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The problem of distributed synthesis is to automatically generate a distributed algorithm, given a
target communication network and a specification of the algorithm’s correct behavior.

Previous work has focused on static networks with an a priori fixed message size. This approach
has two shortcomings: Recent work in distributed computing is shifting towards dynamically chang-
ing communication networks rather than static ones, and an important class of distributed algorithms
are so-called full-information protocols, where nodes piggy-pack previously received messages onto
current messages.

In this work, we consider the synthesis problem for a system of two nodes communicating in
rounds over a dynamic link whose message size is not bounded. Given a network model, i.e., a set of
link directions, in each round of the execution, the adversary choses a link from the network model,
restricted only by the specification, and delivers messages according to the current link’s directions.
Motivated by communication buses with direct acknowledge mechanisms, we further assume that
nodes are aware of which messages have been delivered.

We show that the synthesis problem is decidable for a network model if and only if it does not
contain the empty link that dismisses both nodes’ messages.

1 Introduction

Starting from Church’s work [12] on synthesizing circuits from arithmetic specifications in the 1960s,
automatic synthesis of programs or circuits has been widely studied.

In the case of a reactive system, given a specification, the goal is to find an implementation for a
system that repeatedly receives inputs from the environment and generates outputs such that the system’s
behavior adheres to the specification. Early work [34, 35, 37] was synthesizing algorithms that require
knowledge of the complete system state, inherently yielding single-process solutions.

Single-process synthesis is related to finding a strategy for a player representing the process that has
to win against the adversarial environment, and has been studied in the context of games [3,9,40] as well
as with automata techniques [24, 35].

For systems with more than one process, different models for how communication and computation
is organized have been studied. Their two extremes are message-triggered asynchronous computation
[17, 28] and round-wise synchronous computation.

An example for the latter is the work by Pnueli and Rosner [36], who considered synchronous dis-
tributed systems with an a priori fixed communication network. In their model, the network is given
by a directed communication graph, whose nodes are the processes and with a link from process p to q
if p can send messages to q (or write to and read from a shared variable). Messages are from a fixed,
finite alphabet per link. A solution to the synthesis problem is a distributed algorithm that operates in
rounds, repeatedly reading inputs, exchanging messages, and setting outputs. Already the case of two
processes with separate inputs and outputs, and without a communication link to each other, was shown
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to be undecidable for linear temporal logic (LTL) specifications [33] on the inputs and outputs. As a
positive result, the paper presents a solution for unidirectional process chains.

Still in the case of static architectures and bounded messages, Kupferman and Vardi [?, 25] extended
decidability results to branching time specifications and proved sufficient conditions on communication
networks for decidability, while Finkbeiner and Schewe [16] presented a characterization of networks
where synthesis is decidable. Since specifications are allowed to talk about messages, however, they are
powerful enough to break existing communication links between processes, leading to undecidability
like in the two-process system without communication [36]. Gastin et al. [18] proved a necessary and
sufficient condition for decidability on a class of communication networks if specifications are only on
inputs and outputs. Like [18], our work only allows “input-output” specifications, so that we obtain
decidability in several cases where the framework of [16] does not allow it.

Like in the single-process scenario, synthesis in distributed systems can be modeled as a game,
which, in this context, are partial information games played between a cooperating set of processes
against the environment [8,29,31,32]. With the exception of [8], all the above approaches assume static,
reliable networks. In [8], Berwanger et al. study games in which information that players have about
histories is hierarchically ordered, and this order may change dynamically during a play. The main
difference to our work is that we consider a memory model where messages carry the complete causal
history allowing for unbounded communication messages, while [8] is based on local observations so
that, at every round, a bounded amount of information is transmitted between players. Further, while
asynchronous solutions to the synthesis problem considered potentially unbounded messages [17, 28],
previous synchronous solutions assume an a priori fixed message size. Also [28] assume that processes
that communicate infinitely often encounter each other within a bounded number of steps.

The above assumptions have two shortcomings:

Modeling unreliability. Distributed computing has a long history of studying algorithms that provide
services in presence of unstable or unreliable components [27]. Indeed, classical process and link fail-
ures can be treated as particular dynamic network behavior [11]. Early work by Akkoyunlu et al. [6]
considered the problem of two groups of gangsters coordinating a coup despite an unreliable channel
between both parties; later on generalized to the Byzantine generals problem [26]. Protocols like the
Alternating Bit Protocol [7] aim at tolerating message loss between a sender and receiver node, and [5]
studies optimal transmission rates over unreliable links. Afek et al. [4] discuss protocols that implement
reliable links on top of unreliable links. Further, for algorithms that have to operate in dynamic networks,
see, e.g., [10, 13, 22], network changes are the normal case rather than the exception.

Synthesis with unstable or faulty components has been studied by Velner and Rabinovich [42] for
two player games in presence of information loss between the environment and the inputs of a process.
The approach is restricted to a single process, however. Dimitrova and Finkbeiner [14] study synthesis of
fault-tolerant distributed algorithms in synchronous, fully connected networks. Processes are partitioned
into correct and faulty. It is assumed that at every round at least one process is correct and the output of
a correct process must not depend on the local inputs of faulty processes. While unreliable links can be
mapped to process failures, the above assumptions are a priori too restrictive to cover dynamic networks.

Modeling full-information protocols. An important class of distributed algorithms are full-information
protocols, where nodes piggy-pack previously received messages onto current messages [15, 27]. By
construction, such algorithms do not have bounded message size. This kind of causal memory has
been considered in [17, 19, 20, 28] for synthesis and control of Zielonka automata over Mazurkiewicz
traces with various objectives, ranging from local-state reachability to ω-branching behaviors. Zielonka
automata usually model asynchronous processes (there is no global clock so that processes evolve at their
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own speed until they synchronize) and symmetric communication (whenever processes synchronize, they
mutually exchange their complete history).

In this work we consider the synthesis problem for a system of two nodes communicating in syn-
chronous rounds, where specifications are given as LTL formulas or, more generally, ω-regular lan-
guages. The nodes are connected via a dynamic link. As in [10,13], a network is a set of communication
graphs, called network model. A distributed algorithm operates in rounds as in [36], with the difference
that the communication graph is chosen by an adversary per round. Motivated by communication buses,
like the industry standard I2C bus [1] and CAN bus [2], with direct acknowledge mechanisms after mes-
sage transfers, we assume that nodes are aware if messages have been delivered successfully. In contrast
to the Pnueli-Rosner setting, we suppose full-information protocols where processes have access to their
causal history. That is, the dynamic links have unbounded message size. Unlike in Zielonka automata
over traces, however, we consider synchronous processes and potentially asymmetric communication. In
particular, the latter implies that a process may learn all about the other’s history without revealing its
own. Observe that, when restricting to Zielonka automata, synthesis of asynchronous distributed systems
is not a generalization of the synchronous case.

We show that the synthesis problem is decidable for a network model if and only if it does not contain
the empty link that dismisses both nodes’ messages. As we assume that LTL specifications can not only
reason about inputs and outputs, but also about the communication graph, our result covers synthesis for
dynamic systems where links change in more restricted ways. In particular, this includes processes that
do not send further messages after their message has been lost, bounded interval omission faults, etc.

Outline. We define the synthesis problem for the dynamic two-process model in Section 2. In Section 3,
we discuss the asymmetric model where communication to process 1 never fails. Central to the analysis
is to show that, despite the availability of unbounded communication links, finite-memory distributed
algorithms actually suffice. We then prove that the synthesis problem is decidable (Theorem 2). In
Section 5 we reduce the general case of dynamic communication to the asymmetric case, obtaining
our main result of decidability in network models that do not contain the empty link (Theorem 1). We
conclude in Section 6. Missing proofs can be found in the appendix.

2 The Synthesis Problem

We start with a few preliminaries. Let N = {0,1,2, . . .}. For a (possibly infinite) alphabet A, the set of
finite words over A is denoted by A∗, the set of nonempty finite words by A+, and the set of countably
infinite words by Aω . We let ε be the empty word and denote the concatenation of w1 ∈ A∗ and w2 ∈
A∗∪Aω by w1 ·w2 or simply w1w2.

