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Abstract

In the industrial context of the EDS project� we have designed and implemented a query

optimizer which we have integrated within a parallel database system� The optimizer takes as

input a query expressed in ESQL� an extension of SQL with objects and rules� and produces

a minimum cost parallel execution plan� Our research agenda has focused on several di�cult

problems� support of ESQL�s advanced features such as path expressions and recursion� modelling

of parallel execution spaces and extensibility of the search strategy� In this paper� we give a

retrospective on the optimizer project with emphasis on our design goals� research contributions

and implementation decisions� We also describe the current optimizer prototype and report on

experiments performed with a pilot application� Finally� we present the lessons learned�

� Introduction

EDS is an ESPRIT project started in ���� by Bull� ICL� Siemens� ECRC and INRIA with the major

goal of producing a parallel database server ���� which exploits recent multiprocessor computer

architectures in order to provide high�performance and high�availability database support at a

much lower price than equivalent mainframe computers� The thrust of the project is that database

management and parallel processing technologies are mature enough to be successfully combined

and take a central position in mainstream commercial information systems of the ��s�

Parallel database system architectures range between two extremes� the shared�memory 	SM


and the distributed�memory 	DM� also called shared�nothing
 architectures� In the SM approach�
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any processor has access to any memory module or disk unit through a fast interconnect and inter�

processor communication is done via a shared memory� Examples of SM parallel database systems

include XPRS ���� and Volcano ���� In the DM approach� each processor has exclusive access to

its main memory and disk unit	s
� Inter�processor communication is done via message�passing

through an interconnect� Examples of DM parallel database systems include the Teradatas DBC

and Tandems NonStopSQL products as well as a number of prototypes such as Bubba ��� and

GAMMA ���� More experimental study is needed to decide which of these architectures is best for

data management under various workloads ����� Intuitively� SM has less extensibility and reliability

because of the common memory� but for a small con�guration 	e�g�� less than �� processors
� it

can provide the highest performance because of better load balancing� However� DM can scale up

to hundreds of processors� Thus� it appears that DM is the only choice for high�end systems� e�g��

requiring thousands of TPS of the TPC�B benchmark� For smaller systems however� SM is an

interesting alternative�

For these reasons� it was decided to build two prototypes of the EDS database server� The �rst

one is DM and has been implemented on the EDS parallel computer 	also developed in the EDS

project by ICL and Siemens
� The latter� called DBS� 	Database System on Shared Store
 ���� has

been implemented on an Encore Multimax SM multiprocessor� However� we insisted that most of

the database software be the same for both prototypes to demonstrate portability as well as reduce

development costs� In both prototypes� parallel data processing is obtained by uniformly supporting

a distributed�memory execution model� In the case of DBS�� this is useful to logically partition

the data in order to minimize common memory access con�icts and thus increase parallelism�

The EDS database server targets business data processing applications with mixed workloads

of low�complexity 	OLTP�like
 transactions and more complex decision�support queries because

they contribute most to throughput demands� The industrial context of the project naturally

led to the choice of standard SQL for providing database capabilities� The rationale was to not

attempt to develop and promote yet another database language� However� SQL itself is a moving

target� recently extended in SQL� and subject to further object�oriented extensions in future SQL��

Therefore� in order to develop advanced database technology within EDS� we decided early on in the

project to specify our own extensions of SQL� The result was ESQL ���� an SQL� upward�compatible

language with deductive and object�oriented capabilities�

ESQL is intended for traditional data processing as well as more complex applications such

as geographical information systems or knowledge�based systems� ESQLs salient features are a

rich and extensible type system based on abstract data types� support for complex objects with

object sharing by combining collection type constructors and object identity� support for multi�

statement queries and a Datalog�like deductive capability provided as an extension of the SQL
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view mechanism� Our own implementation of extensions of ESQL has put in place a design capable

of supporting the actual standards as they emerge�

With ESQL� the programmer can write high�level queries that are more powerful and complex

than relational queries� In particular� they may involve path expressions for navigating through

objects and recursive predicates� Thus� to achieve the EDS database servers functionality and per�

formance objectives� it is crucial to compile and optimize ESQL for e�cient parallel execution� The

ESQL compiler proceeds classically in three subsequent phases that progressively add lower levels of

details regarding the execution environment� query analysis and rewriting� query optimization and

parallel code generation� The same compiler works on both SM and DM prototypes 	only the code

generator is di�erent
� However� catalog information regarding the execution environment and the

database is necessarily di�erent and encapsulated within the optimizer� Throughout compilation�

we use an intermediate language called Lera 	Language for extended relational algebra
 to support

ESQL functionality�

The role of the optimizer is to determine for an ESQL query the parallel execution plan that

minimizes an objective cost function� This execution plan is the �best� relatively to the set of

candidate plans examined by the optimizer but not necessarily the optimal one 	e�g�� a plan which

could be hand�coded
� To perform its task� the optimizer must have full knowledge about the

parallel execution environment 	i�e�� operator cost functions
 and the database 	i�e�� data placement�

access paths and statistics
�

Compared to a relational query optimizer� the EDS optimizer is complicated by three prob�

lems� First� ESQL and Lera have higher expressive power than relational languages� Second�

the distributed execution model o�ers a wide range of parallel execution strategies that are dif�

�cult to abstract� Third� the required ability of e�ciently optimizing both repetitive 	compiled


queries and ad�hoc queries 	executed only once
 implies that the optimization time and therefore

the optimization strategy be itself controllable through some form of extensibility�

We have built the optimizer following a decade of experience with commercial optimizers� We

describe an optimizer along the three following dimensions� a search space which de�nes in an

abstract way the alternative execution plans� a cost model which predicts the cost of an execution

plan� and a search strategy which is used to select the best execution plan in the search space� For

each dimension� we have produced original solutions to address the new problems caused by the

language� the parallel execution model and the need for extensibility�

In this paper� we report on our experience in building the EDS optimizer which has been

successfully integrated with the rest of the ESQL compiler and we stress the industrial context of

the EDS project� We follow a retrospective approach to explain how we discovered new problems�
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found solutions and were able to implement and validate them in an industrial�strength prototype�

