
Marc Shapiro, INRIA & LIP6
Nuno Preguiça, U. Nova de Lisboa

Carlos Baquero, U. Minho
Marek Zawirski, INRIA & UPMC

Strong Eventual
Consistency and CRDTs

Strong Eventual Consisency

Large-scale replicated data
structures

Wish list:
• Mutable
• Incremental
• Fast ⇒ parallel, asynch
• Fault tolerant

Eventual Consistency
• Principles?

2

•Large, dynamic graph
•Incremental, parallel,

asynchronous:
- updates
- processing

Strong Eventual Consisency

Strong consistency

Preclude conflict: Replicas update
in same total order

Any deterministic object
Consensus

• Serialisation bottleneck
• Tolerates < n/2 faults

Sequential, linearisable…
Universal

3

•Very general
•Correct
•Doesn't scale

123456 •Simultaneous N-
way agreement

Strong Eventual Consisency

Eventual Consistency

Update local + propagate
• No foreground synch
• Expose tentative state
• Eventual, reliable delivery

On conflict
• Arbitrate
• Roll back

Consensus moved to background

4

•Availability ++
•Parallelism++
•Latency --
•Complexity ++
•Consensus (in background)
•Designed for human

collaboration

Conflict!Reconcile

Strong Eventual Consisency

Strong Eventual Consistency

Update local + propagate
• No synch
• Expose intermediate state
• Eventual, reliable delivery

No conflict
• Unique outcome of

concurrent updates
No consensus: ≤ n-1 faults
Not universal
Fast, responsive
Solves the CAP problem

5

•Available, responsive
•More parallelism
•No conflicts
•No rollback

Strong Eventual Consisency

Strong Eventual Consistency

Eventual delivery: An update
executed at some correct
replica eventually executes
at all correct replicas

Termination: All update
executions terminate

Strong Convergence: Correct
replicas that have executed
the same updates have
equivalent state

6

•No conflicts
•No rollback
•No consensus
•Limited

Strong Eventual Consisency

Conflict-free Replicated Data
Types (CRDTs)

Intuition:
• Conflict resolution requires

synchronisation
• Conflict-freedom satisfies SEC
⇒ Design data types with no conflicts

CRDTs
• Available, fast
• Reconcile scalability + consistency

Simple sufficient conditions
• Principled, correct

7

Strong Eventual Consisency

State-based replication

Local at source s1.u(a), s2.u(b), …
• Compute
• Update local payload

Convergence:
• Episodically: send si payload
• On delivery: merge payloads m

8

•merge two valid
states

•produce valid state
•no historical info

available
•Inefficient if

payload is large

M

s2.m(s1)

s3.m(s2)
M

s2.u(b)
S

S

s1.u(a) s1.m(s2)
M

s3

s1

s2

s

s1
s2

s2

client

Strong Eventual Consisency

If
• payload type forms a semi-lattice
• updates are increasing
• merge computes Least Upper Bound

then replicas converge to LUB of last values
Example: Payload = int, merge = max

9

•no reference
to history

•⊔ = Least
Upper Bound
LUB = merge

State-based: monotonic semi-
lattice ⇒ CRDT

M

s2.m(s1)

s3.m(s2)
M

s2.u(b)
S

S

s1.u(a) s1.m(s2)
M

s3

s1

s2

s

s1
s2

s2

Strong Eventual Consisency

Operation-based replication

At source:
• prepare
• broadcast to all replicas

Eventually, at all replicas:
• update local replica

10

D

s3.u(a)

s1.u(b)
D

s3.u(b)

D

S

S

D

s2.u(a)

•push to all replicas
eventually

•push small updates
- more efficient than

state-based

s3

s1

s2

s s1.u(a)

s2.u(b) b a

b
a

Strong Eventual Consisency

Operation-based replication

At source:
• prepare
• broadcast to all replicas

Eventually, at all replicas:
• update local replica

11

•push to all replicas
eventually

•push small updates
- more efficient than

state-based

s1.t(a'); s1.u(a)

s2.t(b');
s2.u(b)

D

D

D

S

S

D

s3

s1

s2

s

b a

b

s3.u(b) s3.u(a)

s1.u(b)

s2.u(a)a

Strong Eventual Consisency

Op-based: commute ⇒ CRDT

If:	
 •	
 (Liveness) all replicas execute all operations
	
 	
 	
 in delivery order

• (Safety) concurrent operations all commute
Then: replicas converge

12

•Delivery order ≃ ensures
downstream precondition

•happened-before or weaker

s1.u(a)

s2.u(b)