Fix the set of processes P = {1,2}. Every process p ∈ P comes with fixed finite sets Xp and Yp of
possible inputs and outputs, respectively. We assume there are at least two possible inputs and outputs
per process, i.e., |Xp| ≥ 2 and |Yp| ≥ 2.

We consider systems where computation and communication proceed in rounds. In round r =
0,1,2, . . ., process p ∈ P receives an input xr

p ∈ Xp and it produces an output yr
p ∈ Yp. The decision

on yr
p depends on the knowledge that process p has about the execution up to round r. In addition to

all local inputs x0
p, . . . ,x

r
p, this knowledge can also include inputs of the other process, which may be

communicated through communication links.
Following Charron-Bost et al. [10], we consider a dynamic communication topology in terms of

a network model, i.e., a fixed nonempty set N ⊆ {−×,^,_,]} of potentially occurring communica-
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Figure 1: JwK1 for some histories w; the white part is unknown in the view, and replaced by ⊥.

tion graphs. In round r, a graph 
r ∈N is chosen non-deterministically with the following intuitive
meaning:

−× No communication takes place. The knowledge of process p that determines yr
p only includes the

knowledge at round r−1 as well as the new input xr
p.

^ Process 1 becomes aware of the whole input sequence x0
2 . . .x

r
2 that process 2 has received so far. This

includes xr
2, which is transmitted without delay. The case _ is analogous.

] Both processes become aware of the whole input sequence of the other process.

As discussed in the introduction, the knowledge of process p at round r also includes the communication
link
r at r, which is therefore common knowledge.

2.1 Histories and Views

Let us be more formal. Recall that we fixed the sets P, Xp, Yp, and N . We let Σ = X1×N ×X2 be the
set of input signals. For ease of notation, we write 〈x1
 x2〉 instead of (x1,
,x2) ∈ Σ. Moreover, for

∈N , we let Σ
 = X1×{
}×X2. A word w∈ Σ∗ represents a possible history, a sequence of signals
to which the system has been exposed so far. For a process p, we inductively define the view JwKp of p
on w by replacing inputs that are invisible to p by the symbol ⊥ (we suppose ⊥ 6∈ X1∪X2). First of all,
let JεK1 = JεK2 = ε . Moreover, for u ∈ Σ∗:

Ju〈x1 ] x2〉K1 = u〈x1 ] x2〉 Ju〈x1 ] x2〉K2 = u〈x1 ] x2〉
Ju〈x1 ^ x2〉K1 = u〈x1 ^ x2〉 Ju〈x1 _ x2〉K2 = u〈x1 _ x2〉
Ju〈x1 _ x2〉K1 = JuK1〈x1 _⊥〉 Ju〈x1 ^ x2〉K2 = JuK2〈⊥^ x2〉
Ju〈x1 −× x2〉K1 = JuK1〈x1 −×⊥〉 Ju〈x1 −× x2〉K2 = JuK2〈⊥ −× x2〉

With this, we let Views1 = {JwK1 | w ∈ Σ+} and Views2 = {JwK2 | w ∈ Σ+} be the sets of possible views
of processes 1 and 2.

The view JwK1 is illustrated in Figure 1 for three different words w. For the history in the middle, we
have J〈x0

1 ^ x0
2〉〈x1

1 ^ x1
2〉〈x2

1 _ x2
2〉〈x3

1 _ x3
2〉K1 = 〈x0

1 ^ x0
2〉〈x1

1 ^ x1
2〉〈x2

1 _⊥〉〈x3
1 _⊥〉.

2.2 Linear-Time Temporal Logic

Let Ω =Y1×Y2 be the set of output signals. An execution is a word from (Σ×Ω)ω , which records, apart
from the input signals, the outputs at every round. A convenient specification language to define the valid
system executions is linear-time temporal logic (LTL) interpreted over words from (Σ×Ω)ω . The logic
can, therefore, talk about inputs, outputs, and communication links at a given position. Moreover, it has
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the usual temporal modalities. Formally, the set LTL(N ) of LTL formulas is given by the grammar

ϕ ::= (inp = x) | (outp = y) | (link =
) | atomic formulas

Xϕ | Fϕ | Gϕ | ϕUϕ | temporal modalities

¬ϕ | ϕ ∨ϕ | ϕ ∧ϕ | ϕ =⇒ ϕ | ϕ ⇐⇒ ϕ Boolean connectives

where p ∈ P, x ∈ Xp, y ∈ Yp, and
 ∈N . Let e = α0α1α2 . . . be an execution with αi ∈ Σ×Ω for all
i ∈ N and α0 =

(
〈x0

1

0 x0

2〉,(y0
1,y

0
2)
)
. For r ∈ N, let e≥r denote its suffix αrαr+1αr+2 . . ., i.e., e = e≥0.

Boolean connectives are interpreted as usual. Moreover:

e |= (inp = x) if x0
p = x e |= Xϕ if e≥1 |= ϕ

e |= (outp = y) if y0
p = y e |= Fϕ if ∃r ≥ 0 : e≥r |= ϕ

e |= (link =
) if 
0 =
 e |= Gϕ if ∀r ≥ 0 : e≥r |= ϕ

e |= ϕUψ if ∃r ≥ 0 :
(
e≥r |= ψ ∧ ∀0≤ r′ < r : e≥r′ |= ϕ

)
Finally, we let L(ϕ) = {e ∈ (Σ×Ω)ω | e |= ϕ} be the set of executions that satisfy ϕ .
Remark 1. In general, the sequence of communication graphs in an execution is arbitrary from N ω ,
modeling a highly dynamic network without any restrictions on stability, eventual convergence, etc. Note
that the specification is allowed to speak about the communication links along a history, however, with
the possibility to restrict the behavior of the dynamic network and impose process behavior to depend on
the network dynamics.

Example 1. Suppose X1 = X2 = Y1 = Y2 = {0,1} and N = {^,_}. Consider

ϕ1 = G
(
(out1 = 1) ⇐⇒ (out2 = 1)

)
ϕ2 = GF

(
(in1 = 1)∧ (in2 = 1)

)
⇐⇒ GF

(
(out1 = 1)∧ (out2 = 1)

)
ψ =

(
GF(link = ^)∧GF(link = _)

)
=⇒ ϕ1∧ϕ2 .

Formula ϕ1 says that, in each round, both processes agree on their output. Formula ϕ2 postulates that
both processes simultaneously output 1 infinitely often if, and only if, both inputs are simultaneously 1

infinitely often. Finally, ψ requires ϕ1 and ϕ2 to hold if both communication links occur infinitely often.
We will come back to these formulas later to illustrate the synthesis problem. C

2.3 Synthesis Problem

A distributed algorithm is a pair f = ( f1, f2) of functions f1 : Views1 → Y1 and f2 : Views2 → Y2 that
associate with each view an output. Given w = σ0σ1σ2 . . . ∈ Σω , we define the execution f LwM =(
σ0,(y0

1,y
0
2)
)(

σ1,(y1
1,y

1
2)
)
. . . ∈ (Σ×Ω)ω where yr

p = fp(Jσ0 . . .σrKp). For a finite word w ∈ Σ∗, we
define f LwM ∈ (Σ×Ω)∗ similarly (in particular, f LεM = ε).

Let L ⊆ (Σ×Ω)ω and ϕ ∈ LTL(N ). We say that f fulfills L (respectively ϕ) if, for all w ∈ Σω , we
have f LwM∈ L (respectively f LwM∈ L(ϕ)). Moreover, we say that L (respectively ϕ) is realizable if there
is some distributed algorithm that fulfills L (respectively ϕ).

