Challenge: Database Access for Client-side Apps
Write Fast, Read in the Past:
Causal Consistency for Client-side Apps
with SwiftCloud

Presented by Marek Zawirski
Inria / UPMC-LIP6, Paris

(now at Google, Ziirich)

Marek Zawirski, Nuno Preguica, Sérgio Duarte,
Annette Bieniusa, Valter Balegas, Marc Shapiro

- o
informet) [-
&t’“w U P m C . NOVALINGS J = universimar
SCIENCE AND INFORMATICS ™ KAlSERSLAUTERN

1aA1 SORBONNE
Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 1

Challenge: Database Access for Client-side Apps Challenge: Database Access for Client-side Apps

T

)

S

Limited boundaries of server-side database guarantees Limited boundaries of server-side database guarantees

= ad-hoc on the client-side

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 2 Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 3

Challenge: Database Access for Client-side Apps

Extended boundaries with SwiftCloud

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 4

Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

bob_posts.add(“don’t think of visiting Vancouver...”)

client order
bob_posts.add(“... just do it! YOLO”)

i+l
;replies.add("AIice: totally ©”) &

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 6

Challenge: Database Access for Client-side Apps

Extended boundaries with SwiftCloud

* Consistent, available and convergent data access
* Scalability with #objects and #clients

* Fault-tolerance

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 5

Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

&‘replies.add("Alice: totally ©”)

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 7

Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

8 bob_posts.add(“don’t think of visiting Vancouver...”)

client order

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 8

Convergent Causal Consistency: No Lost Updates

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 10

Stronger than Eventual: Causal Consistency

Default on client-side: eventual consistency = anomalies

& bob_posts.add(“don’t think of visiting Vancouver...”)

client order

Causal consistency: reads from causally-closed snapshot

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 9

Convergent Causal Consistency: No Lost Updates

replies. (“Eve: Bob V"‘&

High-level convergent objects!RP™] resolve concurrency

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 11

Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 12

Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

ODjA
objB

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 14

Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

current state

ODJA

objB objB.op|

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 13

Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 15

Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 16

Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

102 Inherent trade-offs in the general case:
scalability vs. availability vs. fault-tolerance

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 18

Challenge: Causal Consistency with Partial Replicas
[PRACTI, NSDI'06]

dependencies

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud

17

Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v' Assign small metadata

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 19

Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v Assign small metadata

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 20

Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v Assign small metadata

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 22

Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v Assign small metadata

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 21

Approach: Cloud-backed Partial Replicas

Data Center full replicas:
v'Provide consistent view v Assign small metadata

Client reads: cached fragment of cloud version U own
log v

Zawirski gt a}, p¥ritegFast, Read infthe pasty €ausal Consiste! tQr Client-side Applications with BwiftClou . 23
VP B PAT I BT T T RASTEEARET W AERA vAnirawritad

Potential of Cloud-backed Client Replicas Potential of Cloud-backed Client Replicas

P) p)

$100% = $100% -

S 75% _;——/-Iocality potential S 75% .;;——rg'/-locality potential

o o : :

o Of e o O/ wad .

S 50% F E — read S S0% E i — read

. 25% = o upda’[e . 25% =+ @@ I [C upda’[e

o o = o o o = D

:I__ OO/O l l l l | :: Oo/o Flammnmng P " l l l |

S 0 50 100 150 200 250 S 0 50 100 150 200 250

Response time of operation [ms] Response time of operation [ms]
Objects in the cache = immediate, consistent response
Setup: DCs in 3 AWS EC2 regions, YCSB workload, cache=256 objects Setup: DCs in 3 AWS EC2 regions, YCSB workload, cache=256 objects

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 24 Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 25
Challenge for the Cloud Approach: Safe DC Failover Challenge for the Cloud Approach: Safe DC Failover

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 26 Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 27

Challenge for the Cloud Approach: Safe DC Failover

operations with
risky dependencies

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 28

Supporting Failover by Conservative Reads

Foreign updates: read version replicated in K> 1 DCs
Own writes: read from the log, recover to a new DC

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 30

Challenge for the Cloud Approach: Safe DC Failover

operations with
risky dependencies

S~ .
......
~
S~aL
N

~
-

risky read
new DC in incompatible state

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 29

Supporting Failover by Conservative Reads

conservative read ﬂmw/

Foreign updates: read version replicated in K> 1 DCs
Own writes: read from the log, recover to a new DC

