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Strong Eventual Consisency

Large-scale replicated data 
structures 

Wish list: 
• Mutable
• Incremental
• Fast ⇒ parallel, asynch
• Fault tolerant

Eventual Consistency
• Principles?
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•Large, dynamic graph
•Incremental, parallel, 

asynchronous:
- updates 
- processing



Strong Eventual Consisency

Strong consistency

Preclude conflict: Replicas update 
in same total order

Any deterministic object
Consensus

• Serialisation bottleneck
• Tolerates < n/2 faults

Sequential, linearisable…
Universal
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•Very general
•Correct
•Doesn't scale

123456 •Simultaneous N-
way agreement



Strong Eventual Consisency

Eventual Consistency

Update local + propagate
• No foreground synch
• Expose tentative state
• Eventual, reliable delivery

On conflict
• Arbitrate
• Roll back

Consensus moved to background
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•Availability ++
•Parallelism++
•Latency --
•Complexity ++
•Consensus (in background)
•Designed for human 

collaboration

Conflict!Reconcile



Strong Eventual Consisency

Strong Eventual Consistency

Update local + propagate
• No synch
• Expose intermediate state
• Eventual, reliable delivery

No conflict
• Unique outcome of 

concurrent updates
No consensus: ≤ n-1 faults
Not universal
Fast, responsive
Solves the CAP problem
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•Available, responsive
•More parallelism
•No conflicts
•No rollback



Strong Eventual Consisency

Strong Eventual Consistency

Eventual delivery: An update 
executed at some correct 
replica eventually executes 
at all correct replicas

Termination: All update 
executions terminate

Strong Convergence: Correct 
replicas that have executed 
the same updates have 
equivalent state
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•No conflicts
•No rollback
•No consensus
•Limited



Strong Eventual Consisency

Conflict-free Replicated Data 
Types (CRDTs)

Intuition:
• Conflict resolution requires 

synchronisation
• Conflict-freedom satisfies SEC
⇒ Design data types with no conflicts

CRDTs
• Available, fast
• Reconcile scalability + consistency 

Simple sufficient conditions
• Principled, correct

7



Strong Eventual Consisency

State-based replication

Local at source s1.u(a), s2.u(b), …
• Compute
• Update local payload

Convergence:
• Episodically: send si payload
• On delivery: merge payloads m
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•merge two valid 
states

•produce valid state
•no historical info 

available
•Inefficient if 

payload is large

M
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Strong Eventual Consisency

If 
• payload type forms a semi-lattice
• updates are increasing
• merge computes Least Upper Bound

then replicas converge to LUB of last values
Example:  Payload = int, merge = max
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•no reference 
to history

•⊔ = Least 
Upper Bound 
LUB = merge

State-based: monotonic semi-
lattice ⇒ CRDT
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Strong Eventual Consisency

Operation-based replication

At source:
• prepare
• broadcast to all replicas

Eventually, at all replicas:
• update local replica
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D

s3.u(a)

s1.u(b)
D

s3.u(b)

D

S

S

D

s2.u(a)

•push to all replicas 
eventually

•push small updates
- more efficient than 

state-based

s3

s1

s2

s s1.u(a)

s2.u(b) b a

b
a



Strong Eventual Consisency

Operation-based replication

At source:
• prepare
• broadcast to all replicas

Eventually, at all replicas:
• update local replica

11

•push to all replicas 
eventually

•push small updates
- more efficient than 

state-based

s1.t(a'); s1.u(a)

s2.t(b');
s2.u(b)
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Strong Eventual Consisency

Op-based: commute ⇒ CRDT

If:	
 •	
 (Liveness) all replicas execute all operations
	
 	
 	
 in delivery order

• (Safety) concurrent operations all commute
Then: replicas converge
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•Delivery order ≃ ensures 
downstream precondition

•happened-before or weaker
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Strong Eventual Consisency

Composition and sharding

A composition of independent 
CRDTs is a CRDT

Very large objects
• Independent shards
• Static: hash

Statically-Sharded CRDT
• Each shard is a CRDT
• Update: single shard
• No cross-object invariants

13

•(Dynamic: requires 
consensus to 
rebalance)



The challenge:
What interesting objects can 

we design with no 
synchronisation whatsoever?