We are now ready to define our main decision problem:

Definition 1. For a fixed network model N (recall that we also fixed P, Xp, Yp), the synthesis problem
SYNTHESIS(N ) is defined as follows:

Input: ϕ ∈ LTL(N )

Question: Is ϕ realizable?
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Example 2. Consider the formulas ϕ1,ϕ2,ψ from Example 1 over N = {^,_}. We easily see that ϕ1
is realizable by the distributed algorithm where both processes always output 1. However, ϕ1∧ϕ2 is not
realizable: if the communication link is always ^ (an analogous argument holds for _), process 2 has
no information about any of the inputs of process 1. Thus, it is impossible for the processes to agree on
their outputs in every round while respecting ϕ2.

round signal
0 0 0 ^ 1 0

1 0 1 _ 0 0

2 0 1 _ 1 0

3 0 0 _ 0 0

4 1 1 ^ 0 1

5 0 1 ^ 1 0

6 1 0 _ 0 1

7 0 0 ^ 1 0

8 0 1 ^ 0 0

9 0 1 _ 1 0

Figure 2: Fulfilling ψ

Finally, formula ψ is realizable. We can now assume that both ^
and _ occur infinitely often. A sequence of signals can be divided into
maximal finite blocks with identical communication links as illustrated
in Figure 2 for the prefix of an execution. The distributed algorithm pro-
ceeds as follows. By default, both processes ouput 0, with the following
exception: at the first position of each block, a process outputs 1 if, and
only if, the preceding block contains a round where both processes simul-
taneously received 1. Note that this preceding block is entirely contained
in the view of both processes. The algorithm’s outputs are illustrated in
Figure 2. At rounds 4 and 6, they are 1 because the corresponding pre-
ceding blocks contain an input pair of 1’s. As every block has finite size,
satisfaction of ϕ2 is guaranteed. C

It is well known that the synthesis problem is undecidable if pro-
cesses are not connected:

Fact 1 (Pnueli-Rosner). The problem SYNTHESIS({−×}) is undecidable.

One also observes that undecidability of the synthesis problem is upward-closed:

Lemma 1. Let N1 ⊆N2. If SYNTHESIS(N1) is undecidable, then so is SYNTHESIS(N2).

Indeed, formula ϕ1 ∈ LTL(N1) is realizable iff formula ϕ2 ∈ LTL(N2) is realizable where we let
ϕ2 =

(
G
∨

∈N1

(link =
)
)
=⇒ ϕ1.

Therefore, we will now focus on network models that do not contain −×. Our main result is the
following:

Theorem 1. For a network model N , SYNTHESIS(N ) is decidable if and only if −× /∈N .

The “only if” direction follows from Fact 1 and Lemma 1. The rest of the paper is devoted to the
proof of the “if” direction of Theorem 1. We will first consider N = {],^} and then reduce the other
cases to this particular network model. By Lemma 1, it is enough to do this reduction for {],^,_}.

3 Finite-Memory Distributed Algorithms for N = {],^}

In this section, we suppose N = {],^}. We show that, in this case, synthesis is decidable:

Theorem 2. The problem SYNTHESIS({],^}) is decidable (in 4-fold exponential time).

As our setting features a dynamic architecture and unbounded message size in terms of causal his-
tories, the proof of the theorem requires some new techniques. In particular, we cannot apply the
information-fork criterion from [16], since our specifications can only describe the link between the
processes, and cannot constrain the contents of the messages.

The proof is spread over the remainder of this section as well as Section 4. It crucially relies on the
fact that, for every realizable specification ϕ , there is a distributed algorithm with a sort of finite memory
fulfilling it (as shown in this section). This allows us to reduce, in Section 4, the problem of finding a
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distributed algorithm to finding a winning strategy in a decidable game (that we will call a (2,1)-player
game thereafter) involving two cooperating players, where one player has imperfect information, and an
antagonistic environment.
Remark 2. For the sake of technical simplification, we assume in Sections 3 and 4, without loss of
generality, that input sequences start with a symbol from Σ] = X1×{]}×X2. Instead of the original
formula ϕ̂ , we then simply take ϕ = Xϕ̂ . That is, we can henceforth consider that Views1 = {JwK1 | w ∈
Σ]Σ∗} and Views2 = {JwK2 | w ∈ Σ]Σ∗}, and that a distributed algorithm f fulfills ϕ ∈ LTL(N ) if, for
all w ∈ Σ]Σω , we have f LwM ∈ L(ϕ).

3.1 Finite-Memory Distributed Algorithms

Deterministic Rabin Word Automata. Our decidability proof and the definition of a finite-memory
distributed algorithm rely on deterministic Rabin word automata (cf. [39]):

Definition 2. A deterministic Rabin word automaton (DRWA) over a finite alphabet A is a tuple A =
(S, ι ,δ ,F ), where S is a finite set of states, ι ∈ S is the initial state, δ : S×A→ S is the transition
function, and F ⊆ 2S×2S is the (Rabin) acceptance condition.

The DRWA A defines a language of infinite words L(A ) ⊆ Aω as follows. We extend δ to a
function δ : S×A∗→ S letting δ (s,ε) = s and δ (s,aw) = δ (δ (s,a),w). Let w = a0a1a2 . . . ∈ Aω . We
define Visit∞

A (w) = {s ∈ S | s = δ (ι ,a0 . . .ai) for infinitely many i ∈N}. We say that w is accepted by A
if there is (F,F ′) ∈F such that Visit∞

A (w)∩F 6= /0 and Visit∞

A (w)∩F ′ = /0, i.e., some state of F is visited
infinitely often, whereas all states from F ′ are visited only finitely often. We let L(A ) = {w ∈ Aω | w is
accepted by A }.

Existence of Finite-Memory Distributed Algorithms. We are now ready to state that, if there is a
distributed algorithm that fulfills a specification ϕ ∈ LTL(N ), then there is also a distributed algorithm
f with finite “synchronization memory” in the following sense: There is a DRWA A over Σ×Ω such
that the output of a process for a history wu with u ∈ Σ]Σ∗^ only depends on u and the state that A
reaches after reading f LwM. Let Σ⊥^ = {⊥}×{^}×X2.

Lemma 2. Let ϕ ∈ LTL(N ). There is a DRWA A = (S, ι ,δ ,F ), with δ : S× (Σ×Ω)→ S, such that
the following are equivalent:

(1) There is a distributed algorithm f = ( f1, f2) that fulfills ϕ .

(2) There is a distributed algorithm f = ( f1, f2) that fulfills ϕ and such that, for all words w,w′ ∈
{ε}∪Σ]Σ∗ satisfying δ (ι , f LwM) = δ (ι , f Lw′M), the following hold:

• f1(wu) = f1(w′u) for all u ∈ Σ]Σ∗^
• f2(wu) = f2(w′u) for all u ∈ Σ]Σ∗⊥^

Note that the acceptance condition and the language of A are not important in the lemma.

3.2 Distributed Algorithms as Strategy Trees

Section 3.2 is devoted to the proof of Lemma 2. The first step is to represent a distributed algorithm
as a strategy tree, whose branching structure reflects the algorithm’s choices depending on the various
inputs. We then build a tree automaton that accepts a strategy tree iff it represents a distributed algorithm
fulfilling the given formula ϕ . The challenge is to define the tree automaton in such a way that its strate-
gies can be cast into hierarchical multiplayer games with finite sets of observations, and that winning
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strategies within these games are equivalent to distributed algorithms. We show in this section that this
is possible by collapsing potentially unboundedly long input sequences into an unbounded branching
structure. With this construction, we can show that, if the tree automaton recognizes some strategy tree,
then it also accepts one that represents a finite-memory distributed algorithm.

Trees and Rabin Tree Automata. Let A be a nonempty (possibly infinite) alphabet and D be a
nonempty (possibly infinite) set of directions. An A-labeled D-tree is a mapping t : D∗→ A. In particular,
ε is the root with label t(ε), and ud is the d-successor of node u ∈ D∗, with label t(ud).

Definition 3. A (nondeterministic) Rabin tree automaton (RTA) over A-labeled D-trees is a tuple T =
(S, ι ,∆,F ) with finite set of states S, initial state ι ∈ S, acceptance condition F ⊆ 2S×2S, and (possibly
infinite) set of transitions ∆⊆ S×A×SD.

A run of T on an A-labeled D-tree t is an S-labeled D-tree ρ : D∗→ S where ρ(ε) = ι (the root is
assigned the initial state) and, for all u∈D∗,

(
ρ(u), t(u),d ∈D 7→ ρ(ud)

)
∈ ∆. The latter is the transition

applied at u, and we denote it by transρ(u).
A path of run ρ is a word ξ = d0d1d2 . . . ∈ Dω , inducing the sequence ε,d0,d0d1,d0d1d2, . . . of

nodes visited along ξ . We let Inf(ξ ) be the set of states that occur infinitely often as the labels of
these nodes. Path ξ is accepting if there is (F,F ′) ∈F such that Inf(ξ )∩F 6= /0 and Inf(ξ )∩F ′ = /0.
Run ρ is accepting if all its paths are accepting. Finally, T defines the language of A-labeled D-trees
L(T ) = {t : D∗→ A | there is an accepting run of T on t}.

