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Shared data
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Background

Distributed application = shared data

1. Large scale (cloud) = data replication =
consistency issues
» Strong : dependable, not available, inefficient.
* Available : parallel, anomalies.
* Pre-defined models

2. Complex : configuration, analysis, control,
decomposition

3. System, data access AP
Theory of replication and consistency, tools

Geo-replicated sharing
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Three dimensions
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Joint update pattern

write updates content, metadata
Transmit joint updates together o2
* write-atomic %
+ Read from common set of txns
* snapshot property
AP-compatible: All-or-Nothing (A)

Relative order pattern

1=RHS!
» “Directory references valid file”
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AP-compatible: Causal Consistency

mkdir before creat
Relative-order invariant pattern:

CAP-sensitive pattern
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e link; unlink
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mv (node, ddir) { // tree

// at every ...

link (ddir, node)
/[ ... replica

unlink (sdir, node)
} /] tree



CAP-sensitive pattern A data model for AP
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mv /A, /B
-A/../B

Concurrent, asynchronous updates

e Standard register model: assignments = CP
* AP = concurrent updates merged

CISE
Static
Analysis

CRDT: register, counter, set, map, sequence
e Extends sequential type

Precondition not stablew.r.t. concurrent mv « Encapsulates convergent merge

e Forbid concurrency? Synchro, CP.
* Or remove invariant? AP, degraded semantics

geokS RainbowFS

Scality—UPMC

Posix-like replicated file system

* Available under Partition

CRDTs: merge concurrent updates
|| write same file: merge or rename
delete || write: file path survives

ANR project 2017-2021
UPMC + LIG + TSP + Scality + USMB

1. Application/system co-design
* mv || mv— copy; delete PP / _y . J
. 2. Modular replication
mv || mv = unstable precondition : . .
e Either CP or anomalous 3. Multi-consistency file system

« CP: minimal synch footprint
Najafzadeh



1. Application /
consistency co-design

Just-Right Consistency:

» Most efficient consistency...

* ...under which my application is correct
Static and dynamic verification
File system:
Maintain tree invariant; others?
Asynchronous: mkdir, rmdir, creat, rm, etc.
* Design options: write || write, write || rm
Synchronised: mv

3. Geo-replicated
massive file system

Build a file system:
e Posix API
* Multi-consistency, tailor to application
e Scales to O(petabyte)
* Apply tools & methods from Tasks 1 & 2

Challenges:
» Geo-distributed, elastic
* Massive performance, partial replication
» Consistency, security, fault tolerance
* |ayer above object store

2. Modular geo-
replication

From application skeleton to running system
Tools for large-scale deployment, monitoring,
analysis, diagnosis
» Check correctness & efficiency
» Stress test
» Diagnose root cause
Protocol building blocks, compose for application
» 3D model, variants/strength
» Modular fault tolerance (Abstract)
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