Co-design and Verification of
an Available File System

Mahsa Najafzadeh, Marc Shapiro, and Patrick Eugster

v d

PURDUE lrezia—

U N I V E R S I T Y INVENTEURS DU MONDE NUMERIQUE

POSIX File Systems vs. Distribution

POSIX:
® Assumes operations occur in a total order
® Requires a synchronous, strong consistency model
® Synchronisation is costly and not available under partition
® |n practice, concurrency conflicts are rare
Distribution:

® No synchronisation: processes an update locally, propagates
effects to other replicas later.

® \Neakens consistency and causes conflicts

Mahsa Najafzadeh 3

File System Replication

> =
A Pictures j—— Pictures

Tool Tool

™~

—Low latency Tool
—High availability
—Fault tolerance

Pictures

Mahsa Najafzadeh 2

Conflict Example= removing a directory
while adding a file into the directory

'-------

.

-----“

.---'

A E R R R R

Tools

4

Safety Tree Invariant

» Convergent: do replicas that delivered the same

updates have the same state!? * Has a fixed root node
* |s the invariant preserved? * Root is an ancestor of every node in the tree
Sequential: single operation in isolation maintains (reachability)

the invariant * Every node, which has a name has exactly one parent,

Concurrent execution maintains the invariant except the root

* No cycle in the directory structure
* Unique names within a directory

Mahsa Najafzadeh Mahsa Najafzadeh
Example= sequential move operation Example= do not move directory
fails under self

Cis NOT ancestor of A

: ~(Cl*A
mvDir(C,A) mvDir(C,A) (cA)
S l |
g) [¢ | g} UPRE x

N
C 1*A :Cis reachable from A

Mahsa Najafzadeh 7 Mahsa Najafzadeh

Example= concurrent moves fails
LB\is NOT ancestor of A

V4
mvDirpre: = (B L*A) | mVDir(BA
| | A~ UPRE .
I
o | \J/
[5 |
r2

B 1*A :Ais reachable from B

Mahsa Najafzadeh

Example= concurrent moves fails
LB\ils NOT ancestor of A

mvDirpre: 1 (B 1*A) mvDir(B,A

<
)
=
m

rq
[oot |
[5 |
r; &) .

Mahsa Najafzadeh

Example= concurrent moves fails
LB\is NOT ancestor of A

VA
mvDirpre: = (B 1*A) | mVDir(BA
| | ~\ UPRE

O
"N
[B |

S, @

B 1*A :Ais reachable from B

r;

Mahsa Najafzadeh

Concurrency Control

Tokens=~ concurrency control abstractions
Tokens = {T, ...}

Conflict relation X C Tokens X Tokens

Example - mutual exclusion tokens:
Tokens = {T}; TX T

An operation’s generator may acquire a set of tokens

Operations associated with conflicting tokens cannot
be concurrent

Mahsa Najafzadeh

Example= moving a directory while Example= moving a directory while
updating its content is safe updating its content is ok

Mahsa Najafzadeh 13 14

Example= moving a directory while , L
updating its content is ok When is Synchronization Necessary?

® CAP theorem: Either (Strong) Consistency or
Availability, not both, when Partitions occur

® This is a design trade-off

Safety = convergent + invariants

Mahsa Najafzadeh 16

Model

recondition
client Uval Safety S
l‘ A
Sely PRE Uef
-) ->
origin replica ry 7]
\\‘ Ueﬁ'
other replica T2 \)
Ue
other replica I3) ff

Generator (@origin) reads state from one copy and
maps operation u to:

Return value: uya € State — Value

Effects: uerf € State — (State — State)

Mahsa Najafzadeh

A Mostly-Available, Convergent and
Correct File System Design

* Allows common file system operations can run without
synchronization except for moves

* Maintains the tree invariant

* Guarantees convergence using replicated data types
[Shapiro* 201 1]
* Name conflicts:
* Merge directories
* Rename files
» Update/Remove conflicts: add-wins directory

Mahsa Najafzadeh 19

Model

recondition
client Uyal s

l‘ A Ll

Sely PRE Ueff

- . ->
origin replica ry 0
\\‘ u eff Veff
other replica T2 \ (] o—
Ue Ve
other replica I3 ° o .—»ff
14

Deliver(@all replicas): causally dependent messages
delivered in order

Mahsa Najafzadeh

Add-wins directory= removing a directory
while adding a file into the directory

'-------

.

-----“

.---'

A E R R R R

Tools

20

CISE Analysis: Proves Application is Correct

* Rely-Guarantee reasoning for a causally-consistent system with
only polynomial complexity
* Consists of three analysis rules:
Effector Safety:

Every effect in isolation execution maintains the invariant | (sequential

safety)
Commutativity:
Concurrent operations commute (convergence)

Stability:
Preconditions are stable under concurrency (concurrent safety)

If satisfied: the invariant | is guaranteed in every possible execution

[Gotsman et al. POPL 2016 ’Cause I'm Strong Enough: Reasoning about

Consistency Choices in Distributed Systems]
Mahsa Najafzadeh

Stability Rule:

precondition is stable under concurrent effect

|. Effector Safety: uef preserves | when executed
in any state satisfying upre

precondition of u holds

UPRE Ueff

o~

Q
5

Mahsa Najafzadeh

23

Effector Safety:
Example= move requires precondition

mvdir(C,A)
Iy UPRE
N_——O0
invariant invariant
* do not move directory under self
Mahsa Najafzadeh 2o

Stability Rule:
precondition is stable under concurrent effect

|. Effector Safety: ues preserves | when executed
in any state satisfying upre

precondition of u holds

I m ueff
0) 0y
-

Mahsa Najafzadeh o4

Stability Rule:
precondition is stable under concurrent effect

|. Effector Safety: uef preserves | when executed
in any state satisfying upre

2. Precondition Stability: upre will hold when uef is

applled at any replica /’F’R

ry

Ueﬁ'

Veff
Ve@ Is it preserved

@ after executing v?

