RainbowFS

Modular Consistency and Co-designed
Massive File system

M. Shapiro, UPMC & Inria, Paris
B. King, Scality SA, Paris
V. Quéma, CNRS-LIG, Grenoble
P. Sutra, Télécom ParisSud, Evry
S. Monnet, U. Savoie-Mont Blanc, Annecy

y 4
U P m ‘ informatics g”mathematics
1A A1 SORBONNE UNIVERSITES : W

Shared data

q: Queue
c: Counter
{lg|<c}
M < c.inc
W,
q.push(e) o
c.inc()
q. val()
c.val()

Background

Distributed application = shared data

1. Large scale (cloud) = data replication =
consistency issues
» Strong : dependable, not available, inefficient.
* Available : parallel, anomalies.
* Pre-defined models

2. Complex : configuration, analysis, control,
decomposition

3. System, data access AP
Theory of replication and consistency, tools

Geo-replicated sharing

g: Queue
c: Counter >~ 0

q:
{lg] <c} c: C
{lg

% 5ms -

§ -
@, 3 Cimter
g.vall) {lal<c}
c.val() gz € Queue?
gr=Qqz27?

lg1] <ca?

Three dimensions

Geni/
TOt?.-!-f‘ Linearisability
~_.Order
Strict
Serialisability - Serialisability
CAP
Snapshot
Isolation
PO / Visibility
Causal
Q!
mooé‘{\oﬂ
(O
~
HAT

Joint update pattern

write updates content, metadata
Transmit joint updates together o2
* write-atomic %
+ Read from common set of txns
* snapshot property
AP-compatible: All-or-Nothing (A)

Relative order pattern

1=RHS!
» “Directory references valid file”

g \Q
< i ;.,U“
e xvalid A x points to y = y valid 2
‘ >1

Il
« Pattern RHS!: LHS! ’ Ig \7
* Make visible in same order o-LHS!

AP-compatible: Causal Consistency

mkdir before creat
Relative-order invariant pattern:

CAP-sensitive pattern

B, /A
e link; unlink

0= e
T~
®link: unlink N

mv (node, ddir) { // tree

// at every ...

link (ddir, node)
/[... replica

unlink (sdir, node)
} /] tree

CAP-sensitive pattern A data model for AP

0
\@; o [) U’?
link; un@nk ° Vi [o
= 7 q ; '’ u

mv /A, /B
-A/../B

Concurrent, asynchronous updates

e Standard register model: assignments = CP
* AP = concurrent updates merged

CISE
Static
Analysis

CRDT: register, counter, set, map, sequence
e Extends sequential type

Precondition not stablew.r.t. concurrent mv « Encapsulates convergent merge

e Forbid concurrency? Synchro, CP.
* Or remove invariant? AP, degraded semantics

geokS RainbowFS

Scality—UPMC

Posix-like replicated file system

* Available under Partition

CRDTs: merge concurrent updates
|| write same file: merge or rename
delete || write: file path survives

ANR project 2017-2021
UPMC + LIG + TSP + Scality + USMB

1. Application/system co-design
* mv || mv— copy; delete PP / _y . J
. 2. Modular replication
mv || mv = unstable precondition : . .
e Either CP or anomalous 3. Multi-consistency file system

« CP: minimal synch footprint
Najafzadeh

1. Application /
consistency co-design

Just-Right Consistency:

» Most efficient consistency...

* ...under which my application is correct
Static and dynamic verification
File system:
Maintain tree invariant; others?
Asynchronous: mkdir, rmdir, creat, rm, etc.
* Design options: write || write, write || rm
Synchronised: mv

3. Geo-replicated
massive file system

Build a file system:
e Posix API
* Multi-consistency, tailor to application
e Scales to O(petabyte)
* Apply tools & methods from Tasks 1 & 2

Challenges:
» Geo-distributed, elastic
* Massive performance, partial replication
» Consistency, security, fault tolerance
* |ayer above object store

2. Modular geo-
replication

From application skeleton to running system
Tools for large-scale deployment, monitoring,
analysis, diagnosis
» Check correctness & efficiency
» Stress test
» Diagnose root cause
Protocol building blocks, compose for application
» 3D model, variants/strength
» Modular fault tolerance (Abstract)

Creative Commons Attribution-
ShareAlike 4.0 Intl. License

You are free to:
» Share — copy and redistribute the material in any medium or format
* Adapt — remix, transform, and build upon the material
for any purpose, even commercially, under the following terms:
Attribution — You must give appropriate credit, provide a link to the
license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

@ ShareAlike — If you remix, transform, or build upon the material, you
must distribute your contributions under the same license as the
original.