The paper is organized as follows� Section � gives the design goals that we set early on for

the optimizer� Section � gives the optimizer genesis with the design of the optimizer architecture�

search space� cost model and search strategies� Section � presents our experience with the optimizer

prototype and its use in experiments involving a pilot application and benchmarks� Section �

summarizes the results and the lessons learned�

� Design Goals and Issues

This section presents the main objectives that in�uenced the optimizer design� First� we describe

the optimization environment� which includes the input language and the parallel execution model�

Their main features are outlined� as well as their impact on the optimizer components� As we

aimed for an extensible optimizer� we considered some design choices� which are also discussed�

��� Query Language

ESQL� the input language for the EDS database server� includes standard SQL� and integrates most

features of deductive and object�oriented databases� The main original features of the language are

to support the following capabilities�

� tuple and collection 	e�g�� set� list� bag� vector
 constructors� with associated manipulation

methods� provide the basis for building user�de�ned complex data types�

� nesting and unnesting�

� object identi�ers� which provide for object sharing�

� user�de�ned and system�supplied methods for object manipulation� including path expres�

sions�

� recursive views�

The object�oriented concepts are introduced as SQL extensions� similar to the abstract data

type capability of POSTGRES ����� Keeping the relational basis of the language favors the reuse

of known query optimization techniques� mainly for dealing with joins� the most costly relational

operator�
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The object�oriented features of ESQL prompted us to study speci�c optimization techniques�

Since complex objects are composed of sub�objects� the main optimization issue is to speed up the

access to the sub�objects of an object� expressed through path expressions� The standard techniques

involved looking for a proper access path 	index
� but they did not consider all the alternative access

orders� This means that they could miss the optimal order� and thus we proposed a technique which

allowed considering all these orders ����� However� when it came to implementation� we adopted a

simpler approach� We decided not to change the order in which the user writes path expressions�

and we did not implement path indices� We did not deal either with the optimization of user�de�ned

methods� which is still an open problem�

Regarding recursion� we adopted the typical rewriting approach� i�e�� prior to cost�based op�

timization� Even after realizing that this simpli�ed approach may lead to missing the best plan

����� we insisted in adopting it because it was hard to �nd meaningful counterexamples in our pilot

applications� Besides� we felt there were too many 	maybe too good
 papers on this topic�

Besides coping with the novelties of the input language and the execution environments� we

also aimed at guaranteeing good performance for both OLTP�like transactions and more complex

decision�support queries� with di�erent requirements 	single vs multiple executions of the trans�

action
� This implied paying attention to the trade�o� between the optimization cost and the

execution cost� A high optimization cost 	in terms of CPU time and memory space
 is worthwhile

if there are multiple executions of a query� On the other hand� if the query is to be executed once�

spending too much time on optimization may not be worth doing�

With all those challenges in mind� we decided to emphasize some of them� We decided to

work on the impact of parallel execution environments on known relational query optimization

techniques�

��� Parallel Execution

The optimizer produces an execution plan for the input query� to be run in a parallel execution

system� Compared to sequential optimizers� a parallel optimizer has to deal with a larger search

space� because the parallel execution model allows much freedom for scheduling execution plans�

In this section� we investigate the aspects that make a parallel execution plan di�erent from a

sequential one� and discuss their impact on traditional query optimization techniques�
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����� Scheduling Execution Plans

Execution plans are typically abstracted by means of operator trees� which de�ne the order in which

the operations are executed� Operator trees are enriched with annotations� which indicate addi�

tional execution aspects� such as the algorithm of each operation� An important execution aspect to

be re�ected by annotations is the fact that two subsequent operations can be executed in pipeline�

In this case� the second operation can start before the �rst one is completed� In other words� the

second operation starts consuming tuples as soon as the �rst one produces them� Pipelined execu�

tions do not require temporary relations to be materialized� i�e�� a tree node corresponding to an

operation executed in pipeline is not stored�

Pipeline and store annotations constrain the scheduling of execution plans� They split an

operator tree into non�overlapping sub�trees� called phases� Pipelined operations are executed in

the same phase� whereas a storing indication establishes the boundary between one phase and a

subsequent phase� To be more precise� for bushy trees 	See Section ���
 additional information must

be added to completely specify the splitting in execution phases� More sophisticated techniques

can also be applied for scheduling operator trees ���� but we decided to consider only pipeline and

store annotations�

Some operations and some algorithms require that one operand be stored� For example hash�

join 	See Figure �
 usually consists of two consecutive phases� build and probe� In the build phase�

a hash table is constructed on the join attribute of the smallest relation� In the probe phase� the

largest relation is sequentially scanned and the hash table is consulted for each of its tuples�

In the left part of Figure �� the temporary relations Temp� must be completely produced and

the hash table in Build� must be �nished before Probe� can start consuming R�� The same is true

for Temp�� Build� and Probe�� Thus� this tree is executed in four consecutive phases� build R�s

hash table� then probe it with R� and build Temp�s hash table� then probe it with R� and build

Temp�s hash table� then probe it with R� and produce the result�

In the right part of Figure �� the pipeline annotations are indicated by arrows� This tree can

be executed in two phases if enough memory is available to build the hash tables� build the tables

for R�� R� and R�� then execute Probe�� Probe� and Probe� in pipeline�

Hash�based join algorithms have been shown to be the most e�cient for equi�joins ���� and

are particularly interesting in a parallel environment because they naturally induce intra�operation

parallelism which we present below�
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Figure �� Two hash�join trees with a di�erent scheduling�

����� Alternative Approaches to Parallelism

In a parallel environment� the execution of plans may involve di�erent kinds of parallelism�

Inter�operation parallelism occurs when two or more operations are executed in parallel� It

can be data�ow or independent� We call data�ow the form of parallelism induced by pipelining�

Independent parallelism occurs when operations are executed at the same time or in arbitrary order�

Independent parallelism is possible only when the operations do not involve the same data�

Intra�operation parallelism occurs when an operation is executed simultaneously on several

nodes�� This requires that the operands have been previously partitioned� i�e�� horizontally frag�

mented� across the nodes� The way a base relation is partitioned is a matter of physical design�

Typically� partitioning is performed by applying a hash function on an attribute of the relation�

which will often be the join attribute� The set of nodes where a relation is stored is called its home�

The home of an operation is the set of nodes where it is executed and it must be the home of

its operands in order for the operation to access its operand� For binary operations such as join�

this might imply repartitioning one of the operands� The optimizer might even sometimes �nd

that repartitioning both the operands is of interest� Operator trees bear execution annotations to

indicate repartitioning�

��� Extensibility

Extensibility was one of the goals of the project� which started when extensible query optimization

was still an active research topic� Most extensible optimizers� if not all of them� rely on a rule�

based declarative language ��� ���� Rule�based languages seem to be a convenient way to specify