Lemma 3. Let A be a singleton alphabet, D a nonempty (possibly infinite) set of directions, and T
an RTA over A-labeled D-trees (as A is a singleton, we say that T is input-free). Call a run ρ of T
on the unique A-labeled D-tree rational if, for all w,w′ ∈ D∗ with ρ(w) = ρ(w′), we have transρ(w) =
transρ(w′). If L(T ) 6= /0, then there is a rational accepting run of T .

The lemma essentially follows from the fact that Rabin games are positionally determined for the
player that aims at satisfying the Rabin objective [21]. To account for our non-standard setting of tree
automata with possibly infinite D, we give a direct proof in Appendix A.

Strategy Trees. Recall that our goal is to show Lemma 2 using strategy trees as a representation
of distributed algorithms. Strategy trees are trees over the (infinite) set of directions D = Σ]Σ∗^, with
the aim to isolate the positions where a resynchronization occurs, via a letter from Σ]. By Remark 2,
we only have to consider Σ]Σ∗ = (Σ]Σ∗^)+ = D+. Hence, to avoid additional notation, we can iden-
tify nonempty words in D∗ with words in Σ]Σ∗. It will always be clear from the context whether the
underlying alphabet is D or Σ.

Intuitively, a node u ∈ D∗ represents a given history, and the label of u represents the outputs for
possible continuations from Σ]Σ∗^. More precisely, the set Λ of labels is the set of pairs λ = (λ1,λ2)
where λ1 : Σ]Σ∗^→Y1 and λ2 : Σ]Σ∗⊥^→Y2. For w ∈ Σ]Σ∗^, we define λ LwM ∈ (Σ]×Ω)(Σ^×Ω)∗

as expected (cf. the definition of f LwM for a distributed algorithm f ). Similarly, for w∈ Σ]Σω
^, we obtain

a word λ LwM ∈ (Σ]×Ω)(Σ^×Ω)ω .
A strategy tree is a Λ-labeled D-tree t : D∗→Λ. For u∈D∗, let (λ u

1 ,λ
u
2 ) refer to t(u). The distributed

algorithm associated with t is denoted by ft and is defined as ft = ( f1, f2) as follows (recall that Σ⊥^ =
{⊥}×{^}×X2):

• f1(uu′) = λ u
1 (u
′) for all u ∈ {ε}∪Σ]Σ∗ and u′ ∈ Σ]Σ∗^

• f2(uu′) = λ u
2 (u
′) for all u ∈ {ε}∪Σ]Σ∗, and u′ ∈ Σ]Σ∗⊥^
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ε

d

dd. . . . . .

. . . . . .

〈0 ] 0〉
〈1 ^ 0〉
〈0 ^ 1〉

〈1 ] 1〉
〈0 ^ 0〉

〈1 ] 1〉
〈0 ^ 0〉

d

λ ε
1

1 0. . .

0 1. . .

〈0 ] 0〉 〈1 ] 1〉

〈0 ^ 0〉 〈1 ^ 1〉

λ ε
2

1 0. . .

1 0

〈0 ] 0〉 〈1 ] 1〉

〈⊥^ 0〉 〈⊥^ 1〉

λ d
1

0 1. . .

1 0. . .

〈0 ] 0〉 〈1 ] 1〉

〈0 ^ 0〉 〈1 ^ 1〉

λ d
2

0 0. . .

1 1

〈0 ] 0〉 〈1 ] 1〉

〈⊥^ 0〉 〈⊥^ 1〉

Figure 3: A strategy tree t.

In λ u
1 (u
′) and λ u

2 (u
′), we consider the unique decomposition of u over D so that f1 and f2 are well-

defined.
Remark 3. The mapping t 7→ ft is a bijection. In particular, for every distributed algorithm f , there is a
strategy tree t such that ft = f .

Example 3. Suppose X1 = X2 = Y1 = Y2 = {0,1}. Figure 3 depicts a part of a strategy tree t. Its nodes
are gray-shaded. The labels of nodes of t are themselves represented as (infinite) trees. Consider the
input sequence w = 〈1 ] 1〉〈0 ^ 0〉〈1 ] 1〉〈0 ^ 0〉 ∈ Σ]Σ∗. To know what ft outputs for the first two
signals, we look at the blue-colored nodes of the trees associated with the root of t. To determine the
outputs for the two remaining signals, we look at the red-colored nodes of the trees associated with node
d. We thus get ftLwM= (〈1] 1〉,(0,0))(〈0^ 0〉,(0,1))(〈1] 1〉,(1,0))(〈0^ 0〉,(1,1)) for the whole
word w. C

Now, Lemma 2 is a consequence of the following lemma:

Lemma 4. Let ϕ ∈ LTL(N ). There is a DRWA A = (S, ι ,δ ,F ), with δ : S× (Σ×Ω)→ S, such that
the following are equivalent:

(1) There is a strategy tree t such that ft fulfills ϕ .

(2) There is a strategy tree t such that (a) ft fulfills ϕ , and (b) for all w,w′ ∈ D∗ with δ (ι , ftLwM) =
δ (ι , ftLw′M), we have t(w) = t(w′).

Proof. Let ϕ ∈ LTL(N ) be the given formula. We first define A and then prove its correctness in terms
of the statement of Lemma 4 using an RTA Tϕ over strategy trees.

The DRWA A . It is well known that there is a DRWA Aϕ = (Sϕ , ιϕ ,δϕ ,Fϕ) over Σ×Ω, with
doubly exponentially many states and exponentially many acceptance pairs, such that L(Aϕ) = L(ϕ)
(cf. [38, 41]). We refer to states of Aϕ by s ∈ Sϕ .

Starting from Aϕ , we now define the DRWA A = (S, ι ,δ ,F ) such that, for words that contain
infinitely many ], it is enough to look at the sequence of states reached by A right before the ]-
positions to determine whether the word is in L(Aϕ) or not. The idea is to keep track of the set of states
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that are taken between two ]-positions. Accordingly, the set of states is S = Sϕ ×2Sϕ , with initial state
ι = (ιϕ , /0). Concerning the transitions, for (s,R) ∈ S and α = (〈x1
 x2〉,(y1,y2)) ∈ Σ×Ω, we let

δ ((s,R),α) =

{
(δϕ(s,α),{δϕ(s,α)}∪R) if
= ^
(δϕ(s,α),{δϕ(s,α)}) if
= ] .

Finally, the acceptance condition is given by F = {(GF ,GF ′) | (F,F ′) ∈Fϕ} where GF = {(s,R) ∈ S |
F ∩R 6= /0} and GF ′ = {(s,R) ∈ S | F ′∩R 6= /0}.

The following claim states that A is correct wrt. executions with infinitely many synchronization
points, while the acceptance condition is looking only at states reached right before these synchronizing
points (see Appendix B for the proof):

Claim 1. Let w0,w1,w2, . . . ∈ (Σ]×Ω)(Σ^×Ω)∗. Moreover, let w = w0w1w2 . . . be the concatenation
of all wi. Set s0 = ι and, for i ∈ N, si+1 = (si+1,Ri+1) = δ (ι ,w0 . . .wi). Then, w ∈ L(Aϕ) ⇐⇒ the
sequence s0,s1,s2, . . . satisfies F ⇐⇒ w ∈ L(A ).

The RTA Tϕ . To get finite-memory algorithms, we will rely on Lemma 3, which is based on tree
automata. In fact, a crucial ingredient of the proof is an RTA Tϕ over Λ-labeled D-trees such that

L(Tϕ) = { t | t is a strategy tree such that ft fulfills ϕ}.

It is defined by Tϕ = (S, ι ,∆,F ) where S, ι , and F are taken from A , and ∆ is given by

∆ =

{
(s = (s,R),λ ,(sd)d∈D)

∣∣∣∣∣ sd = δ (s,λ LdM) for all d ∈ Σ]Σ∗^ (T1)

λ LwM ∈ L(Aϕ [s]) for all w ∈ Σ]Σω
^ (T2)

}
.

