Just-Right Consistency

As available as possible
AS consistent as necessary
Correct by design

Marc Shapiro, Sorbonne-Université—LIP6 & Inria
Annette Bieniusa, U. Kaiserslautern
Nuno Preguica, u. Nova Lisboa
Christopher Meiklejohn, u. catholique de Louvain
Valter Balegas, u. Nova Lisboa

"\ SORBONNE P

b UNIVERSITE
CREATEURS DE FUTURS

Strong Consistency

4+
o? Azure Cosmos DB %
°

Google Spanner

informatics g”mathematics

Z2LER——

Synchronous updates

Consistent under Partition; ~ APplication is correct
not Available Slow, expensive

Geo-distributed DB

Fault tolerance
Fast reads
Replicate updates
CAP.CPNAP=9g

Eventual Consistency

cassandra

Asynchronous updates Faster, less expensive

Available under Partition; Concurrency anomalies
but not Consistent

FMK Feelles Medicinkort

process (...)

Patient Byrum
Bob pharma

3

Causatin: 2bexes — 1

Dr Alice

Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Availability + invariants?

don't

over-deliver}

process (...)

Causatin: 2bexes — 1
Transactol: 1 box

Dr Alice
Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

~Some invariants

don't
over-deliver

“process (...)

Consistency: one size does not fit all

Correct: maintain invariants

¢ But often unknown!

Methodology:

* Preserve sequential patterns

* Synchronise only when strictly
necessary for application

Dr Alice

Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Causatin: 2bexes — 1
Transactol: 1 box

best possible
availability and
performance

CRDTs Pattern 1: relative order

add-med(1)
cnt+=1
= Pat|ent Byrum
cnt=0 O.><.cnt +=2 cnt=3 Bob pharma
cnt=0 °
add-med(2) cnt+=1 ¢cnt=3
ent +=2 Dr Alice

Better than EC
CP is overkill!

Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Concurrent, asynchronous updates
e Standard register model: assignments = CP
* AP = concurrent updates + merge

CRDT: register, counter, set, map, sequence
e Plug-in replacement for sequential type

Rx.Patient: write_once_reg. Rx.Meds: set CP is overkill

EC does not maintain!

Causal consistency Pattern 2: joint update

Patlent Byrum
Bob pharma

joint pdat

FS(Dr Alice

Aalborg Hospital
Patient: Mr Bob

1 RHS!

Q\\

create-p before add-med
* “Bob points to Rx = Rx valid”

()

* General case: LHS = RHS 0 >1 o 5
« pattern: RHS!: LHS! - armacy: Byrum
Deliver in the right order: Causal T EC does not maintain!

Consistency
AP-compatible

CP is overkilll

All-or-nothing

create-p updates doctor, patient &
pharmacy record

Transmit joint updates together
+ Read from same snapshot
AP-compatible

CAP-sensitive invariants

pp(..., 1)
cnt>1
2 cnt—=1 1
cnt=0 O cnt=0
cnt>0 o cnt>=0

cnt —=

process-p (..., nb) {
if cnt>nb /] precondition at source

cnt—=nb /[at every replica
Y/ ent=0

vvvvvvvvvvvvv

8
EC does not maintain!
CP is overkill!
pre- ™\ process (...)
condition

> Aalborg Hospital
Patient: Mr Bob

> Pharmacy: Byrum

>

y|Causatin: 2bexes — 1

Pattern 3: precondition

Patient Byrum
Bob pharma

FS(Dr Alice

Transactol: 1 box

Stable precondition

cnt>1

cnt>0 O L]
2 ><:

cnt>0
add-med (..., 3)
cnt += 3

Precondition stable w.r.t. concurrent add-med

Concurrency OK

CAP-sensitive invariants

pp(..., 1)
cnt > 1
2 ent—=1 1
cnt>0 O cnt>0
cnt>0 o cnt=0

process-p (..., nb) {
if cnt>nb /[precondition at source

cnt—=nb /[at every replica
}/ ent>0

summary:
Just-Right Consistency

Tailor consistency to application invariants
e (possibly unknown)

Baseline: Correct app, 1-copy, one op. at a time
Three patterns:
* Ordered updates = Causal Consistency, AP
« Joint updates = All-or-nothing, AP

e CAP-sensitive: precondition
» Stable = concurrent OK. AP.
» Otherwise, concurrency control. CP

Not stable precondition

cnt > 1
2 cnt—=2 1
cnt>0 O) cnd¥ 0
cnt>=0 o cni 0
pp(.-., 2)
cnt>1

Static
Analysis

Precondition not stable w.r.t. concurrent process-p

e [orbid concurrency
e Or, give up on invariant

CRDT data model
» Register, counter, set, map, sequence
* Extends sequential semantics

Transactional Causal Consistency (TCC)
» Strongest AP model

* Supports Joint Updates, Relative Order
CISE static analysis tools

Open source, well engineered

LIGHTKONE

Lightweight computation for networks at the edge

Creative Commons
ttribution-ShareAlike 4.0

Intl. License

You are free to:
. Share — copy and redistribute the material in any medium or
format

. Adapt — remix, transform, and build upon the material
for any purpose, even commercially, under the following terms:

@ Attribution — You must give appropriate credit, provide a link to
the license, and indicate if changes were made. You may do so
in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

@ ShareAlike — If you remix, transform, or build upon the material,
you must distribute your contributions under the same license as
the original