�A multiprocessor machine is modeled as a set of nodes� We call node one processor� together with its memory�
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or modify some aspects of the optimization search space� e�g�� the cost function� However� this

approach su�ers from several important problems�

� It is not easy to control the application of rules and guarantee termination of the optimization

process�

� Using a very general language implies relying on a general� but ine�cient� pattern�matching

mechanism� unless pattern�matching is hand�coded� In the latter case the approach loses a

lot of its appeal�

� Some aspects of query optimization� e�g� search strategies� do not gain extensibility from the

rule�based approach�

� Rule�based languages su�er from the so�called brittleness problem� well known as a major

problem of expert systems ����� This means that they completely fail to support any request

out of their strict domain of expertise�

Another approach to extensibility consists in relying on object�oriented techniques� These tech�

niques foster extensibility because they help in building models of the application domain which

are not polluted by implementation details� Moreover� one solution to the brittleness problem of

rule�based languages mixes rules and objects into a more robust model of the application domain�

Thus� we tried to use object�orientation intensively in the design and implementation of our proto�

type to get as much extensibility as possible� For example� we designed a hierarchy of optimization

units 	fragments of queries to be optimized independently
� a hierarchy of algorithms to be used in

execution plans� a hierarchy of search strategies� etc�

As far as we know� this approach had not been systematically used to increase extensibility of

query optimizers� But� contrary to previous projects� we aimed at having an optimizer that could

be extended by ourselves� not by outside implementors�� We achieved signi�cant extensibility

of the search strategy for join enumeration 	See Section ���
 and access methods� but only a

limited extensibility of other aspects of optimization 	relational operations� parallel algorithms


	See Section ���
�

� Design Decisions

In this section� we present the architecture of the optimizer and the solutions to the problems

raised in the previous section� Although the optimizer is organized around class hierarchies� it is

�In other extensible database systems� the experience of external implementors proved to be very painful �����
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still meaningful to describe its functional architecture� After exposing the design decisions related

to the architecture� we give an overview of the choices we made to design the search space� the cost

model� and the search strategies�

Two important assumptions underlie the design of the optimizer� First� we assume that it is

possible to optimize well at compile time� Second� we believe that it is not possible to rely only on

traditional 	sequential
 optimization techniques� i�e�� the optimizer must care about parallelism�

Regarding the �rst assumption� the interest of deferring some optimization decisions until ex�

ecution is well�known ��� and is even more important in the case of parallel execution 	especially

in DM
 because of the need to balance the load among the nodes� Although we believe that some

optimization decisions should be deferred till execution time� we left this problem for future work

and our optimizer outputs a single query execution plan� built at compile time�

Concerning the second assumption� we adopted a di�erent approach than that of XPRS �����

where the best parallel execution plan is obtained by parallelizing the best sequential plan� In ����

we showed that it would not be reasonable to make the same assumption in DM� Even in SM�

the domain of validity of this assumption seems rather narrow 	a very large main memory� only

hash�based join algorithms� no indices
� This is why incorporating some knowledge of parallelism

into the optimizer is a more extensible approach and was necessary in our system which aims both

SM and DM architectures�

��� Architecture

The optimizer is part of the ESQL query compiler� as illustrated in Figure �� The query rewriter

analyses the query and transforms it into an equivalent query� to increase the optimization oppor�

tunities� For example� it deduces �implied� predicates� Consider the following ESQL query�

Select R��� from R�� R�� R�� R�

where R��A � R��A and R��A � R��B and R��C � R��C

The rewriter transforms this query onto one having the additional predicate R��A � R��B� This

will enable the optimizer to investigate more join permutations that do not introduce unnecessary

Cartesian Products� The rewriter deals also with recursion� by identifying �xpoint recursion and

choosing an algorithm for computing it�

The role of the optimizer is to �nd the best possible 	ideally optimal
 execution plan� i�e��

the one whose cost estimate is the minimal among all investigated plans� So� the optimizer builds

several plans and compares them by means of a cost function� The parallelizer expresses in a
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Figure �� ESQL Query Compiler

low�level language the decisions made by the optimizer� It puts together some operations into the

same process and manages the control of parallel execution 	synchronizations and terminations
�

The interface language between the rewriter and the optimizer is a form of extended relational

algebra� called Lera 	Language for extended relational algebra
� It has constructs equivalent to

the traditional algebraic operators� a �xpoint operator and an n�way select�project�join operator�

called �lter� The latter has been introduced to enable the rewriter to defer decisions regarding the

ordering of selects� projects and joins� that should be postponed until the cost�based optimization

step� The sample query is transformed by the rewriter into the following Lera program 	notice the

inclusion of a deduced predicate R��A � R��B
� which uses the �lter operator�

Result� �lter 		R�� R�� R�� R�
�

		R��A � R��A
and	R��A � R��B
and	R��C � R��C
and	R��A � R��B
� 	R���



To each algebraic operator corresponds one optimizer component� The Access Method Se�

lector 	AMS
 is responsible for dealing with most of the operators� including selections� projections

and binary joins� It chooses the best algorithm to perform the operation� its home� and estimates

its cost� and the cost of the plan rooted at the operation� The Join Enumerator is responsible
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for optimizing the �lter operator� It builds an execution plan� capturing some join permutation�

and calls the AMS� which returns a cost estimate for the generated plan�

The boundary between the rewriter and the optimizer is related to the fact that they reason�

respectively� in a heuristic�based vs� cost�based fashion� Separating these components consti�

tutes a quite usual approach� although problematic� It reduces the complexity of optimization� by

constraining the search space� and eases the overall design� The problem is that some decisions

traditionally taken by the rewriter 	e�g�� pushing selections before joins
 should be deferred until

the optimization step� to be decided by a cost�based strategy� This is a well�known open problem