Strong Eventual Consisency

Portfolio of CRDTs

Register
• Last-Writer Wins
• Multi-Value

Set
• Grow-Only
• 2P
• Observed-Remove

Map
• Set of Registers

Counter
• Unlimited
• Non-negative

Graphs
• Directed
• Monotonic DAG
• Edit graph

Sequence
• Edit sequence
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Strong Eventual Consisency

Multi-master counter

Increment / decrement
• Payload: P = [int, int, …], 
	
 N = [int, int, …]

• value() = ∑i P[i] – ∑i N[i]
• increment () =  P[MyID]++
• decrement () =  N[MyID]++
• merge(s,s') = 
	
 s⊔s' = ([…,max(s.P[i],s'.P[i]),…]i,

	
 	
 […,max(s.N[i],s'.N[i]),…]i)

• Positive or negative

16

•like vector 
clock



Strong Eventual Consisency

Multi-master counter

Increment / decrement
• Payload: P = [int, int, …], 
	
 N = [int, int, …]

• value() = ∑i P[i] – ∑i N[i]
• increment () =  P[MyID]++
• decrement () =  N[MyID]++
• merge(s,s') = 
	
 s⊔s' = ([…,max(s.P[i],s'.P[i]),…]i,

	
 	
 […,max(s.N[i],s'.N[i]),…]i)

• Positive or negative
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•like vector 
clock

•can't maintain global 
invariant such as s>0



Strong Eventual Consisency

Set design alternatives

Sequential specification:
• {true} add(e) {e ∈ S}
• {true} remove(e) {e ∉ S}

{true} add(e) || remove(e) {????}
• linearisable?
• error state? 
• last writer wins?
• add wins?
• remove wins?
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•linearisable: sequential 
order

•equivalent to real-time 
order

•Requires consensus



Strong Eventual Consisency

A

2P-Set

Payload = (Grow-Set A, Grow-Set R)
• add (e) = A := A ∪ {e}
• remove (e) = e ∈ A ? R := R ∪ {e}
• lookup (e) = e ∈ A ∧ e ∉ R
• s≤s' ≝ s.A ⊆ s'.A ∧ s.R ⊆ s'.R
• merge (s,s') = (s.A ∪ s'.A, s.R ∪ s'.R)

{true} add(e) || remove(e) {e ∉ S}
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•A=added
•R= removed (tombstones)
•Once removed, an element 

cannot be added again
•Remove has precedence 

over add (absorbing)

•In many distr. sys., uses 
of Set, add creates a 
unique element, so this is 
not a limitation

R

a

b
c

add (a)
add (b)

add (c)
add (b)

remove (a)

add (a)



Strong Eventual Consisency

Observed-Remove Set

• Payload: added, removed (element, unique-token)
add(e) = A ≔ A ∪ {(e, α)}
• Remove: all unique elements observed

remove(e) = R ≔ R ∪ { (e, –) ∈ A}
• lookup(e) = ∃ (e, –) ∈ A \ R 
• merge (S, S') = (A ∪ A', R ∪ R')
• {true} add(e) || remove(e) {e ∈ S}
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•Can never remove 
more tokens than 
exist

•Op order ⇒ removed 
tokens have been 
previously added

add(a)

add(a)

rmv (a){}
{aα} {aα}

{}

{aβ}
M

{aα}
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{aα}
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{aβ}
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{aβ} {aβ, aα} {aβ, aα}
{}
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s1

s2

s
S S

S

{aβ}



Strong Eventual Consisency

OR-Set

Set: solves Dynamo Shopping Cart anomaly
Optimisations:

• No tombstones
• Operation-based approach
• Snapshots
• Sharded
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Strong Eventual Consisency

OR-Set + Snapshot

Read consistent snapshot
• Despite concurrent, incremental updates

Unique token = time (vector clock)
• α = Lamport (process i, counter t)
• UIDs identify snapshot version
• Snapshot: vector clock value
• Retain tombstones until not needed

lookup(e, t) = ∃ (e, i, t')∈A : t'>t ∧ ∄ (e, i, t')∈R: t'>t
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Strong Eventual Consisency

OR-Set + Snapshot (2)

• Payload:	
vector clock Vi
	
 set Ai = { (e, j, t), … }
	
 set Ri = { (e, j, c, j', t'), … }
• add(e): Vi[i]++; Ai ≔ Ai ∪ { (e, i, Vi[i]) }

• remove(e): Vi[i]++; Ri ≔ Ri ∪ { (e, j, t, i, Vi[i]) }

• merge(V,A,R):
∀j, Vi[j] ≔ max(Vi[j],V[j]); Ai ≔ Ai ∪ A; Ri ≔ Ri ∪ R

• lookup(e,V):	
(e,j,c) ∈ Ai ∧ (e,j,c,–,–) ∉ Ri ∧ V[j]≥c
	
 ∨ (e,j,c,j',c') ∈ Ri ∧ V[j]≥c ∧ V[j']<c
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•Ai = added elements + unique 
timestamp

•Ri = tombstones + timestamp

•lookup w.r.t. a snapshot vector V
•e in set if added, and not removed, and 
within snapshot

•or if added before snapshot and removed 
after snapshot



Strong Eventual Consisency

Graph design alternatives

Graph = (V, E) where E ⊆ V × V

Sequential specification:
• {v,v' ∈ V} addEdge(v,v') {…}
• {∄(v,v') ∈ E} removeVertex(v) {…}

Concurrent: removeVertex(v') || addEdge(v,v')
• linearisable?
• last writer wins?
• addEdge wins?
• removeVertex wins?
• etc.
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•for our Web Search Engine 
application, removeVertex 
wins

•Do not check precondition at 
add/remove



Strong Eventual Consisency

Directed Graph

Payload = OR-Set V, OR-Set E
Updates add/remove to V, E
• addVertex(v), removeVertex(v)
• addEdge(v,v'), removeEdge(v,v')

Do not enforce invariant a priori
• lookupEdge(v,v') = (v,v') ∈ E

∧ v ∈ V ∧ v' ∈ V
removeVertex(v') || addEdge(v,v')
• removeVertex wins
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Strong Eventual Consisency

Graph + shards + snapshots

Snapshot
• see OR-Set

Sharding
• See OR-Set
• Do not enforce invariant a priori
	
lookupEdge(v,v') = (v,v') ∈ E 
	
 ∧ v ∈ V ∧ v' ∈ V
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Strong Eventual Consisency

CRDT + dataflow

Incremental, asynchronous processing
• Replicate, shard CRDTs near the edge
• Propagate updates ≈ dataflow
• Throttle according to QoS metrics 

(freshness, availability, cost, etc.)
Scale: sharded
Synchronous processing: snapshot, at centre
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Web 
site 1

Web 
site 2

Web 
site 3
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crawl
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DB

extract
links

extract
words

Graph

Words

spam 
detector

Map URL to 
last 2 versions

Map word to 
Set of URLs

Graph

Set



Strong Eventual Consisency

Thought experiment (2)
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Index

•content DB, index: 
decentralised, 
replicated, close to the 
network edge
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Strong Eventual Consisency

Contributions

Strong Eventual Consistency (SEC) 
• A solution to the CAP problem
• Formal definitions
• Two sufficient conditions 
• Strong equivalence between the two
• SEC shown incomparable to sequential 

consistency
CRDTs

• integer vectors, counters
• sets
• graphs
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