Mahsa Najafzade

I‘z

Necessary and Sufficient Concurrency
Controls for Move

mvDir(A,B)
r1 ,\/\A.

)
r;

* Add tokens, avoid mvDir || mvDir
* A mutually exclusive token for each
directory d € Dir: (T X Ty

Mahsa Najafzadeh

Stability Rule:
precondition is stable under concurrent effect

|. Effector Safety: uef preserves | when executed
in any state satisfying upre

2. Precondition Stability: upre will hold when uef is

applled at any replica /IFRE\

Veff

ve@
UPRE

Mahsa Najafzadeh

Ueﬁ'

Example: avoid conflicting moves

{Te, Tw}
mvDir(B)/\

[roe | ?T(A) E Tw) {Tw, Ta)}
T T
© e mvDir(AB) X
A\

Mahsa Najafzadeh

Verification Results Conclusion

: * A rigorous approach for modeling file system
Applications #Tokens #Im:;rlan Anomaly Average 8 PP 8 Y

Time(ms) behavior for both centralized/synchronous and

replicated asynchronous semantics
Sequential

NO 278

« Common operations except move to run without
concurrency controls

safet
Concurrent 4

violation 1297

Fully-Asynchronous duplication 2350 * A hierarchical least-common ancestor concurrency

control mechanism is necessary and sufficient for

Mostly-Asynchronous NO 1570 move operations

Mahsa Najafzadeh Mahsa Najafzadeh

Future Work

* Translate the move concurrency controls into an
efficient implementation

* Integrate hard links, devices, and mounts into model

Backup Slides
* Reason about the file system behavior in the

presence of failures

Mahsa Najafzadeh Q/‘ \

Removing Token Over Source Removing Token Over Source

Directory Directory
{Te. Tiop {Te. Tion
mvDir(A,B) mvDir(A,B)
o= - O ®
{-BF') (AF
mvDir(A,
rz Iz é/\
22/04/16 Mahsa Najafzadeh 33 Mahsa Najafzadeh 34
Removing Token Over Source Removing Token Over Destination
Directory Directory
{Te. Tiop {Tw. T
mvDir(A,B) mvDir(A,B)
O -

r;

Mahsa Najafzadeh 35 Mahsa Najafzadeh 36

Removing Token Over Destination

Directory
{Tw. T
mvDir(A,B)
I"1 (‘\ :.
{TeTw}
mvDir(B,H
. d /\.
=
Mahsa Najafzadeh 37
Removing Token Over Ancestors
up to LCA
{T(A{, T(e)
mvDir(A,B)
rq ;'
Iz

Mahsa Najafzadeh 39

Removing Token Over Destination
Directory

{Tw. Tcp

mvDir(A,B)

up to LCA

{Tw. Ty

mvDir(A,B)

{ToTm}

mvDir(C;—Q /\‘
Nt

rp —_—

Mahsa Najafzadeh ﬂ 40

Removing Token Over Ancestors
[rot]
up to LCA

{Tw, ey
mvDir(A,B)

{ToTr}

mvDir(C,H I [5]
r (d/-\‘ - .

Qt

Mahsa Najafzadeh | B | 41

Intuition For Move Tokens
consider the left side of the loop
ElC....54A . niE

mvDir(A,B)
I &
\J/ 3 4
rz
Mahsa Najafzadeh 43

Intuition For Move Tokens

Assume that these tokens are not
sufficient and we have loop over a
node, called E, due to concurrent
move operations:

El....sdA E
n
mvDir(A,B)
rq N\
O ——
Iz
Mahsa Najafzadeh 42

Intuition For Move Tokens
EIC....s 0 A 4.E

The left side implies that one of B’s ancestors, called C,
concurrently moves to E

mvDir(C,E):

Precondition: Directory E is not a descendent of C

mvDir(A,B)
rq O/__ -

mvDir(C,E)
Mahsa Nath . 44

ElC....slA . niE

Now, consider the right side of loop

The right side implies that E concurrently moves to
one of A’s descendants, called H

mvDir(E,H)

Tokens %\(gir?xﬁzcory H up to LCA(H,E)

valr CE
ry (/w)/\.
r, mvDir(E, H) f\/\

Mahsa Najafzadeh 45

I) LCA(H,E) is located between A and LCA(A,B)

in this case moving E to H requires token over A
that conflicts with tokens for moving A to B

Mahsa Najafzadeh 47

Intuition For Move Tokens

where is LCA(H,E)?

mvDir(A,B)
r O -
mvDir(C,E)
r
2 Mahsa Najadeéh . 46

LCA(H,E)

2) LCA(H,E) is located under A:

E is concurrently moved under A which is not
possible because this move operation needs to
acquire tokens conflicting with mvDir(A,B)

Mahsa Najafzadeh 48

Exploiting More Parallelism

4] |
mvDir(A,B)
ri ,\/\A
O ®

r;

* Concurrent moves to the same destination directory
 Conflicting tokens for each directory A € Dir:

source token Ty and destination token Ty

(Tsa) X Tam))

Mahsa Najafzadeh

