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POSIX File Systems vs. Distribution

POSIX:
® Assumes operations occur in a total order
® Requires a synchronous, strong consistency model
® Synchronisation is costly and not available under partition
® |n practice, concurrency conflicts are rare
Distribution:

® No synchronisation: processes an update locally, propagates
effects to other replicas later.

® \Neakens consistency and causes conflicts
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File System Replication
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Conflict Example= removing a directory
while adding a file into the directory
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Safety Tree Invariant

» Convergent: do replicas that delivered the same

updates have the same state!? * Has a fixed root node
* |s the invariant preserved? * Root is an ancestor of every node in the tree
Sequential: single operation in isolation maintains (reachability)

the invariant * Every node, which has a name has exactly one parent,

Concurrent execution maintains the invariant except the root

* No cycle in the directory structure
* Unique names within a directory
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Example= sequential move operation Example= do not move directory
fails under self

Cis NOT ancestor of A

: ~(Cl*A
mvDir(C,A) mvDir(C,A) (cA)
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C 1*A :Cis reachable from A
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Example= concurrent moves fails
LB\is NOT ancestor of A
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B 1*A :Ais reachable from B
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Example= concurrent moves fails
LB\ils NOT ancestor of A
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Example= concurrent moves fails
LB\is NOT ancestor of A
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Concurrency Control

Tokens=~ concurrency control abstractions
Tokens = {T, ...}

Conflict relation X C Tokens X Tokens

Example - mutual exclusion tokens:
Tokens = {T}; TX T

An operation’s generator may acquire a set of tokens

Operations associated with conflicting tokens cannot
be concurrent
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Example= moving a directory while Example= moving a directory while
updating its content is safe updating its content is ok
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Example= moving a directory while , L
updating its content is ok When is Synchronization Necessary?

® CAP theorem: Either (Strong) Consistency or
Availability, not both, when Partitions occur

® This is a design trade-off

Safety = convergent + invariants
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Model

recondition
client Uval Safety S
l‘ A
Sely PRE Uef
- ) ->
origin replica ry 7]
\\‘ Ueﬁ'
other replica T2 \ )
Ue
other replica I3 ) ff

Generator (@origin) reads state from one copy and
maps operation u to:

Return value: uya € State — Value

Effects: uerf € State — (State — State)
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A Mostly-Available, Convergent and
Correct File System Design

* Allows common file system operations can run without
synchronization except for moves

* Maintains the tree invariant

* Guarantees convergence using replicated data types
[Shapiro* 201 1]
* Name conflicts:
* Merge directories
* Rename files
» Update/Remove conflicts: add-wins directory
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Model
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Deliver(@all replicas): causally dependent messages
delivered in order
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Add-wins directory= removing a directory
while adding a file into the directory
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CISE Analysis: Proves Application is Correct

* Rely-Guarantee reasoning for a causally-consistent system with
only polynomial complexity
* Consists of three analysis rules:
Effector Safety:

Every effect in isolation execution maintains the invariant | (sequential

safety)
Commutativity:
Concurrent operations commute (convergence)

Stability:
Preconditions are stable under concurrency (concurrent safety)

If satisfied: the invariant | is guaranteed in every possible execution

[Gotsman et al. POPL 2016 ’Cause I'm Strong Enough: Reasoning about

Consistency Choices in Distributed Systems]
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Stability Rule:

precondition is stable under concurrent effect

|. Effector Safety: uef preserves | when executed
in any state satisfying upre

precondition of u holds
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Effector Safety:
Example= move requires precondition

mvdir(C,A)
Iy UPRE
N_——O0
invariant invariant
* do not move directory under self
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Stability Rule:
precondition is stable under concurrent effect

|. Effector Safety: ues preserves | when executed
in any state satisfying upre

precondition of u holds

I m ueff
0) 0y
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Stability Rule:
precondition is stable under concurrent effect

|. Effector Safety: uef preserves | when executed
in any state satisfying upre

2. Precondition Stability: upre will hold when uef is

applled at any replica /’F’R

ry

Ueﬁ'

Veff
Ve@ Is it preserved

@ after executing v?
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Necessary and Sufficient Concurrency
Controls for Move

mvDir(A,B)
r1 ,\/\A.