D

D

D

S

S

D

s3

s1

s2

s

b a

b

s3.u(b) s3.u(a)

s1.u(b)

s2.u(a)a

Strong Eventual Consisency

Composition and sharding

A composition of independent
CRDTs is a CRDT

Very large objects
• Independent shards
• Static: hash

Statically-Sharded CRDT
• Each shard is a CRDT
• Update: single shard
• No cross-object invariants

13

•(Dynamic: requires
consensus to
rebalance)

The challenge:
What interesting objects can

we design with no
synchronisation whatsoever?

Strong Eventual Consisency

Portfolio of CRDTs

Register
• Last-Writer Wins
• Multi-Value

Set
• Grow-Only
• 2P
• Observed-Remove

Map
• Set of Registers

Counter
• Unlimited
• Non-negative

Graphs
• Directed
• Monotonic DAG
• Edit graph

Sequence
• Edit sequence

15

Strong Eventual Consisency

Multi-master counter

Increment / decrement
• Payload: P = [int, int, …],
	
 N = [int, int, …]

• value() = ∑i P[i] – ∑i N[i]
• increment () = P[MyID]++
• decrement () = N[MyID]++
• merge(s,s') =
	
 s⊔s' = ([…,max(s.P[i],s'.P[i]),…]i,

	
 	
 […,max(s.N[i],s'.N[i]),…]i)

• Positive or negative

16

•like vector
clock

Strong Eventual Consisency

Multi-master counter

Increment / decrement
• Payload: P = [int, int, …],
	
 N = [int, int, …]

• value() = ∑i P[i] – ∑i N[i]
• increment () = P[MyID]++
• decrement () = N[MyID]++
• merge(s,s') =
	
 s⊔s' = ([…,max(s.P[i],s'.P[i]),…]i,

	
 	
 […,max(s.N[i],s'.N[i]),…]i)

• Positive or negative

17

•like vector
clock

•can't maintain global
invariant such as s>0

Strong Eventual Consisency

Set design alternatives

Sequential specification:
• {true} add(e) {e ∈ S}
• {true} remove(e) {e ∉ S}

{true} add(e) || remove(e) {????}
• linearisable?
• error state?
• last writer wins?
• add wins?
• remove wins?

18

•linearisable: sequential
order

•equivalent to real-time
order

•Requires consensus

Strong Eventual Consisency

A

2P-Set

Payload = (Grow-Set A, Grow-Set R)
• add (e) = A := A ∪ {e}
• remove (e) = e ∈ A ? R := R ∪ {e}
• lookup (e) = e ∈ A ∧ e ∉ R
• s≤s' ≝ s.A ⊆ s'.A ∧ s.R ⊆ s'.R
• merge (s,s') = (s.A ∪ s'.A, s.R ∪ s'.R)

{true} add(e) || remove(e) {e ∉ S}

19

•A=added
•R= removed (tombstones)
•Once removed, an element

cannot be added again
•Remove has precedence

over add (absorbing)

•In many distr. sys., uses
of Set, add creates a
unique element, so this is
not a limitation

R

a

b
c

add (a)
add (b)

add (c)
add (b)

remove (a)

add (a)

Strong Eventual Consisency

Observed-Remove Set

• Payload: added, removed (element, unique-token)
add(e) = A ≔ A ∪ {(e, α)}
• Remove: all unique elements observed

remove(e) = R ≔ R ∪ { (e, –) ∈ A}
• lookup(e) = ∃ (e, –) ∈ A \ R
• merge (S, S') = (A ∪ A', R ∪ R')
• {true} add(e) || remove(e) {e ∈ S}

20

•Can never remove
more tokens than
exist

•Op order ⇒ removed
tokens have been
previously added

add(a)

add(a)

rmv (a){}
{aα} {aα}

{}

{aβ}
M

{aα}

M

{aα}
M

{aβ}
M

{aβ, aα}

{aβ} {aβ, aα} {aβ, aα}
{}

s3

s1

s2

s
S S

S

{aβ}

Strong Eventual Consisency

OR-Set

Set: solves Dynamo Shopping Cart anomaly
Optimisations:

• No tombstones
• Operation-based approach
• Snapshots
• Sharded

21

Strong Eventual Consisency

OR-Set + Snapshot

Read consistent snapshot
• Despite concurrent, incremental updates

Unique token = time (vector clock)
• α = Lamport (process i, counter t)
• UIDs identify snapshot version
• Snapshot: vector clock value
• Retain tombstones until not needed

lookup(e, t) = ∃ (e, i, t')∈A : t'>t ∧ ∄ (e, i, t')∈R: t'>t

22

Strong Eventual Consisency

OR-Set + Snapshot (2)

• Payload:	
vector clock Vi
	
 set Ai = { (e, j, t), … }
	
 set Ri = { (e, j, c, j', t'), … }
• add(e): Vi[i]++; Ai ≔ Ai ∪ { (e, i, Vi[i]) }

• remove(e): Vi[i]++; Ri ≔ Ri ∪ { (e, j, t, i, Vi[i]) }

• merge(V,A,R):
∀j, Vi[j] ≔ max(Vi[j],V[j]); Ai ≔ Ai ∪ A; Ri ≔ Ri ∪ R

• lookup(e,V):	
(e,j,c) ∈ Ai ∧ (e,j,c,–,–) ∉ Ri ∧ V[j]≥c
	
 ∨ (e,j,c,j',c') ∈ Ri ∧ V[j]≥c ∧ V[j']<c

23

•Ai = added elements + unique
timestamp

•Ri = tombstones + timestamp

•lookup w.r.t. a snapshot vector V
•e in set if added, and not removed, and
within snapshot

•or if added before snapshot and removed
after snapshot

Strong Eventual Consisency

Graph design alternatives

Graph = (V, E) where E ⊆ V × V

Sequential specification:
• {v,v' ∈ V} addEdge(v,v') {…}
• {∄(v,v') ∈ E} removeVertex(v) {…}

Concurrent: removeVertex(v') || addEdge(v,v')
• linearisable?
• last writer wins?
• addEdge wins?
• removeVertex wins?
• etc.

24

•for our Web Search Engine
application, removeVertex
wins

•Do not check precondition at
add/remove

Strong Eventual Consisency

Directed Graph

Payload = OR-Set V, OR-Set E
Updates add/remove to V, E
• addVertex(v), removeVertex(v)
• addEdge(v,v'), removeEdge(v,v')

Do not enforce invariant a priori
• lookupEdge(v,v') = (v,v') ∈ E

∧ v ∈ V ∧ v' ∈ V
removeVertex(v') || addEdge(v,v')
• removeVertex wins
	

25

Strong Eventual Consisency

Graph + shards + snapshots

Snapshot
• see OR-Set

Sharding
• See OR-Set
• Do not enforce invariant a priori
	
lookupEdge(v,v') = (v,v') ∈ E
	
 ∧ v ∈ V ∧ v' ∈ V

26

Strong Eventual Consisency

CRDT + dataflow

Incremental, asynchronous processing
• Replicate, shard CRDTs near the edge
• Propagate updates ≈ dataflow
• Throttle according to QoS metrics

(freshness, availability, cost, etc.)
Scale: sharded
Synchronous processing: snapshot, at centre

27

Web
site 1

Web
site 2

Web
site 3

Whitelist

crawl

Content
DB

extract
links

extract
words

Graph

Words

spam
detector

Map URL to
last 2 versions

Map word to
Set of URLs

Graph

Set

Strong Eventual Consisency

Thought experiment (2)

28

Index

•content DB, index:
decentralised,
replicated, close to the
network edge

Index

Index

Index

Index

Index

Index

Index

Index

Index

Index
Index

Index

Index
Index

Index

Index

Index

Index

crawl,
extract

Links

Words

Links

Words

rank

Indexindexer

ranking

crawl,
extract

Links

Words

Index

Index

Index

Index

crawl,
extract

Links

Words

crawl,
extract

Links

Words

Strong Eventual Consisency

Contributions

Strong Eventual Consistency (SEC)
• A solution to the CAP problem
• Formal definitions
• Two sufficient conditions
• Strong equivalence between the two
• SEC shown incomparable to sequential

consistency
CRDTs

• integer vectors, counters
• sets
• graphs

29

Strong Eventual Consisency 30