Here, Aϕ [s] = (Sϕ ,s,δϕ ,Fϕ) is the automaton Aϕ but where ιϕ has been replaced by s as the initial
state. While condition (T1) “unfolds” A into the tree structure taking care of input sequences with
infinitely many synchronization points, condition (T2) guarantees that the distributed algorithm behaves
correctly should there be no more synchronization.

Correctness of Tϕ , which relies on Claim 1, is shown in Appendix C.

Putting It Together. We now obtain Lemma 4 as a corollary from Lemma 3 using Tϕ .
Direction (2) =⇒ (1) is trivial. Let us show (1) =⇒ (2) and suppose L(Tϕ) 6= /0. Consider the

input-free RTA T ′
ϕ = (S, ι ,∆′,F ) obtained from Tϕ by replacing the transition relation with ∆′ =

{(s,(sd)d∈D) | (s,λ ,(sd)d∈D) ∈ ∆}. Note that L(T ′
ϕ) 6= /0. By Lemma 3, there is an accepting run ρ

of T ′
ϕ such that, for all w,w′ ∈ D∗ with ρ(w) = ρ(w′), we have transρ(w) = transρ(w′). For all transi-

tions θ = (s,(sd)d∈D) ∈ ∆′, fix λ θ ∈ Λ such that (s,λ θ ,(sd)d∈D) ∈ ∆. Let t : D∗→ Λ be the strategy tree
defined by t(w) = λ transρ (w).

We have t ∈ L(Tϕ). Therefore, ft fulfills ϕ , i.e., (2a) holds. It remains to show (2b). Let w,w′ ∈ D∗

with δ (ι , ftLwM) = δ (ι , ftLw′M). By induction, we can show that ρ(w) = δ (ι , ftLwM) = δ (ι , ftLw′M) =
ρ(w′), i.e., t(w) = t(w′), which proves (2b). Indeed, δ (ι , ftLεM) = ι = ρ(ε) and, for u ∈ D∗ and d ∈ D,
we have δ (ι , ftLudM) = δ (ι , ftLuM ·λ uLdM) = δ (δ (ι , ftLuM),λ uLdM) = δ (ρ(u),λ uLdM) = ρ(ud). The last
equation is by (T1) in the definition of the transition relation ∆ of Tϕ .
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4 From Finite-Memory Distributed Algorithms to Games

4.1 Games with Imperfect Information

The existence of finite-memory distributed algorithms shown in Section 3 paves the way for a reduction
of the synthesis problem to (2,1)-player games with imperfect information, where two players form
a coalition against an environment in order to fulfill some objective. The main differences between
games and the synthesis problem are twofold: Games are played in an arena, on a finite set of nodes
(or states), while the input of the synthesis problem is a logical specification. More importantly, in a
game, communication between players occurs implicitly, by observing the nodes that are visited. Hence,
communication between players is bounded by the finite nature of the arena, whereas in the synthesis
problem, processes can send an unbounded amount of information at each communication point. Recall
that P = {1,2} is the set of processes. In the context of games, however, its elements are referred to as
players.

Definition 4. A (2,1)-player game is a tuple G = (V,v0,W,Γ,(Ap,Op,obsp)p∈P,τ). Here, V is the finite
set of nodes containing the initial node v0 ∈ V . We assume a Rabin winning condition W ⊆ 2V × 2V .
Moreover, Γ is the finite set of actions of the environment, Ap is the finite set of actions of player p, Op

is the finite set of observations of p, and obsp : V ×Γ→ Op determines what p actually observes for a
given node and environment action. Finally, τ : V ×Γ× (A1×A2)→V is the transition function.

The game proceeds in rounds r ∈ N, the first round starting in v0. When a round starts in v ∈V , the
environment first chooses an action γ ∈ Γ. Players 1 and 2 do not see γ , but only obs1(v,γ) and obs2(v,γ),
respectively. Once the players receive these observations, they simultaneously choose actions a1 ∈ A1
and a2 ∈ A2. The next state is τ(v,γ,(a1,a2)), etc.

Accordingly, a play (starting from v0) is a sequence π = (v0,γ0)(v1,γ1) . . . ∈ (V ×Γ)ω such that, for
all r ∈ N, there is (a1,a2) ∈ A1×A2 such that vr+1 = τ(vr,γr,(a1,a2)). The observation that a player p
collects in play π until round r is defined as J(v0,γ0) . . .(vr,γr)K

game
p = obsp(v0,γ0) . . .obsp(vr,γr) ∈ O∗p.

The play is winning (for the coalition of players 1 and 2) if v0v1v2 . . . satisfies the Rabin winning condition
in the expected manner.

A strategy for player p is a mapping gp : O+
p → Ap. A strategy profile is a pair g = (g1,g2) of

strategies. We say that play π = (v0,γ0)(v1,γ1) . . . is compatible with g if, for all r ∈ N, we have vr+1 =
τ(vr,γr,(ar

1,a
r
2)) where ar

p = gp(J(v0,γ0) . . .(vr,γr)K
game
p ). Strategy profile g is winning if all plays that

are compatible with g are winning.
The following fact has been shown by Peterson and Reif [32] for games and corresponds to the

undecidability result of Pnueli and Rosner [36] for two processes without communication.

Fact 2 (Peterson-Reif). The following problem is undecidable: Given a (2,1)-player game G , is there a
winning strategy profile?

Therefore, we have to impose a restriction. It turns out that, when we translate the synthesis problem
for N = {],^} to games in Section 4.2, player 1 (who corresponds to process 1) will have perfect
information. We say that player p has perfect information in G if Op = V ×Γ and obsp is the identity
function.

The following result is by van der Meyden and Wilke [29, Theorem 6] with a proof in [30, Theo-
rem 1].

Fact 3 (van der Meyden-Wilke). The following problem is decidable: Given a (2,1)-player game G such
that player 1 has perfect information, is there a winning strategy profile?
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Note that the transition function of our game is deterministic so that we actually obtain decidability
in exponential time exploiting a standard technique: We use a small tree automaton to represent the
global (full information) winning strategies and another small alternating tree automaton for the local
ones of player 2 that conform with some global strategy. The alternating automaton can be checked for
nonemptiness in exponential time.

4.2 Reduction to Games

The analogies between synthesis and games suggest a natural translation of the former into the latter.
However, the crucial difference being the access to histories, we rely on the fact that certain histories
in distributed algorithms enjoy a finite abstraction. In fact, it is enough to reveal a bounded amount of
information to player 2 at every environment action from Σ].

Lemma 5. Let ϕ ∈ LTL(N ) with N = {],^}. We can effectively construct a (2,1)-player game Gϕ

such that player 1 has perfect information and the following holds: There is a distributed algorithm that
fulfills ϕ iff there is a winning strategy profile in Gϕ .

Proof. By Remark 2, input sequences that do not start with a symbol from Σ] are discarded. Hence,
we assume that those sequences are all trivially “winning”, i.e., (Σ^×Ω)(Σ×Ω)ω ⊆ L(ϕ). Let A =
(S, ι ,δ ,F ) be the DRWA according to Lemma 2. Recall that S = Sϕ ×2Sϕ , where Sϕ is taken from Aϕ ,
and that the transition function is of the form δ : S× (Σ×Ω)→ S.

We construct the game Gϕ = (V,v0,W,Γ,(Ap,Op,obsp)p∈P,τ) as follows. Obviously, player 1 corre-
sponds to process 1 and player 2 to process 2. We simply set V = S and v0 = ι = (ιϕ , /0), and W contains,
for all (Fϕ ,F ′ϕ) ∈Fϕ , the pair (Fϕ ×2Sϕ ,F ′ϕ ×2Sϕ ).

Moreover, Γ = Σ, the idea being that the environment chooses the inputs and the network graph.
Accordingly, processes 1 and 2 choose their outputs so that A1 = Y1 and A2 = Y2.

Player 1’s observations are O1 =V ×Σ and we set obs1(s,〈x1
 x2〉) = (s,〈x1
 x2〉). Thus, player
1 has full information. Player 2’s observations are O2 = (S×Σ])∪Σ⊥^ and we set

obs2(s,〈x1
 x2〉) =

{
(s,〈x1 ] x2〉) if
= ]
〈⊥^ x2〉 if
= ^ .