)
r;

* Add tokens, avoid mvDir || mvDir
* A mutually exclusive token for each
directory d € Dir: (T X Ty
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Stability Rule:
precondition is stable under concurrent effect

|. Effector Safety: uef preserves | when executed
in any state satisfying upre

2. Precondition Stability: upre will hold when uef is

applled at any replica /IFRE\

Veff

ve@
UPRE
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Example: avoid conflicting moves

{Te, Tw}
mvDir(B )/\

[ roe | ?T(A) E Tw) {Tw, Ta)}
T T
© e mvDir(AB) X
A\
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Verification Results Conclusion

: * A rigorous approach for modeling file system
Applications #Tokens #Im:;rlan Anomaly Average 8 PP 8 Y

Time(ms) behavior for both centralized/synchronous and

replicated asynchronous semantics
Sequential

NO 278

« Common operations except move to run without
concurrency controls

safet
Concurrent 4

violation 1297

Fully-Asynchronous duplication 2350 * A hierarchical least-common ancestor concurrency

control mechanism is necessary and sufficient for

Mostly-Asynchronous NO 1570 move operations
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Future Work

* Translate the move concurrency controls into an
efficient implementation

* Integrate hard links, devices, and mounts into model

Backup Slides
* Reason about the file system behavior in the

presence of failures
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Removing Token Over Source Removing Token Over Source

Directory Directory
{Te. Tiop {Te. Tion
mvDir(A,B) mvDir(A,B)
o= - O ®
{-BF') (AF
mvDir(A,
rz Iz é/\
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Removing Token Over Source Removing Token Over Destination
Directory Directory
{Te. Tiop {Tw. T
mvDir(A,B) mvDir(A,B)
O -

r;
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Removing Token Over Destination

Directory
{Tw. T
mvDir(A,B)
I"1 (‘\ :.
{TeTw}
mvDir(B,H
. d /\.
=
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Removing Token Over Ancestors
up to LCA
{T(A{, T(e)
mvDir(A,B)
rq ;'
Iz
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Removing Token Over Destination
Directory

{Tw. Tcp

mvDir(A,B)

up to LCA

{Tw. Ty

mvDir(A,B)

{ToTm}

mvDir( C;—Q /\‘
Nt

rp —_—

Mahsa Najafzadeh ﬂ 40



Removing Token Over Ancestors
[rot ]
up to LCA

{Tw, ey
mvDir(A,B)

{ToTr}

mvDir(C,H I [ 5 ]
r ( d/-\‘ - .

Qt
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Intuition For Move Tokens
consider the left side of the loop
ElC....54A . niE

mvDir(A,B)
I &
\J/ 3 4
rz
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Intuition For Move Tokens

Assume that these tokens are not
sufficient and we have loop over a
node, called E, due to concurrent
move operations:

El....sdA E
n
mvDir(A,B)
rq N\
O ——
Iz
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Intuition For Move Tokens
EIC....s 0 A 4.E

The left side implies that one of B’s ancestors, called C,
concurrently moves to E

mvDir(C,E):

Precondition: Directory E is not a descendent of C

mvDir(A,B)
rq O/_\_ -

mvDir(C,E)
Mahsa Nath . 44




ElC....slA . niE

Now, consider the right side of loop

The right side implies that E concurrently moves to
one of A’s descendants, called H

mvDir(E,H)

Tokens %\(gir?xﬁzcory H up to LCA(H,E)

valr CE
ry (/w)/\.
r, mvDir(E, H) f\/\
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I) LCA(H,E) is located between A and LCA(A,B)

in this case moving E to H requires token over A
that conflicts with tokens for moving A to B
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Intuition For Move Tokens

where is LCA(H,E)?

mvDir(A,B)
r O -
mvDir(C,E)
r
2 Mahsa Najadeéh . 46

LCA(H,E)

2) LCA(H,E) is located under A:

E is concurrently moved under A which is not
possible because this move operation needs to
acquire tokens conflicting with mvDir(A,B)
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Exploiting More Parallelism

4] |
mvDir(A,B)
ri ,\/\A
O ®

r;

* Concurrent moves to the same destination directory
 Conflicting tokens for each directory A € Dir:

source token Ty and destination token Ty

(Tsa) X Tam))
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