����� On the other hand� the separation between the Join Enumerator and the AMS� which are

both part of the optimizer� does not su�er from a similar problem� The reason is that the AMS

returns its result to the Join Enumerator which� thus� can explore all the alternatives if necessary

and take cost�based decisions�

��� Search Space

Figure � shows four operator trees� that represent execution plans for the sample query� An operator

tree is a labelled binary tree where the leaf nodes are relations of the input query and each non�leaf

node is an operator node 	e�g�� join� union
 whose result is an intermediate relation� A join node

captures the join between its operands� Execution annotations 	e�g�� join algorithm
 are not shown

for simplicity� Directed 	resp� undirected
 arcs denote that the intermediate relation generated by

a tree node is consumed in pipeline 	resp� stored
 by the subsequent node� Operator trees may be

linear� i�e� at least one operand of each join node is a base relation 	See Figure ��	i
� 	ii
 and 	iii

�

or bushy 	See Figure ��	iv

� We say that an operator tree corresponds to a complete execution plan

if it captures all the relations of the input query 	e�g�� all the trees in Figure � represent complete

plans
� Otherwise� we say that the plan is partial�

The optimizer search space is characterized by the shape of trees it investigates� In most

sequential optimizers 	e�g�� the optimizer of System R ����
� the search space for join enumeration

is usually restricted to left�deep trees 	See Figure ��	i

� The reason for this heuristic restriction

is that the space including all the tree shapes is much larger� while an optimal or nearly optimal

plan can often be found in the much smaller space of left�deep trees� When join algorithms are not

symmetric� which is the case for hash�joins� it is useful to distinguish left�deep and right�deep trees

	See Figure ��	i
 and 	ii

�

In contrast to sequential environments� in a parallel one tree formats other than left or right�deep

seem interesting� For example� bushy trees 	See Figure ��	iv

 are the only to allow independent

parallelism� Independent parallelism is useful when the relations are partitioned on disjoint homes�
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Figure �� Execution Plans as Operator Trees

in the case of a DM machine� Suppose the sample query is to be executed on a DM machine� and

that the relations are partitioned two 	R� and R�
 by two 	R� and R�
 on disjoint homes 	resp� h�

and h�
� Then� joins j�� and j�� could be independently executed in parallel by the set of nodes

that constitutes h� and h��

Intra�operation parallelism is de�nitely the one to favor as much as possible� If the relations

are not too small� a large degree of parallelism can be reached by data partitioning� and if data are

uniformly partitioned� load balancing is easily achieved� For example� if relations R� and R� are

partitioned on their join attribute A� the join j�� can be executed in an intra�parallel fashion on

h��

When data�ow parallelism 	i�e�� due to pipeline
 is pro�table� zigzag trees� which are intermedi�

ate formats between left�deep and right�deep trees� can sometimes outperform right�deep trees due

to a better use of main memory in SM machines ����� A reasonable heuristic is to favor right�deep

or zigzag trees when relations are partially fragmented on disjoint homes and intermediate relations

are rather large� In this case� bushy trees will usually need more phases and take longer to execute�

On the contrary� when intermediate relations are small� pipelining is not very e�cient because it is

di�cult to balance the load between the pipeline stages� In any case it was very useful to be able

to change the search space of the optimizer to explore various kinds of trees�

��� Cost Model

The optimizer cost model is responsible for estimating the cost of a given execution plan� In the

EDS project� we had to deal with two target environments� DM and SM� Thus� we studied the

di�erences between these architectures for the cost model and we �nally designed a cost model that

may be easily adapted to either architecture� In other words� the cost model may be seen as two

parts� architecture�dependent and architecture�independent�

The architecture�independent part is constituted by the cost functions for operation algorithms�
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e�g�� nested loop for join and sequential access for select� If we ignore concurrency issues� only

the cost functions for data repartitioning and memory consumption di�er and constitute the

architecture�dependent part� Indeed� repartitioning a relations tuples in DM implies transfers

of data across the interconnect� whereas it reduces to hashing in SM� Memory consumption in DM

is complicated by inter�operation parallelism� In SM� all operations read and write data through a

global memory� and it is easy to test whether there is enough space to execute them in parallel� i�e��

the sum of the memory consumption of individual operations is less than the available memory�

In DM� each processor has its own memory� and it becomes important to know which operations

are executed in parallel on the same processor� Thus� for simplicity� we assume that the set of

processors 	home
 assigned to operations to execute do not overlap� i�e�� either the intersection of

the set of processors is empty or the sets are identical� This will simplify the formula for response

time with DM� It is however possible that two distinct operations have the same home� in which

case the formula takes this into account� For example� in our prototype� the catalog allows to

specify that two relations are partitioned on the same home� e�g�� R� and R� are partitioned on

the same home� and� thus� the select operation on these relations have the same home� In SM� the

execution system dynamically balances the load among processors�

To take into account the aspects of parallel execution� we de�ned the cost of a plan as three

components� total work 	TW
� response time 	RT
� and memory consumption 	MC
� TW and RT

are expressed in seconds� and MC in Kbytes�

The �rst two components are used to express a trade�o� between response time and throughput�

The third component represents the size of memory needed to execute the plan� The cost function

is a combination of the �rst two components� and plans that need more memory than available are

discarded� Another approach ��� consists in using a parameter� speci�ed by the system administra�

tor� by which the maximum throughput is degraded in order to decrease response time� Given a

plan p� its cost is computed by a parameterized function cost�WRT �WTW �	
 de�ned as follows�

cost�WRT �WTW �	p
 �

�����
����

WRT �RT �WTW � TW if MC of plan p does not exceed the available

memory

� otherwise

where WRT and WTW are weight factors between � and �� such that WRT �WTW � ��

A major di�culty in evaluating the cost is in assigning values to the weight of the �rst two

components� These factors depend on the system state 	e�g�� load of the system and number of

queries submitted to the system
� and are ideally determined at run time� This is impossible since

we perform static optimization� We �nally restricted the cost components to response time and

memory consumption� i�e�� we suppose that only one query is submitted to the system at a time�
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The cost function became�

cost	p
 �

��
�

RT if MC of plan p does not exceed the available memory

� otherwise

The response time of p� scheduled in phases 	each denoted by ph
� is computed as follows�

respTime	p
 �
X
ph�p

	maxO�ph	respTime	O
 � pipe delay	O

 � store delay	ph



where O denotes an operation and respTime	O
 the response time of O� pipe delay	O
 is the

waiting period of O� necessary for the producer to deliver the �rst result tuples� It is equal to �

if the input relations of O are stored� store delay	ph
 is the time necessary to store the output

results of phase ph� It is equal to � if ph is the last phase� assuming that the result are delivered