That is, when the environment chooses a synchronizing input signal, the current state of A is revealed to
player 2, which corresponds to passing the (abstracted) history to process 2. Finally, the transitions are
given by τ(s,〈x1
 x2〉,(y1,y2)) = δ

(
s,(〈x1
 x2〉,(y1,y2))

)
.

Correctness of the reduction is proved in Appendix D.

We have shown Theorem 2 saying that the problem SYNTHESIS({],^}) is decidable.

Complexity. The size of Aϕ is doubly exponential in the length of the formula. It follows that the
size of A is triply exponential, and so is the size of Gϕ . Deciding the winner of our (2,1)-player game
where one player has perfect information can be done in exponential time so that the overall decision
procedure runs in 4-fold exponential time.

Note that SYNTHESIS({]}), which is equivalent to centralized synthesis in presence of one sin-
gle process, is 2EXPTIME-complete [34], from which we inherit the best known lower bound for our
problem. Moreover, hierarchical information further increases the complexity: for static pipelines with
variable number of processes, the problem is no longer elementary [36]. However, it may be possible to
improve our upper bound, which is left for future work.
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As, in the proof, the given LTL formula is translated into a DRWA, synthesis is decidable even when
the specification is given by any common finite automaton over ω-words (starting with a nondeterministic
Büchi automaton, we actually save one exponential wrt. LTL):

Corollary 1. Over N = {],^}, the following problem is decidable: Given an ω-regular language
L⊆ (Σ×Ω)ω , is L realizable?

5 Reduction from {],^,_} to {],^}

In this section, we show decidability for the network model N = {],^,_}, with input alphabet
Σ = X1×N ×X2 and output alphabet Ω = Y1×Y2. Recall that this also implies decidability for the
network model {^,_}.

0
1

2
3
4
5

w ⟪w⟫
x0 ^ x′0
x1 _ x′1

x2 _ x′2
x3 ] x′3
x4 _ x′4
x5 ^ x′5

 

x0 ^ x′0
# ] #
x′1 ^ x1
x′2 ^ x2
x′3 ] x3
x′4 ^ x4
# ] #
x5 ^ x′5

0
1
2
3
4
5
6
7

Figure 4: Illustration of ⟪·⟫ : Σ∗→ (Σ′)∗

The idea is to reduce the problem to the case of the network model N ′= {],^} that we considered
in Sections 3 and 4, choosing as input alphabet Σ′ = X ′1×N ′×X ′2 where X ′1 = X ′2 = (X1 ∪X2)]{#},
and as output alphabet Ω′ =Y ′1×Y ′2 where Y ′1 =Y ′2 = (Y1∪Y2)]{#}. To do so, we will rewrite the given
specification ϕ ∈LTL(N ) towards an (automata-based) specification over N ′ in such a way that process
1 can always simulate the “more informed” process and process 2 simulates the other process. Roughly
speaking, what we are looking for is a translation ⟪·⟫ : Σ∗ → (Σ′)∗ of histories w over N to histories
⟪w⟫ over N ′ such that the view of process 1 in ⟪w⟫ is “congruent” to the view of the more informed
process in w, and the view of process 2 in ⟪w⟫ is “congruent” to the view of the less informed process in
w. Note that [8] also uses a simulation technique to cope with dynamically changing hierarchies.

Example 4. Before defining ⟪·⟫ formally, we illustrate it in Figure 4 for a history w. Round 0 uses ^
so that there is nothing to change. Round 1 employs _ so that process 1 henceforth simulates process
2 and vice versa. To make sure that the corresponding views in ⟪w⟫ are still “congruent”, we insert the
dummy signal 〈# ] #〉. Actually, the gray-shaded view of process 1 in w after round 2 contains the same
information as the gray-shaded view of process 2 in ⟪w⟫ after round 3. Though w encounters ] in round
3, we decide not to change roles again; we will only do so when facing another ^ (like in round 5). C

Formally, ⟪·⟫ : Σ∗→ (Σ′)∗ is given by the sequential transducer shown in Figure 5. For the moment,
we ignore the red part. A transition with label α | β reads α and transforms it into β . As the transducer
is deterministic, it actually defines a function. When we include the red part, i.e., the symbols from Ω

and Ω′, we obtain an extension to ⟪·⟫ : (Σ×Ω)∗→ (Σ′×Ω′)∗. Finally, these mappings are extended to
infinite words as expected.

Observe that the state of the transducer reached after reading w ∈ Σ∗ (or w ∈ (Σ×Ω)∗) reveals
the process that process 1 is currently simulating. We denote this process by sim1(w). Accordingly,
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1 2

〈x1 _ x2〉
(y1,y2)

〈# ] #〉
(#,#)

〈x2 ^ x1〉
(y2,y1)

〈x1 ^ x2〉
(y1,y2)

〈# ] #〉
(#,#)

〈x1 ^ x2〉
(y1,y2)

〈x1 ] x2〉
(y1,y2)

〈x1 ] x2〉
(y1,y2)

〈x1 ^ x2〉
(y1,y2)

〈x1 ^ x2〉
(y1,y2)

〈x1 ] x2〉
(y1,y2)

〈x2 ] x1〉
(y2,y1)

〈x1 _ x2〉
(y1,y2)

〈x2 ^ x1〉
(y2,y1)

Figure 5: The mappings ⟪·⟫ : Σ∗→ (Σ′)∗ and ⟪·⟫ : (Σ×Ω)∗→ (Σ′×Ω′)∗

sim2(w) = 3− sim1(w) is the process that process 2 simulates after input sequence w. For the example
word w in Figure 4, we get sim1(w) = 1 and sim2(w) = 2.

Note that, for all w,w′ ∈ Σ∗ and p ∈ {1,2}, such that JwKp = Jw′Kp, we have simp(w) = simp(w′).
This is because the simulated process only depends on the sequence of links.

Note that the mappings ⟪·⟫ are all injective. Indeed, at the first position that distinguishes w and w′,
the transducer produces letters that distinguish ⟪w⟫ and ⟪w′⟫. There is an analogous statement for views
(proved in Appendix E):
Lemma 6. For all w,w′ ∈ Σ∗ and p ∈ {1,2}, the following hold:

(a) J⟪w⟫Kp = J⟪w′⟫Kp =⇒ JwKsimp(w) = Jw′Ksimp(w′)

(b) JwKp = Jw′Kp =⇒ J⟪w⟫Ksimp(w) = J⟪w′⟫Ksimp(w′)

Moreover, the transducer can be applied to ω-regular languages in the following sense:
Lemma 7. Given a DRWA A over the alphabet Σ×Ω, there is a DRWA A ′ over Σ′×Ω′ of linear size
such that L(A ′) = ⟪L(A )⟫ := {⟪w⟫ | w ∈ L(A )}.

Now, decidability for N is due to Lemma 7 and the following result, whose proof crucially relies on
injectivity of ⟪·⟫ and Lemma 6 (cf. Appendix F):
Lemma 8. Let ϕ ∈ LTL(N ). The following statements are equivalent:

(i) There is a distributed algorithm f (over N ) such that, for all w ∈ Σω , f LwM ∈ L(ϕ).

(ii) There is a distributed algorithm f ′ (over N ′) such that, for all w ∈ Σω , f ′L⟪w⟫M ∈ ⟪L(ϕ)⟫.
In other words, an instance ϕ ∈ LTL(N ) of the synthesis problem can be reduced to the existence

of a distributed algorithm f ′ over N ′, Σ′, and Ω′ that fulfills L = M∪⟪L(ϕ)⟫ where M ⊆ (Σ′×Ω′)ω is
the set of words whose projection to Σ′ is not contained in ⟪Σω⟫. Using Lemma 7, we obtain a DRWA
for L (of doubly exponential size) so that, by Corollary 1, the problem is decidable. Again, the overall
procedure runs in 4-fold exponential time.

This concludes the proof of our main result, Theorem 1.

