Just-Right Consistency

As available as possible
AS consistent as necessary
Correct by design
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Synchronous updates

Consistent under Partition; ~ APplication is correct
not Available Slow, expensive

Geo-distributed DB
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Fault tolerance
Fast reads
Replicate updates
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Eventual Consistency

cassandra

Asynchronous updates Faster, less expensive

Available under Partition;  Concurrency anomalies
but not Consistent
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Availability + invariants?
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~Some invariants
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Consistency: one size does not fit all

Correct: maintain invariants

¢ But often unknown!

Methodology:

* Preserve sequential patterns

* Synchronise only when strictly
necessary for application

Dr Alice

Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Causatin: 2bexes — 1
Transactol: 1 box

best possible
availability and
performance




CRDTs Pattern 1: relative order

add-med(1)
cnt+=1
= Pat|ent Byrum
cnt=0 O.><.cnt +=2 cnt=3 Bob pharma
cnt=0 °
add-med(2) cnt+=1 ¢cnt=3
ent +=2 Dr Alice

Better than EC
CP is overkill!

Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Concurrent, asynchronous updates
e Standard register model: assignments = CP
* AP = concurrent updates + merge

CRDT: register, counter, set, map, sequence
e Plug-in replacement for sequential type

Rx.Patient: write_once_reg. Rx.Meds: set CP is overkill

EC does not maintain!

Causal consistency Pattern 2: joint update

Patlent Byrum
Bob pharma

joint pdat

FS( Dr Alice

Aalborg Hospital
Patient: Mr Bob

1 RHS!
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create-p before add-med
* “Bob points to Rx = Rx valid”
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* General case: LHS = RHS 0 >1 o 5
« pattern: RHS!: LHS! - armacy: Byrum
Deliver in the right order: Causal T EC does not maintain!

Consistency
AP-compatible

CP is overkilll




All-or-nothing

create-p updates doctor, patient &
pharmacy record

Transmit joint updates together
+ Read from same snapshot
AP-compatible

CAP-sensitive invariants
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process-p (..., nb) {
if cnt>nb /] precondition at source

cnt—=nb /[ at every replica
Y/ ent=0
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EC does not maintain!
CP is overkill!
pre- ™\ process (...)
condition

> Aalborg Hospital
Patient: Mr Bob
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y|Causatin: 2bexes — 1

Pattern 3: precondition

Patient Byrum
Bob pharma

FS( Dr Alice

Transactol: 1 box

Stable precondition

cnt>1

cnt>0 O L ]
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cnt>0
add-med (..., 3)
cnt += 3

Precondition stable w.r.t. concurrent add-med

Concurrency OK



CAP-sensitive invariants

pp(..., 1)
cnt > 1
2 ent—=1 1
cnt>0 O cnt>0
cnt>0 o cnt=0

process-p (..., nb) {
if cnt>nb /[ precondition at source

cnt—=nb /[ at every replica
}/ ent>0

summary:
Just-Right Consistency

Tailor consistency to application invariants
e (possibly unknown)

Baseline: Correct app, 1-copy, one op. at a time
Three patterns:
* Ordered updates = Causal Consistency, AP
« Joint updates = All-or-nothing, AP

e CAP-sensitive: precondition
» Stable = concurrent OK. AP.
» Otherwise, concurrency control. CP

Not stable precondition

cnt > 1
2 cnt—=2 1
cnt>0 O ) cnd¥ 0
cnt>=0 o cni 0
pp(.-., 2)
cnt>1

Static
Analysis

Precondition not stable w.r.t. concurrent process-p

e [orbid concurrency
e Or, give up on invariant

CRDT data model
» Register, counter, set, map, sequence
* Extends sequential semantics

Transactional Causal Consistency (TCC)
» Strongest AP model

* Supports Joint Updates, Relative Order
CISE static analysis tools

Open source, well engineered

LIGHTKONE

Lightweight computation for networks at the edge




Creative Commons
ttribution-ShareAlike 4.0

Intl. License

You are free to:
. Share — copy and redistribute the material in any medium or
format

. Adapt — remix, transform, and build upon the material
for any purpose, even commercially, under the following terms:
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