x–y)/2
• P3: x ≥ y?
• Transitive visibility vis* ⊆ vis

Ex 2:
• P1: x += 100; d ≔ 100
• P2: if d > 0 then y += d/2
• P3: x ≥ y?

Causal visibility (vis; po)* ⊆ vis

28

x!

x!

y!

y!

x!

d!

d!

x!

x!

y!

y!

x! client is
part of DB

[Consistency in 3D]

Mon
oto

nic
 cl

ien
t

Tot
al

ca
us

al
ord

er

Tra
ns

itiv
e V

isib
ility

Cau
sa

l V
isib

ility

PO/Visibility axis

29

Mon
oto

nic
 cl

ien
t

Tot
al

ca
us

al
ord

er

0 =
 Rollb

ac
ks

Exte
rna

l

Visibility
• Which writes visible to

reads
Transitive closure property

• Metadata
• System-wide

Sender not delayed ⟹
writes available

Stale data ⟹ reads
available

[Consistency in 3D]

Monotonic client

• Read My Writes
• Monotonic Reads

Often assumed
‣ Buffer

30

Mon
oto

nic
 cl

ien
t

Tot
al

ca
us

al
ord

er

0 =
 Rollb

ac
ks

Tra
ns

itiv
e V

isib
ility

Cau
sa

l V
isib

ility

Exte
rna

l

Eventual Consistency
“Not reasonable”

[Consistency in 3D]

Transitive, causal vis.
• Effector: metadata identifies set of

predecessor effectors
• Delay delivery after predecessors
‣ Read stale data

• Graph: unbounded
• Vector clock: 104—106 entries × 8 bytes!
• Approximate VC: stronger order

31

Mon
oto

nic
 cl

ien
t

Tot
al

ca
us

al
ord

er

0 =
 Rollb

ac
ks

Tra
ns

itiv
e V

isib
ility

Cau
sa

l V
isib

ility

Exte
rna

l

SER
NMSI PSI

x

y!

y

x!

d!

d

x!

x!

y!

y!

x!

client is
part of DB

[Consistency in 3D]

Total/external causal

Total order extends causal order
Metadata: 1 single scalar

• but cost of total order
External: real-time clock

32

Mon
oto

nic
 cl

ien
t

Tot
al

ca
us

al
ord

er

0 =
 Rollb

ac
ks

Tra
ns

itiv
e V

isib
ility

Cau
sa

l V
isib

ility

Exte
rna

l

Gentle Rain Linearisable
SSER

[Consistency in 3D]

Gen1 invariants
Inv = “0 ≤ x”
u! = “x ≔ x–1”
{ Inv ∧1≤ x} u! { Inv }

Predict that Inv will be true after u!:
• Sequential: weakest precondition
• Generalises to bounded concurrency

Unbounded concurrency: no sufficient
precondition
• Invariant is not stable
• Limit concurrency: escrow
• No concurrency: order updates

33 [Consistency in 3D]

Gen1: total order

34

Gen1

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Do replicas observe events in
the same order?

Pick a unique number

[Consistency in 3D]

0 = unordered

No: concurrent
• Commute ⟹ converge
• Stable precondition ⟹ Invariant35

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Do replicas observe events in
the same order?

Pick a unique number

x!

x!

y!

y!

[Consistency in 3D]

Capricious TO effectors

Pick a number locally: capricious
Gap: will arrive later?

• Non-monotonic: rollback
• Monotonic
‣ Wait for gap to fill (Lamport 78)
‣ Lost updates (LWW)

36

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Do replicas observe events in
the same order?

Pick a unique number

10

7

EC

Lamport
LWW

[Consistency in 3D]

Capricious TO effectors

Pick a number locally: capricious
Gap: will arrive later?

• Non-monotonic: rollback
• Monotonic
‣ Wait for gap to fill (Lamport 78)
‣ Lost updates (LWW)

37

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Do replicas observe events in
the same order?

Pick a unique number

10

7

EC

Lamport
LWW

[Consistency in 3D]

Gapless TO effectors

Gapless:
• No lost updates
• Consensus, 2PC to uniquely

allocate next free number
⟹ not available

38

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Do replicas observe events in
the same order?

Pick a unique number

8

7

SMR
PSI

NMSI

[Consistency in 3D]

TO generators

TO effectors
+ TO generators
‣ separate from effectors
‣ same order as effectors

39

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Do replicas observe events in
the same order?