6 Conclusion

We showed that synthesis in a dynamic, synchronous two-node system is decidable for LTL specifications
if and only if the network model does not contain the empty network. Our model covers full-information
protocols where nodes communicate their complete unbounded causal history.
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Future work is concerned with establishing the precise complexity of our problem and, possibly, im-
proving the 4-fold exponential upper bound. Moreover, it would be interesting to identify the subsets of
{−×,^,_,]}ω that give rise to a decidable synthesis problem. For example, one may allow boundedly
many empty links in an input sequence. Finally, we plan to extend our model to distributed systems of
arbitrary size. We conjecture that synthesis is solvable over a given network model if and only if, in each
communication graph, any two nodes are connected via a directed path. This would yield an analogue of
the information-fork criterion [16], which applies to static architectures. It remains to be seen whether
the ideas presented in [16] can be lifted to dynamic architectures with causal memory.

Acknowledgment. We thank Dietmar Berwanger for valuable feedback.
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A Proof of Lemma 3

Lemma 3. Let A be a singleton alphabet, D a nonempty (possibly infinite) set of directions, and T
an RTA over A-labeled D-trees. Call a run ρ of T on the unique A-labeled D-tree rational if, for all
w,w′ ∈ D∗ with ρ(w) = ρ(w′), we have transρ(w) = transρ(w′). If L(T ) 6= /0, then there is a rational
accepting run of T .

The proof is inspired by [37, 39] where it is shown that every nonempty language recognized by a
classical RTA contains a tree with only finitely many distinct subtress. Note that, here, we deal with
trees that are not necessarily bounded branching. Moreover, we show a statement on runs rather than the
recognized tree language.

Let T = (S, ι ,∆,F ) be the RTA over A-labeled D-trees. Since A = {a}, we consider the transition
relation ∆ to be a subset of S×SD, fixing input a.

Call a state s ∈ S

• absorbing if the only transition in which s occurs is (s,(sd)d∈D) ∈ ∆ with sd = s for all d ∈ D,

• vanishing if it is the initial state ι and has no incoming transition, i.e., there is no transition
(s,(sd)d∈D) ∈ ∆ with sd = s for some d ∈ D.

• live if it is neither absorbing nor vanishing.

We prove the statement of the theorem by induction on the number of live states in S.

Base case. Suppose there are no live states in S. Let ρ be an accepting run of T . If ρ(ε) is absorbing,
then ρ is rational. If ρ(ε) is vanishing, then ρ(d) is absorbing for all d ∈ D (i.e., for all children of the
root). Again, it follows that ρ is rational. The base case follows.

Inductive step. Let ρ be an accepting run of T . We distinguish between three cases.

Case 1. There exists a live state s ∈ S that does not appear in ρ . If so, ρ is also an accepting run of the
tree automaton T ′ that we obtain from T by removing state s and all transitions in which s occurs. By
the induction hypothesis, there exists a rational run ρ ′ of T . But ρ ′ is also a run of T (for all paths ξ in
ρ , Inf(ξ ) did not change). The step follows for Case 1.

Case 2. There exists a node u ∈D∗ such that s = ρ(u) is live and there exists a state s′ ∈ S that is live and
that does not appear in u’s subtree.

Define the RTA T1 obtained from T by removing all transitions from s and adding the “accepting”
transition (s,(sd)d∈D) where sd = s for all d ∈ D. In fact, the transition is made accepting by adding s
to all sets F of (F,F ′) ∈F . By construction, s is absorbing in T1. Thus, T1 has at least one live state
(namely s) less. By the induction hypothesis, T1 has some rational accepting run ρ1.

Define another RTA T2 obtained from T by setting the initial state to s and deleting s′ from S (as well
as all transitions that include s′). Thus, T2 has at least one live state (namely s′) less. By the induction
hypothesis, T2 has some rational accepting run ρ2. Let S2 be the set of states that occur in ρ2. Moreover,
for each r ∈ S2, let ρr

2 denote the (unique up to isomorphism) subtree of ρ2 rooted at an r-node. Note that
ρs

2 = ρ2.
Next, we define a tree ρ ′1, which we obtain from ρ1 as follows: Along each path of ρ1, we are looking

for the first occurrence of a node v such that ρ1(v) ∈ S2. For every such node v, we replace its subtree by
ρ

ρ1(v)
2 . In particular, every subtree in ρ1 whose root has state s is replaced by ρ2.

Observe that ρ ′1 is a rational run of T . Further, ρ ′1 is accepting: For a path ξ in ρ , we know that it is
either a path that stays in ρ1 (in which case there is (F,F ′)∈F with F∩ Inf(ξ ) 6= /0 and F ′∩ Inf(ξ ) = /0),
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or it is a path that initially is in ρ1 and then remains in ρ2. In the latter case, Inf(ξ ) is determined only by
the suffix ξ2 in ρ2, for which we know that there is (F,F ′)∈F with F∩ Inf(ξ2) 6= /0 and F ′∩ Inf(ξ2) = /0.
The induction step follows for Case 2.

Case 3. Otherwise, all live states appear in all subtrees of nodes whose state is live.
Choose a path ξ0 in ρ such that the set Inf(ξ0) is the set of live states in S. Note that this is possible

by assumption of Case 3. Since ρ is accepting, there is a pair (F,F ′) ∈F such that Inf(ξ0)∩F 6= /0 and
Inf(ξ0)∩F ′ = /0. Fix this pair (F,F ′) for the remainder of the proof. We observe:

(a) Inf(ξ0) does not contain absorbing or vanishing states.

(b) If nonempty, F ′ only contains absorbing and vanishing states.

(c) Inf(ξ0)∩F is nonempty and contains a live state, say, s.

We build a rational run as follows:
Define T1 as in the second case above. State s is thus absorbing and not a live state in T1. Let ρ1 be

an accepting run of T1. By the induction hypothesis, we can suppose that ρ1 is rational.
Define T3 as T with the following changes: S is replaced by S∪{snew} where snew is a fresh “ac-

cepting” absorbing state (with corresponding absorbing transition added), each s that appears as sd in a
transition (ŝ,(sd)d∈D) in ∆ is replaced by snew, and finally we set s to be the initial state. State s is van-
ishing and not a live state. State snew is absorbing. Let ρ3 be a run of T3. By the induction hypothesis,
we can assume that ρ3 is rational.

Define run ρ3,lim as the limit of the following process: Take ρ3 and replace all subtrees of the nodes
whose state is snew with ρ3. Let S3 be the set of states that occur in ρ3,lim. Moreover, for each r ∈ S3, let
ρr

3,lim denote the (unique up to isomorphism) subtree of ρ3,lim rooted at an r-node. In particular, we have
ρs

3,lim = ρ3,lim.
Similarly to Case 2, we obtain a tree ρ ′1 from ρ1 as follows: Along each path of ρ1, we are looking

for the first occurrence of a node u such that ρ1(u) ∈ S3. For every such node u, we replace its subtree by
ρ

ρ1(u)
3,lim . In particular, every subtree in ρ1 whose root has state s is replaced by ρ3,lim.

By construction, ρ ′1 is a rational run of T . One also verifies that ρ ′1 is accepting: Let ξ be a path in
ρ ′1. If the path has a suffix that stays in ρ1, acceptance by T follows from acceptance by T1. Otherwise,
a suffix ξ ′ of ξ remains in ρ3,lim. If ξ ′ contains a finite number of s, then a suffix of it is in ρ3. Acceptance
by T follows from acceptance by T1.

It remains the case that ξ ′ is in ρ3,lim and contains s infinitely often. From (c), we have that s ∈ F .
Further, Inf(ξ ′) cannot contain vanishing states (they have no incoming transitions) and no absorbing
states (otherwise, this contradicts the fact that s appears infinitely often). Thus, Inf(ξ ′) ⊆ Inf(ξ0). To-
gether with (a) and (b), Inf(ξ ′)∩F ′ = /0. It follows that ξ ′ is accepting by T . The induction step follows
for Case 3.

B Proof of Claim 1

Claim 1. Let w0,w1,w2, . . . ∈ (Σ]×Ω)(Σ^×Ω)∗. Moreover, let w = w0w1w2 . . . be the concatenation
of all wi. Set s0 = ι and, for i ∈ N, si+1 = (si+1,Ri+1) = δ (ι ,w0 . . .wi). Then, w ∈ L(Aϕ) ⇐⇒ the
sequence s0,s1,s2, . . . satisfies F ⇐⇒ w ∈ L(A ).