as soon as they are produced�

The cost model� in a parallel environment depends on dynamic parameters� For example� the

amount of available memory may have an impact on the choice of a scheduling strategy� Insu�cient

memory is a reason that forces an execution plan to be split into more phases� Memory size is usually

unknown to the optimizer that operates at compile time� Parallelism introduces another crucial

dynamic parameter which is the way the load is balanced among the processors� In some cases� the

impact of dynamic parameters is limited� For example� in SM� if we do not suppose inter�operation

parallelism� knowing the amount of available memory is not relevant� because only one operation

is executed at a time� However� in the general case� some optimization decisions should be made at

run time� One solution to this problem is to build several execution plans� put together by means

of choose operators ����

To estimate the cost of an execution plan� the cost model uses database statistics and organi�

zation information� such as relation cardinalities and partitioning� As usual� these statistics were

not maintained automatically by the system� and are manually updated through queries on the

metabase� Besides information on base relations� available in the metabase� the optimizer main�

tains� in a temporary catalog� information on intermediate relations� This is important when the

optimized programs contain more than one operation� or when the join has more than two operands�

Table � shows the contents of the metabase for the relations of the sample query�

��� Search Strategies

The optimizer considers each algebraic operation independently since the rewriter has already taken

global reorganization decisions� Optimization of all the operations but the n�way select�project�

join is quite straightforward� it consists of choosing the algorithm� and the home of the operation�
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Relation Cardinality Tuple Size Key Indexes Home

R� ����� �� R��A Btree	R��A

a R��A	���hash
 on h�

b

R� ���� �� R��A Btree	R��A
 R��A	���hash
 on h�

R� ����� �� R��C Btree	R��C
 R��C	���hash
 on h�

R� ����� �� R��C Btree	R��C
 R��C	���hash
 on h�

Attribute Type Size NDistc Minimum Maximum

R��A integer � ����� � �����

R��A integer � ���� � �����

R��B integer � ���� � �����

R��C integer � ���� � ����

R��C integer � ���� � ����

aBtree index on attribute R��A�
bRelation R� is partitioned on home h�� composed of �� nodes� using a hash function on attribute R��A�
cThe number of distinct values in the relation�

Table �� Contents of the metabase for the relations of the sample query�

The crucial issue in terms of search strategy is the join ordering problem� that is NP�complete

on the number of relations ����� A typical approach to solve the problem ���� is to use dynamic

programming� which is a standard optimization technique� It is almost exhaustive and assures that

the best of all plans is found� It incurs an acceptable optimization cost 	time and space
 when the

number of relations in the query is small� However� this approach becomes too expensive when

the number of relations is greater than � or �� For this reason� there has been recent interest in

randomized strategies� which reduce the optimization complexity but do not guarantee the best of

all plans� Another way to cut o� the optimization complexity would consist in adopting a heuristic

approach ����� We rather chose to implement randomized strategies� in order to investigate their

adequacy in the parallel context� both from the point of view of need and quality of the optimal

execution plan�

To implement several search strategies with a good degree of code reuse� we exploited the

object�oriented paradigm� adopted in the implementation of the optimizer� We depicted the main

algorithms 	deterministic� randomized
� in which functions are called to implement speci�c tasks�

Taking advantage of late binding� these functions are implemented in several ways� thus changing

the behavior of the optimizer� For example� in a deterministic algorithm� the choice of the next

state to explore should be the least 	resp� last
 recently obtained one if the algorithm is breadth�

�rst 	resp� depth��rst
� The class hierarchy for the search strategies is shown in Figure �� The

approach is detailed in ���� and has proved to be very e�ective� It enabled the implementation of
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Figure �� Search Strategy Class Hierarchy�

several strategies with reduced implementation e�ort� A variant of an existing strategy took just a

few hours to be implemented�

Deterministic strategies proceed by building plans� starting from base relations� joining one

more relations at each step till complete plans are obtained� as shown in Figure ��	i
� A greedy

strategy builds only one such plan� by depth��rst search� while dynamic programming builds all

possible plans breadth��rst� To reduce the optimization cost� partial plans that are not likely

to lead to the optimal plan are pruned 	i�e�� discarded
 as soon as possible� We show below the

trace of our optimizer when running the dynamic programming strategy for the sample query in a

right�deep search space� Each trace line shows the current node to which base relations are being

joined� We trace the progress of the search strategy by displaying generated partial plans� each one

characterized by the permutation of relations it captures� as well as its cost�

partial plan ��� cost � ��������

partial plan ��� cost � �������

partial plan ��� cost � �������

partial plan ��� cost � �������

partial plan ��� cost � �������

partial plan ��� cost � �������

partial plan ����� cost � ������

partial plan ����� cost � �������

partial plan ����� cost � �������

partial plan ����� cost � �������

partial plan ����� cost � �������

partial plan ����� cost � �������

partial plan ����� cost � ������

partial plan ����� cost � �������

partial plan ����� cost � �������
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Final plan ������� cost � ������� Optimization Time� ���� seconds

Randomized strategies concentrate on searching the optimal solution around some particular

points� They do not guarantee that the best solution is obtained� but avoid the high cost of

optimization� in terms of memory and time consumption� First� one or more start plans are built

by a Greedy strategy� Then� the algorithm tries to improve the start plan by visiting its neighbors�

A neighbor is obtained by applying a random transformation to a plan� An example of a typical

transformation consists in exchanging two randomly chosen operand relations of the plan� shown

in Figure ��	ii
�

We have implemented di�erent randomized strategies� such as Iterative Improvement ���� and

Simulated Annealing ����� They di�er on the criteria for replacing the �current� plan by the

transformed one and on the stopping criteria� We show below the trace of Iterative Improvement

on the sample query in a right�deep search space� In the case of randomized strategies� our trace

show the start state and the new state every time a transformation is accepted�

start state ������� cost � �������

exchange ������� cost � �������

Final plan ������� cost � ������� Optimization Time� ���� seconds

As the sample query has few relations� dynamic programming performs better than a random�

ized strategy� But this situation is inverted when the query has � relations or more� We see below

the cost of the �nal plans and the elapsed time for optimizing a query with �� relations on a right�

deep search space� The randomized strategy could reduce the optimization time by a factor of ���

�nding a plan which is only ���� worst�

Dynamic Programming�

��



Final plan �������������������������� cost � ������� Optimization Time� ������ seconds

