Scaling State Machine Replication

Fernando Pedone
University of Lugano (USI)
Switzerland

State machine replication

e Fundamental approach to fault tolerance
+ Google Spanner
+ Apache Zookeeper
+ Windows Azure Storage
+ MySQL Group Replication

+ Galera Cluster, ...

State machine replication is intuitive & simple

® Replication transparency
+ For clients

+ For application developers

e Simple execution model

+ Replicas order all commands

+ Replicas execute commands deterministically and in the
same order

Configurable fault tolerance but bounded
performance

® Performance is bounded by what one replica can do
+ Every replica needs to execute every command

+ More replicas: same (if not worse) performance

/

Servers

>

Throughput

>

How to scale state machine replication?

Scaling performance with partitioning

¢ Partitioning (aka sharding) application state

Partition Px

>

/

Servers

Throughput

>

>

Scalable performance
(for single-partition commands)

Problem #1: How to order commands in a partitioned system?

‘ Problem #2: How to execute commands in a partitioned system?

Ordering commands in a partitioned system

® Atomic multicast

+ Commands addressed (multicast) to one or more partitions

+ Commands ordered within and across partitions

e [f S delivers C before C’, then no S’ delivers C’ before C

Scalable SMR

Atomic multicast

Multi-Paxos

Network

Partition Px

H =

&

Partition Py

H -

i N—

— |
—

—xecuting multi-partition commands

Partition X

Partition Y

Solution #1: Static partitioning of data

Solution #2: Dynamic partitioning of data

Solution 1: Static partitioning of data

® Execution model
+ Client queries location oracle to determine partitions
+ Client multicasts command to involved partitions

+ Partitions exchange and temporary store objects needed to
execute multi-partition commands

+ Commands executed by all involved partitions
® | ocation oracle

+ Simple implementation thanks to static scheme

How to execute multi-partition commands”?

Partition X

Static scheme, step-by-step

a Client .

Solution 2: Dynamic partitioning of data

e Execution model (key idea)
+ Turn every command single-partition

+ [f command involves multiple partitions, move objects to a
single partition before executing commanad

® | ocation oracle
+ Oracle implemented as a “special partition”

+ Move operations involve oracle, source and destination
partitions

11

Dynamic scheme, step-by-step

Client

move objects |
to one partition | |;

Server

Termination and load balance

® E-nsuring termination of commands
+ After retrying n times, command is multicast to all partitions
+ Executed as a multi-partition command

e Ensure load balancing among partitions

+ Target partition in multi-partition command chosen randomly

13

Oracle: high availability and performance

¢ Oracle implemented as a partition
+ For fault tolerance

¢ Clients cache oracle entries
+ For performance

+ Real oracle needed at first access and when objects change
location

4+ Client retries command if cached location is stale

14

Dynamically (re-)partitioning the state

® Decentralized strategy
+ Client chooses one partition among involved partitions
+ Each move involves oracle and concerned partitions
@ + No single entity has complete system knowledge

@ + Good performance with strong locality, but..

§° *+...slow convergence e

L\? + Poor performance with weak locality Q}

P1 P2

15

Dynamically (re-)partitioning the state

e Centralized strategy
+ Oracle builds graph of objects and relations (commands)

+ Oracle partitions O-R graph (METIS) and requests move
operations to place all objects in one partition

Lé + Near-optimum partitioning (both strong and weak locality)
LES + Fast convergence
C\E + Oracle knows location of and relations among objects

C{@ + Oracle solves a hard problem

16

Social network application (similar to Twitter)

® GetTimeline

+ Single-object command => always involves one partition
® Post

+ Multi-object command => may involve multiple partitions

+ Strong locality

e 0% edge cut, social graph can be perfectly partitioned

+ Weak locality

* 1% and 5% of edge cuts, after partitioning social graph

17

indybnouay |

Throughput

Classic SMR——

(by design)

[
©
O
7
"
O
£
0
£
O
7
®

0 N

PPPPPPPPPPPPPPPPPPPPPPPPPP

StaticC——=a

Dyn decentralized
Dyn centralized

Optimized stati

4444444444444

>>>>>>>>>>>>

Number of partitions

18

p
o O

p
o O o O
LD N & © ®
T¥Q

(sdoy) 1indybnouy |

GetTimelines only (single-partition commands)

Posts only, strong locality (0% edge cut)

)
n ©
QO O
m (/)]
QO
c e.w
o.N =
7 m.m
o5 2
ESO
© c
_ C O
>SN 5
| T OO
N R R R o
_H_m i
- O OTO o\l
(> TNNGT
ohEED
D €T
0w O©ON
| ®© CC.W 1
O %Wﬂ
>
D |
o o o (@) o
o0 ((o] <t Al

~~

sdoy) indybnouay |

Number of partitions

19

Posts only, weak locality (1% edge cut)

40

Classic SMRL—— ‘
Static =41
—~130 } ivod 7., . ..
7 | Dyp deoentaleed only optimized and
o 1 C . : :
= Optimized static centralized dynamlc
g2or /w7 -scale
(@)
S
i
R Y e N N
3
0 |
1 2 4 8

Number of partitions

20

Conclusions

e Scaling State Machine Replication

+ Possible but locality is fundamental

e OSs and DBs have known this for years
+ Replication and partitioning transparency
® [he future ahead
+ Decentralized schemes with quality of centralized schemes
+ Expand scope of applications (e.g., data structures)

+ “The inherent limits of scalable state machine replication”

21

More detalils:
http://www.inf.usi.ch/faculty/pedone/scalesmr.ntmi

THANK YOU!!!

Joint work with...
Long Hoang Le
Enrique Fynn
Eduardo Bezerra
Robbert van Renesse

