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Challenge: Database Access for Client-side Apps Challenge: Database Access for Client-side Apps
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Limited boundaries of server-side database guarantees Limited boundaries of server-side database guarantees

= ad-hoc on the client-side
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Challenge: Database Access for Client-side Apps

Extended boundaries with SwiftCloud
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Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

bob_posts.add(“don’t think of visiting Vancouver...”)

client order
bob_posts.add(“... just do it! YOLO”)

i+l
;replies.add("AIice: totally ©”) &
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Challenge: Database Access for Client-side Apps

Extended boundaries with SwiftCloud

* Consistent, available and convergent data access
* Scalability with #objects and #clients

* Fault-tolerance
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Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

&‘replies.add("Alice: totally ©”)
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Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

8 bob_posts.add(“don’t think of visiting Vancouver...”)

client order
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Convergent Causal Consistency: No Lost Updates
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Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

& bob_posts.add(“don’t think of visiting Vancouver...”)

client order

Causal consistency: reads from causally-closed snapshot
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Convergent Causal Consistency: No Lost Updates

replies.  ( “Eve: Bob V"‘&

High-level convergent objects!RP™] resolve concurrency
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Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]
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Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

ODjA
objB
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Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

current state

ODJA

objB objB.op|
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Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]
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Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]
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Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

102 Inherent trade-offs in the general case:
scalability vs. availability vs. fault-tolerance
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Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

dependencies
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Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v' Assign small metadata
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Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v Assign small metadata
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Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v Assign small metadata

Client reads: cached fragment of cloud version U own
log v
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Potential of Cloud-backed Client Replicas Potential of Cloud-backed Client Replicas
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Response time of operation [ms] Response time of operation [ms]
Objects in the cache = immediate, consistent response
Setup: DCs in 3 AWS EC2 regions, YCSB workload, cache=256 objects Setup: DCs in 3 AWS EC2 regions, YCSB workload, cache=256 objects
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Challenge for the Cloud Approach: Safe DC Failover Challenge for the Cloud Approach: Safe DC Failover
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Challenge for the Cloud Approach: Safe DC Failover

operations with
risky dependencies
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Supporting Failover by Conservative Reads

Foreign updates: read version replicated in K> 1 DCs
Own writes: read from the log, recover to a new DC
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Challenge for the Cloud Approach: Safe DC Failover

operations with
risky dependencies
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risky read
new DC in incompatible state
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Supporting Failover by Conservative Reads

conservative read ﬂmw/

Foreign updates: read version replicated in K> 1 DCs
Own writes: read from the log, recover to a new DC
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Supporting Failover by Conservative Reads

new DC in compatible state

Foreign updates: read version replicated in K> 1 DCs
Own writes: read from the log, recover to a new DC
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Experiment: Injection of Short DC Disconnection
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Experiment: Injection of Short DC Disconnection

response time [ms]
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Experiment: Injection of Short DC Disconnection

response time [ms]
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Experiment: Injection of Short DC Disconnection Challenge for the Cloud Approach: Protocol Retries

— — | |
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time [s]
I time
Trade-off controlled by K: staleness vs. availability \ \ /
* Staleness negligible in most K=2 setups, < 1% reads
* In cherry-picked unfavorable setup, 1.0-2.5% reads
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Challenge for the Cloud Approach: Protocol Retries Challenge for the Cloud Approach: Protocol Retries
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Challenge for the Cloud Approach: Protocol Retries

— 1l [
x=0 [ %l x=0 MM x=0

-------
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Safe Retries with Decoupled Metadata

| safe: < 1 delivery

N

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary
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Challenge for the Cloud Approach: Protocol Retries

— Il I
x=0 wf x=0 M x=0

-------

| duplicate delivery!
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Safe Retries with Decoupled Metadata
e Il Pl
x=0 #ff xo M x<0
‘(:::::::::::::: ----- I ----- R H safe: <1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary
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Safe Retries with Decoupled Metadata

| |
x=0 i %l x=0 Mﬂm x=0

Solution: client-assigned timestamps for safety

+ 1..N DC timestamps for efficient summary

safe: < 1 delivery

Extension: log pruning independent of client availability
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Summary

SwiftCloud provides client-side apps:

44

* Consistent, available and convergent object database

* Scalability: full replicas at DC back partial at client

= small causality metadata (< 15B/update)

* Fast failover thanks to conservative reads (< 1% stale)

* Safe retry of interrupted transfer and safe log pruning

thanks to decoupled metadata

Research prototype at github.com/SyncFree/SwiftCloud
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metadata / update [B]

Experiment: Size of Metadata on Client-DC Link

500 1500 2500
# client replicas

Setup: 3DCs, YCSB B uniform workload
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SwiftCloud compared to “Lazy Replication”

* Assume client-side application logic

* Describe causal consistency support

* Support communication with multiple servers
* Use decoupled metadata

DB = RDT objects + global * Monolithic DB
transactions

Supports partial client
replicas => fast reads and
read-your-writes
K-stability-driven trade-off
GC independent of clients

Stability discussion
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No client-side replicas

Client-assigned vectors!PRACTI, NSDI'06].

1K be { unbounded overhead
e
100+ Pax.‘t data
SwiftCloud’s decoupled metadata:
10 F—t+——} i const size
14 T T
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Physical-clock-driven GC
* More consistency choices
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Challenge for the Cloud Approach: Protocol Retries

duplicate delivery!
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Safe Retries with Decoupled Metadata

safe: < 1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary
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Safe Retries with Decoupled Metadata
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safe: < 1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary
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Safe Retries with Decoupled Metadata

safe: < 1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary
Extension: log pruning independent of client availability
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