Iterative Improvement�

Final plan �������������������������� cost � ������� Optimization Time� ����� seconds

��� Dynamic Programming for Parallel Execution Spaces

When building execution plans through dynamic programming� the optimizer systematically builds

and compares equivalent partial plans through their cost estimates� It discards �expensive� partial

plans which are �equivalent� to a cheaper one� The issue is� which plans are equivalent� At �rst

glance� equivalent plans are those which capture the same relations� In System R� the equivalence

criterion considered also the tuple order of the resulting relation� The reason is that in the presence

of merge join� a partial plan with a high cost could lead to a better plan� if a sort operation could

be avoided� In ���� and ����� we showed that parallelism complicates considerably the equivalence

criterion�

To make it clear� let us look at two di�erent partial plans for the sample query�

partial plan ����� cost � �������

partial plan ����� cost � �������

Looking at those trace samples� one would say that partial plan ����� should be pruned now�

because it captures the same relations as partial plan ����� but has a higher cost� In a centralized

environment� this could be an acceptable reasoning� But� let us see what happens when we join

relation � to both of them�

partial plan ������� cost � �������

partial plan ������� cost � �������

Surprisingly� partial plan ������� is less costly� The reason is that the resulting relation of partial

plan ����� is located at the same home as relation �� contrary to partial plan ������ Thus� some

repartitioning is needed for partial plan ����� before the join with relation � can be performed�

Therefore� if we had pruned partial plan ����� in the previous step� we would have missed a good

candidate to the optimal plan� So� the captured relations is not the only criterion of equivalence

between plans�

At �rst� we implemented the equivalence criterion of a centralized environment� based on the

captured relations only� But there are many features of a parallel partial plan that in�uence the
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cost of subsequent plans built from them� The home of the resulting relation of a partial plan is

relevant� when hash�based algorithms are used� As redistributing a relation is very expensive� the

home of the resulting relation may impact future plans the same way as the tuple order face to

merge join algorithms� The scheduling of a partial plan must also be considered� when comparing

partial plans� Thus� when the home of the operation and the scheduling of the plan are not the

same� the plans cannot be considered equivalent�

Changing the equivalence criterion reduced the e�ectiveness of pruning� As a consequence� many

more partial plans are retained during the search than in a centralized environment� increasing

considerably the optimization cost� Thus� running dynamic programming on reasonable queries

	e�g�� � relations or more
 in a parallel bushy search space often caused the optimizer to run out of

space� This was one motivation to use randomized strategies�

The equivalence criterion in DM is di�erent from that in SM� In SM� two relations have the

same home if they are partitioned on the same attribute� using the same function� In DM� besides

this� the set of nodes storing the relations must be the same� Thus� the equivalence criterion in

DM is even more restrictive than in SM and the increase in the search space is more signi�cant�

� Prototypes

In this section� we discuss our experience in implementing the optimizer prototype and its integra�

tion in the ESQL compiler� We also explain the experiments conducted using the optimizer and

the DBS� system� and give our impression of the used benchmarks�

��� Implementation

Implementation started late ����� after a great portion of the design phase had been done� First�

we implemented a package for list and set management� Then� we implemented the Access Method

Selector module together with the interfaces with the other ESQL compiler components� namely

the Rewriter� the Parallelizer� and the Catalog Manager� With this� the optimizer was able to treat

many Lera operations� except the n�way join and the �xpoint operator�

The Join Enumerator started to be implemented at the beginning of ����� when Rosana

Lanzelotte joined the project� The architecture of the optimizer proved� then� to be very appropri�

ate for modular software development� The Join Enumerator strategies could be easily added to

the Optimizer� without changing the previous code� From then on� both modules evolved indepen�

dently� and no interfacing problems ever occurred�
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At the beginning of ����� we had a very stable implementation and could start measurement

experiments�

The choice of C�� ���� as the implementation language presented a mix of pros and cons� The

pros are related to the extensibility and modularity the project gained and are well known� However�

except for the search strategy of the Join Enumerator� we only achieved a limited extensibility which

should rather be called adaptability� We realized that C�� is not versatile enough to support

directly the modeling of a very general query optimizer� Although C�� is object�oriented like

several knowledge representation languages it is still too close to implementation details�

Completely relying on C�� for extensibility is also problematic when one wants to add a new

feature without recompilation of the optimizer� For example if a new join algorithm is added� a

declarative language is necessary to specify it 	especially its cost and when it can be used
 without

recompiling the optimizer�

Another con is related with the very high learning curve of C��� No one in the team have had

a signi�cant previous experience with the language� and it was di�cult to use it in an adequate

style�

Still another relevant con is that C�� does not have a garbage collector� At �rst� this fact did not

bother us much� But� as the experiments with large queries started� memory consumption during

optimization proved to be a critical issue� We had to spend signi�cant implementation e�ort in

saving memory and� then� in �xing bugs introduced by the code added to free the �unused� memory�

A last con is related to the absence of a programming development environment and of standard

packages for manipulating containers� We implemented the later using macros because� at that

time� genericity was not supported by C��� This resulted in portability problems as explained in

the following section�

Version maintenance has not been a more critical factor because the team was not a large one�

Nevertheless� when we had visitor � implementors�� we had to take care not to mix up incompatible

code in the same version�

��� Integration

Although the integration between modules inside the optimizer team has occurred smoothly� the

same cannot be said about integrating the optimizer with the modules of the EDS project that

were developed by other teams� namely the Rewriter� the Catalog Manager and the Parallelizer�

The implementation part of the EDS project was conducted by many teams using di�erent

hardware and software� especially di�erent compilers� C and C��� Indeed� some teams did not
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have the same compiler version� particularly the C�� compiler along with its tools� lex�� and

yacc��� This was a source of problems during the integration process as every team was not aware

of the various requirements of the hardware and software used by other teams� The problem became

even harder when the integration is conducted on the machines where the debugging tools can not

be used 	or were not appropriate
 for various reasons� e�g�� the debugger did not work when the

executable is the result of sources written in C and C���

Because at that time� genericity was not supported by our C�� compiler� we implemented it

using macros� Sometimes these macros were too long 	tens of lines
 and were not accepted by

certain preprocessors� Needless to say that the debugging was di�cult and that we were obliged to

simplify the macros�

The last factor that made the integration di�cult is that the interface between certain modules

was data structure�based� hence� not reliable� A text�based interface would be safer� but slows

down the overall performance� Indeed� the producer must put the output in a de�ned format�

and the consumer has to parse its input according to this format� The optimizer interacts with

three modules� the Rewriter and the Parallelizer through a text�based interface� and the Catalog