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 31

Supporting Failover by Conservative Reads

new DC in compatible state

Foreign updates: read version replicated in K> 1 DCs
Own writes: read from the log, recover to a new DC

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 32

Experiment: Injection of Short DC Disconnection

)
E

()

S
=]

[

e mﬁtransnent DC fallure [

§ 58 fﬁ‘sfconservatlve L N A o '
Qo 0 10 20 30 40 50 60 70 80

time [s]
Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 34

Experiment: Injection of Short DC Disconnection

response time [ms]

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 33

Experiment: Injection of Short DC Disconnection

response time [ms]

remote ops: smodthfaﬂover

e o o R Ak R L

AA Ltransnent DC fallure/ = wolll [}
-fast conservatlve reads - unaffected i o .

0 10 20 30 40 50 60 70 80
time [s]

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 35

Experiment: Injection of Short DC Disconnection Challenge for the Cloud Approach: Protocol Retries

— — | |
2 0 g -~ W] -
= AW T "_Tempote ops: smodth failover '
qE) _ : : ; R : 5 x.inc() (
= (x=1) linc() 4 R
Q
e nigetmiinen wwer | transient. DC. failure / swwwmmmimmd
S 58 -fast conservative reads . unaffected .- A ip
4 0 10 20 \3 40 50 60 70 80
time [s]
I time
Trade-off controlled by K: staleness vs. availability \ \ /
* Staleness negligible in most K=2 setups, < 1% reads
* In cherry-picked unfavorable setup, 1.0-2.5% reads
Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 36 Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 37
Challenge for the Cloud Approach: Protocol Retries Challenge for the Cloud Approach: Protocol Retries

— Il NAN| — 1 Pl
x=0 * x=0 MH!.LEJ/ x=0 x=0 * x=0 “M!.L!J/ x=0

S=SRIIzIzeed b TSR s s

100 *=1 B == . S

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 38 Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 39

Challenge for the Cloud Approach: Protocol Retries

— 1l [
x=0 [%l x=0 MM x=0

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 40

Safe Retries with Decoupled Metadata

| safe: < 1 delivery

N

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 42

Challenge for the Cloud Approach: Protocol Retries

— Il I
x=0 wf x=0 M x=0

| duplicate delivery!

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 41
Safe Retries with Decoupled Metadata
e Il Pl
x=0 #ff xo M x<0
‘(:::::::::::::: ----- I ----- R H safe: <1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 43

Safe Retries with Decoupled Metadata

| |
x=0 i %l x=0 Mﬂm x=0

Solution: client-assigned timestamps for safety

+ 1..N DC timestamps for efficient summary

safe: < 1 delivery

Extension: log pruning independent of client availability

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud

Summary

SwiftCloud provides client-side apps:

44

* Consistent, available and convergent object database

* Scalability: full replicas at DC back partial at client

= small causality metadata (< 15B/update)

* Fast failover thanks to conservative reads (< 1% stale)

* Safe retry of interrupted transfer and safe log pruning

thanks to decoupled metadata

Research prototype at github.com/SyncFree/SwiftCloud

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud

46

metadata / update [B]

Experiment: Size of Metadata on Client-DC Link

500 1500 2500
client replicas

Setup: 3DCs, YCSB B uniform workload

awirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud

SwiftCloud compared to “Lazy Replication”

* Assume client-side application logic

* Describe causal consistency support

* Support communication with multiple servers
* Use decoupled metadata

DB = RDT objects + global * Monolithic DB
transactions

Supports partial client
replicas => fast reads and
read-your-writes
K-stability-driven trade-off
GC independent of clients

Stability discussion

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud

No client-side replicas

Client-assigned vectors!PRACTI, NSDI'06].

1K be { unbounded overhead
e
100+ Pax.‘t data
SwiftCloud’s decoupled metadata:
10 F—t+——} i const size
14 T T

45

Physical-clock-driven GC
* More consistency choices

47

Challenge for the Cloud Approach: Protocol Retries

duplicate delivery!

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 48

Safe Retries with Decoupled Metadata

safe: < 1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 50

Safe Retries with Decoupled Metadata

~

~.

<~
~>~

S<SA
::.ﬂ__" L
RIS 9

safe: < 1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 49

Safe Retries with Decoupled Metadata

safe: < 1 delivery

Solution: client-assigned timestamps for safety
+ 1..N DC timestamps for efficient summary
Extension: log pruning independent of client availability

Zawirski et al., Write Fast, Read in the Past: Causal Consistency for Client-side Applications with SwiftCloud 51