Pick a unique number

SI

LIN
SER

SSER

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

40

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

41

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

EC

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

42

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Lin

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

43

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SSER

Lin

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

44

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SER SSER

Lin

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

45

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SSERSER

PSI

Lin

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

46

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

SSERSER

PSI
SI

Lin

[Consistency in 3D]

Gen1 / Total Order
Three dimensions

47

EQ / Composition

PO / Visibility

Total causal order

0 = Rollbacks

Transitive Visibility
Causal Visibility

External

M
onotonic client

Al
l-o

r-n
ot

hin
g

eff
ec

ts

+
sn

ap
sh

ot

0
=

In
de

pe
nd

en
t

op
er

at
ion

s

Gapless TO
effectors

0 = Concurrent

Total order,
capricious

TO generators + TO
effectors

TO generators =
effectors

CAP

Txnl CC
[Consistency in 3D] 48

<article-no>:12Consistency in 3D

Total Order Composition Visibility
Rollbacks Monotonic Transitive Causal External

All-or-Nothing + Snapshot SER SSER
All-or-Nothing E�ectorsTOG=TOE

Single Operation SC LIN
All-or-Nothing + Snapshot NMSI PSI SSI

All-or-Nothing E�ectorsGapless TOE
Single Operation

All-or-Nothing + Snapshot Bayou ÿ
All-or-Nothing E�ectors ÿCapricious TOE

Single Operation LWW ÿ
All-or-Nothing + Snapshot Causal HAT ÿ

All-or-Nothing E�ectors RC ÿConcurrent Ops
Single Operation EC PRAM CC ÿ

Table 5 Matrix of features and consistency models

6 Discussion and conclusion

Our system model (Section 2) is very general. The separation between generators and ef-
fectors allows for internal parallelism; if unusual, it reflects practical implementations [23].
Our total order axis (Section 3), classifies the degree of concurrency between operations
to a single object, including only e�ectors or also generators, and accounts for both avail-
able (capricious) and consensus-based (gapless) approaches. The other two axes introduce
mechanisms that relate multiple objects; however, they serve di�erent purposes and have
di�erent costs. Visibility order (Section 4) relates reads to writes and involves maintaining
a system-wide transitive closure, and aims to support PO-type invariants. Transactions
(composition, Section 5) serves to enforce ad-hoc EQ and Gen*; a transaction is a one-o�
grouping, requested by the application.

In order to be intuitively useful, our classification simplifies the design space into three
approximately linear axes (which we relate to application invariants). Obviously, this can-
not account for the full complexity of the relations between models. We acknowledge the
deficiencies of such a simplification. For instance, we flatten the visibility axis, and abus-
ively assume that all TOG=TOE models must be gapless. We defend this simplification as
practically relevant, even if not formally justified. We also ignored hybrid models, such as
Update Serialisability [16].

We focus on client-monotonic models, as they are the most intuitive, and because mono-
tonicity is trivial to implement. While the specifications of SER, NMSI, or RC do not require
Monotonic visibility, all the actual implementations that we know of do provide it.

Table 5 positions some major consistency models within the three axes. Compare for
instance two prominent strong consistency models: SSER and LIN. While LIN considers
single operations and single objects, SSER is a transactional model requiring All-or-Nothing
and Snapshot. Also notice how the visibility axis di�erentiates SSER from SER, and NMSI
from PSI.

While our results are preliminary, we believe that this classification sheds light on the
crowded space of distributed consistency guarantees, towards a better understanding of the
application invariants enforced by each of them. We intend, in further work, to formalize
our definitions and prove some interesting meta-properties. This work aims to be an step

[Consistency in 3D]

Summary
Distributed, replicated data

• Improves read availability
• Parallel updates may violate invariants
• Guarantee: invariants maintained by system
• System vs. application cost trade-off
‣ Tools needed

3D consistency design space
• Total order (effectors, generators)
• Visibility order
• Transactional Composition

Work in progress

49 [Consistency in 3D]

Creative Commons
Attribution-ShareAlike

4.0 Intl. License
You are free to:

• Share — copy and redistribute the material in any medium
or format

• Adapt — remix, transform, and build upon the material
for any purpose, even commercially, under the following terms:

 Attribution — You must give appropriate credit, provide a
link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way
that suggests the licensor endorses you or your use.

 ShareAlike — If you remix, transform, or build upon the
material, you must distribute your contributions under the
same license as the original.

50

[Consistency in 3D]

4 session guarantees
≣ causal

w1!

w1!

Monotonic reads
r2 r3

Client / No rollback: r3 must include w1

52

w1!

w1!

w1
Read My Writes

r2

Client / RMW: r2 must include w1

w1!

w1

w1!

Monotonic writes

w2!

w2

w2!

Global / No rollback: r3 must include w1

Writes Follow Reads

w1!

w1!

w3!

w3

w3!

Global / WR dependence: w3 must follow w1

r2