Manager� through a data structure�based interface� About ��� of the code is dedicated to the

interfacing tasks�

��� PEM Application

The Portfolio Club Experimental Model 	PEM
 was designed to provide a realistic experimental

base for complex query de�nition� evaluation and benchmarking on the EDS system ����� PEM

constitutes a simpli�ed model for an application on share market and investment portfolio man�

agement� The PEM schema contains �� relations joinable through foreign keys� There are three

kernel relations� �enterprises�� �investors� and �holdings�� to which disjoint sets of the remaining

relations are joinable� Besides� �enterprises� and �investors� are joinable� as well as �enterprises�

and �holdings��

The testbed catalogs� used by the optimizer� are generated automatically using three key pa�

rameters which correspond to the cardinalities of the kernel relations� The cardinalities of relations

vary with respect to each other considerably� as in real applications� The catalog describes also the

partitioning of relations� the number of nodes and the attributes used by the partition function�

Disjoint subsets of the relations were partitioned on three disjoint homes� containing one kernel

relation plus the set of relations whose foreign key is the primary key of the kernel relation�

The benchmarks for database and transaction processing systems 	e�g�� Wisconsin and AS�AP

����
 were mainly designed to measure the performance of the relational systems to process sim�
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ple and complex queries 	typical of decision�support applications
 on a synthetic database� Key

parameters� such as relation cardinality� predicate selectivity� and indexes� are varied� There were

three motivations for choosing the PEM application� First� among the existing benchmarks� the

largest query contains � relations 	AS�AP benchmark
� whereas we need queries of larger size 	e�g��

containing more than �� relations
� Second� they allow to test only a subset of the optimizers

functionalities� e�g�� their ability to add implied selection predicates� to choose an index� and if

many to choose the best one� Since the join ordering for queries of larger size became very im�

portant as an optimizer functionality� using di�erent search strategies� it is urgent to design new

benchmarks� adapted for the task of testing optimizer search strategies� In the mean time� ad�hoc

benchmarks were used for the need of a paper� As a consequence� the comparison between pub�

lished performance became very di�cult� Third� the PEM application is based on a real model�

in contrast to benchmarks like Wisconsin and AS�AP where relations are identical� i�e�� they have

the same schema and same statistics for relation attributes� Our optimization search strategies are

cost�based� thus� they are very sensitive to statistics on attributes 	e�g�� the number of attribute dis�

tinct values in a relation
 and relation tuple size� The latter is especially important for distributed

memory environment when data are moved between processors via an interconnect�

The appendix contains an example query� in ESQL� from the PEM application and the corre�

sponding algebraic representation�

��� Benchmarks and Experiments

When working on parallel database query optimization� we performed three kinds of experiments�

each for a di�erent purpose and using a di�erent benchmark� In ����� we proposed a new format

for scheduling linear plans� called zigzag� and compared it to the slicing strategy proposed in �����

using the Wisconsin benchmark�

The main objective of the second experiment was to investigate the impact of parallelism on

the optimization cost� and which is the best way to reduce the optimization cost� either to restrict

the search space or to use a randomized search strategy�

The experiments� conducted using the PEM application� led to some interesting conclusions�

Concerning the �rst objective� we realized that the size of a parallel search space is remarkably larger

than the corresponding non�parallel one� Many more alternative execution plans are investigated

for a given input query� due to the fact that di�erent partitioning and scheduling are possible for

each PT shape� This causes a considerable increase on the optimization cost� In an exhaustive

strategy� as dynamic programming� this increase may incur intractability for queries with more

than � relations�
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Concerning the second objective� our guess was that restricting the search space� an approach

adopted by most parallel optimizers� was not the best choice� We found that restricting the search

space may often lead to missing the optimal plan� For example� the optimizer �nds a better plan for

the sample query when running on a bushy space in DM environments� as shown below� The reason

is that� as the relations are partitioned on disjoint homes 	R� and R�� R� and R�
� independent

parallelism is worth exploiting�

Right�deep space� Bushy Space�

Final plan ������� cost � ������� Final plan 	��	���

��
 cost � �������

Once restricting the search space proved not to be a good choice� how to deal with the increase

in the optimization cost� Our conclusion is that exploring large search spaces� e�g�� bushy space�

using randomized search strategies� specially with some improvements� is better than using the

Dynamic Programming strategy in a small search space� Randomized strategies had not been

previously proposed to parallel optimization�

The last experiment concerns the validation of the optimizer cost model on the DBS� system�

implemented on the shared�memory Encore Multimax multiprocessor� We conducted this work

using the AS�AP benchmark� The results obtained show that the predicted execution time is very

close to the time measured after executing the query on the DBS� system� under various conditions

and even when varying key parameters such as the number of threads to implement an operation�

predicate selectivity� relation cardinality� and the access method to relation tuples 	scan or indexed
�

� Conclusion

In this paper� we have reported on our research and development experience with the parallel query

optimizer of the EDS project� This project last from ���� to ���� and has successfully delivered

a parallel database server� Commercialization plans by the industrial partners are beyond the

scope of this paper� The optimizer has to deal with the advanced features of the ESQL query

language 	objects and recursion
 and target parallel execution environments which can be either

on distributed or shared memory platforms� As the EDS project involved industrial partners� the

goal was to build an industrial�strength prototype� capable of supporting business data processing

applications with mixed workloads of short 	OLTP�like
 transactions and complex decision�support

queries�

In order to address all these challenges successfully� we had to capitalize on experience with

relational query optimizers and to set priorities� Thus� we decided to adopt simple approaches to
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treat object path expressions and recursion� using rewriting techniques� in order to concentrate on

the impact of parallelism on optimization�

The requirement of porting the optimizer to two di�erent execution environments led us to

think of an extensible design applicable to all the optimizer components� from the cost model to

the join enumerator and search strategy� Although the typical rule�based approach proved well

adapted to an extensible cost model� this was not so for the join enumerator because we wanted to

be able to change the algorithm itself� Therefore� we adopted an object�oriented design approach�

which gave us the degree of adaptability� modularity and code reuse needed�

The main research results of our optimizer project have been presented in several papers� We

have designed several techniques to optimize the access to objects through path expressions �����

Having adopted a rewriting approach to deal with objects and recursion� we realized that this

could lead to missing the best plan ����� With respect to parallelism� we proposed a new way of

scheduling execution plans� using zigzag trees� which are well suited to shared memory environments

with resource contention �����

We de�ned a cost metric that captures the main aspects of parallel execution environments�

i�e�� the operation scheduling and relation home ����� We have implemented several search strate�

gies adapted for join enumeration in parallel optimization ����� An important result has been to

experimentally show that randomized search strategies enable an optimizer to cope with the much

larger search spaces incurred by parallelism�

In retrospect� the industrial context of the project 	that we initially perceived as too constrain�

ing
 was useful to set implementation and experimentation priorities� The early choice of C�� as

implementation language caused di�cult problems because of missing functionalities like garbage

collection and genericity� Some of the problems are now better handled with version ��� ���� The

optimizer prototype has been validated using the PEM pilot application which features complex

join queries and using the AS�AP benchmark� Experiments have been useful to measure the op�

timizer e�ectiveness and accuracy� The industrial context has also taught us that we� researchers�

dont pay enough attention to software engineering and learn it the hard way at integration time�

A number of open issues make parallel query optimization still an exiting topic� One open

problem remains the isolation between some modules of the query processor� For example� the

isolation between the rewriter and the optimizer prevents some rewriting tasks from exploiting

cost�based choices� Also� since optimization is carried out entirely at compile time� the optimizer

cannot consider relevant dynamic parameters such as the current load at run time� Finally� the

validation of the cost model has not been completed� Our current objective is to discover the shape

of the cost function for our parallel execution environment� to better explain our success in using
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randomized strategies �����
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Appendix

In this appendix� we give another example of ESQL query� from the PEM application� This

query was used in our experimental studies on search strategies ����� It retrieves all shares� from

share relation� and for each share gets information on the corresponding market sector� the divi�

dends price earning ratio� the share title� the nominal value country� the name and country of the

investor� and the current volume of holding�

SELECT sector � M�mkt sector�

P E � D� p e ratio�

title � S�share title�

registered in � N�nom country�

lives in � I�investr ctry�

held by � I�investr name�

holds � H�port holding

FROM mkt sector M�

dividend D�

share S�

nominalvalue N�

investor I�

port holding H

WHERE S�share id � N�share id

AND N�share id � D�share id

AND S�mkt sectr id � M�mkt sectr id

AND S�share id � H�share id

AND H�investr id � I�investr id

The corresponding Lera program� produced by the Rewriter� is�

Result�filter�

�mkt sector �M�� dividend �D�� share �S�� nominalvalue �N�� investor �I��

port holding �H���

��S�share id�N�share id� AND �N�share id�D�share id� AND

�S�mkt sectr id�M�mkt sectr id� AND �S�share id�H�share id� AND

�H�investr id�I�investr id� AND �S�share id�D�share id� AND

�Notice the inclusion of three deduced predicates� S�share id�D�share id� N�share id�H�share id� and

D�share id�H�share id�
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�N�share id�H�share id� AND �D�share id�H�share id���

�M�mkt sector� D� p e ratio� S�share title� N�nom country� I�investr ctry�

I�investr name� H�port holding��

The involved relations are partitioned as follows�

� mkt sector is partitioned on � node by hashing on attribute mkt sectr id�

� dividend� share� and nominalvalue are partitioned on �� nodes by hashing on attribute

share id�

� investor and port holding are partitioned on �� nodes by hashing on attribute investr id�

We show below a sample of the trace of our optimizer when running the dynamic programming

strategy for the above query in a right�deep search space� Recall that each trace line shows the

current node to which base relations are being joined� We trace the progress of the search strategy

by displaying generated partial plans� each one characterized by the permutation of relations it

captures� as well as its cost�

partial plan ������� cost � ��������

partial plan ������� cost � ������

partial plan ������� cost � ��������

partial plan ������� cost � �������

partial plan ������� cost � ������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � �������

partial plan ������� cost � ������

partial plan ��������� cost � �������

partial plan ��������� cost � �������
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partial plan ��������� cost � �������

partial plan ��������� cost � �������

partial plan ��������� cost � �������

partial plan ��������� cost � ������

partial plan ��������� cost � �������

partial plan ��������� cost � �������

partial plan ��������� cost � �������

partial plan ��������� cost � �������

partial plan ��������� cost � �������

partial plan ��������� cost � �������

Final plan ����������� cost � ������� Optimization Time� ����� seconds

In the following program� produced by the optimizer� Ti� i������ represents an intermediate

relation� the pipe annotation on a relation indicates that the join operation can start consuming the

relation tuples before it 	relation
 is completely produced� whereas the stored annotation indicates

that the join operation has to wait till the relation is completely produced� For simplicity� we

replaced the attribute name by the attribute rank in the relation� For each join operation� the

optimizer speci�es its home� the join algorithm� and the repartitioning of the operands� if needed�
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T� � join �port holding fpipeg� share fstoredg� �share�� � port holding����

�port holding��� port holding��� port holding��� share��� share���

share����

f		join takes place on share home

� 		send port holding to share home

�

		perform the join using the nestedLoop algorithm

g

T� � join �T� fpipeg� mkt sector fstoredg� �T��� � mkt sector���� �T���� T����

T���� T���� T���� mkt sector����

f		join takes place on mkt sector home

� 		send T� to mkt sector home

�

		perform the join using the nestedLoop algorithm

g

T� � join �T� fpipeg� dividend fstoredg� �T��� � dividend��� AND �dividend�� �

T����� �T���� T���� T���� T���� T���� T���� dividend��� dividend����

f		join takes place on dividend home

� 		send T� to dividend home

�

		perform the join using the nestedLoop algorithm

g

T� � join �T� fpipeg� nominalvalue fstoredg� �T��� � nominalvalue��� AND

�nominalvalue�� � T��� AND �nominalvalue�� � T����� �T���� T����

T���� T���� T���� nominalvalue����

f		join takes place on nominalvalue home

� 		no transfer

�

		perform the join using the nestedLoop algorithm

g

Result� join �T� fpipeg� investor fstoredg� �investor�� � T����� �T���� T����

T���� T���� investor���� investor��� T�����

f		join takes place on investor home

� 		send T� to investor home

�

		perform the join using the nestedLoop algorithm

g
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