For s ∈ Sϕ and w = α0 . . .αn−1 ∈ (Σ×Ω)∗, let

VisitAϕ
(s,w) = {δ (s,α0), . . . ,δ (s,α1 . . .αn−1)}
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be the set of states that are traversed by A when reading w. Note that VisitAϕ
(s,w) does not necessarily

contain s. For all i ∈ N, we have Ri+1 = VisitAϕ
(si,wi). With this, we get:

w ∈ L(Aϕ)

⇐⇒ ∃(F,F ′) ∈Fϕ : Visit∞

Aϕ
(w)∩F 6= /0 and Visit∞

Aϕ
(w)∩F ′ = /0

⇐⇒ ∃(F,F ′) ∈Fϕ :
(

VisitAϕ
(si,wi)∩F 6= /0 for infinitely many i≥ 0

VisitAϕ
(si,wi)∩F ′ 6= /0 for finitely many i≥ 0

)
⇐⇒ ∃(F,F ′) ∈Fϕ :

(
Ri+1∩F 6= /0 for infinitely many i≥ 0
Ri+1∩F ′ 6= /0 for finitely many i≥ 0

)
⇐⇒ ∃(F,F ′) ∈Fϕ :

(
si+1 ∈ GF for infinitely many i≥ 0
si+1 ∈ GF ′ for finitely many i≥ 0

)
⇐⇒ the sequence s0,s1,s2, . . . satisfies the acceptance condition F

⇐⇒ w ∈ L(A )

The last equivalence is due to the fact that the R-component is monotonically increasing when A is read-
ing a word α0 . . .αn−1 ∈ (Σ]×Ω)(Σ^×Ω)∗. In fact, for (s′0,R

′
0) ∈ S and (s′i+1,R

′
i+1) = δ ((s′i,R

′
i),αi),

we have R′1 ⊆ R′2 ⊆ . . .⊆ R′n.

C Correctness of Tϕ

We will show

L(Tϕ) = {t | t is a strategy tree such that ft fulfills ϕ}.

We have to consider two inclusions:

Inclusion⊆: Suppose t ∈ L(Tϕ). For u ∈D∗, let λ u = (λ u
1 ,λ

u
2 ) refer to t(u). There is an accepting

run ρ : D∗→ S of Tϕ on t. Let w ∈ Σ]Σω . We will show, using Claim 1, that ftLwM ∈ L(Aϕ).

• Suppose w= d0d1 . . .dn−1u where d0, . . . ,dn−1 ∈ Σ]Σ∗^, with n∈N, and u∈ Σ]Σω
^. In particular,

seen as a word over Σ, w contains only finitely many letters from Σ]. We have

ftLwM = λ
εLd0M ·λ d0Ld1M ·λ d0d1Ld2M · . . . ·λ d0d1...dn−2Ldn−1M ·λ d0d1...dn−1LuM .

By the definition of ∆, we have

(s1,R1) := ρ(d0) = δ (ι ,λ εLd0M)

(s2,R2) := ρ(d0d1) = δ (ρ(d0),λ
d0Ld1M)

(s3,R3) := ρ(d0d1d2) = δ (ρ(d0d1),λ
d0d1Ld2M)

...

(sn,Rn) := ρ(d0d1d2 . . .dn−1) = δ (ρ(d0d1 . . .dn−2),λ
d0d1...dn−2Ldn−1M)
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and λ d0d1...dn−1LuM ∈ L(Aϕ [sn]). This implies

s1 = δϕ(ιϕ ,λ
εLd0M)

s2 = δϕ(s1,λ
d0Ld1M)

s3 = δϕ(s2,λ
d0d1Ld2M)

...

sn = δϕ(sn−1,λ
d1...dn−2Ldn−1M) .

Therefore, together with λ d0d1...dn−1LuM ∈ L(Aϕ [sn]), we obtain ftLwM ∈ L(Aϕ).

• Suppose w = d0d1d2 . . . where d0,d1,d2, . . . ∈ Σ]Σ∗^ for all n ∈ N. Thus, w contains infinitely
many letters from Σ]. We have

ftLwM = λ
εLd0M ·λ d0Ld1M ·λ d0d1Ld2M ·λ d0d1d2Ld3M · . . .

Moreover, we have

s1 := ρ(d0) = δ (ι ,λ εLd0M)

s2 := ρ(d0d1) = δ (ρ(d0),λ
d0Ld1M)

s3 := ρ(d0d1d2) = δ (ρ(d0d1),λ
d0d1Ld2M)

...

As ρ is an accepting run on t, the sequence ι ,s1,s2, . . . satisfies F . By Claim 1, we obtain ftLwM ∈
L(Aϕ).

Inclusion⊇: Suppose t is a strategy tree such that ft fulfills ϕ . Again, for u∈D∗, let λ u = (λ u
1 ,λ

u
2 )

refer to t(u). We will construct an accepting run ρ : D∗→ S of Tϕ on t. First of all, we let ρ(ε) = ι .
Suppose that we defined ρ(u) for u = d0d1 . . .dn−1 ∈ D∗ where d0, . . . ,dn−1 ∈ D = Σ]Σ∗^, with

n ∈ N. For d ∈ D, we let
ρ(ud) = δ (ρ(u),λ uLdM) .

Claim 3. For all u ∈ D∗ and u′ ∈ Σ]Σ∗^∪Σ]Σω
^, the following hold:

ftLuu′M = ftLuM ·λ uLu′M (1)

ρ(u) = δ (ι , ftLuM) (2)

Proof of Claim 3. The first statement is due to the definition of ft . The second statement follows from
an easy induction on u (see also end of Section 3):

ρ(ε) = δ (ι ,ε)

ρ(ud) = δ (ρ(u),λ uLdM)
= δ (δ (ι , ftLuM),λ uLdM)
= δ (ι , ftLuM ·λ uLdM)
= δ (ι , ftLudM)

Note that the last equality is due to (1). �
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Let u ∈ D∗ and (s,R) = ρ(u). Let us establish that (ρ(u),λ u,(ρ(ud))d∈D) is a transition of Tϕ :

(T1) We have ρ(ud) = δ (ρ(u),λ uLdM) by the definition of ρ .

(T2) Let u′ ∈Σ]Σω
^. As ft fulfills ϕ , we have ftLuu′M∈L(Aϕ). By Claim 3(1), λ uLu′M∈L(Aϕ [δϕ(ιϕ , ftLuM)]).

By means of Claim 3(2) and the definition of A wrt. to Aϕ , we can deduce λ uLu′M ∈ L(Aϕ [s]).

Finally, we show that ρ is accepting. Let d0,d1,d2, . . .∈D and consider the path ξ = d0d1d2 . . . along
with the induced infinite sequence

ρ(ε),ρ(d0),ρ(d0d1),ρ(d0d1d2),ρ(d0d1d2d3), . . .

Recall that we have
ftLwM = λ

εLd0M ·λ d0Ld1M ·λ d0d1Ld2M ·λ d0d1d2Ld3M · . . .

as well as

ρ(d0) = δ (ι ,λ εLd0M)

ρ(d0d1) = δ (ρ(d0),λ
d0Ld1M)

ρ(d0d1d2) = δ (ρ(d0d1),λ
d0d1Ld2M)

...

As ftLwM ∈ L(Aϕ), by Claim 1, we have that ξ is accepting.

D Details for Proof of Lemma 5

There are now two directions to show.

Claim 4. If there is a winning strategy profile in Gϕ , then there is a distributed algorithm that fulfills ϕ .

Proof of Claim 4. Let g = (g1,g2) be a winning strategy profile in Gϕ , with gp : O+
p → Yp.

We define ν : Σ∗→V and η : Σ∗→ (V ×Σ)∗ inductively by

ν(ε) = ι

η(ε) = ε

ν(w〈x1
 x2〉) = τ(ν(w),〈x1
 x2〉,(y1,y2))

η(w〈x1
 x2〉) = η(w) · (ν(w),〈x1
 x2〉)

where yp = gp(Jη(w〈x1
 x2〉)Kgame
p ). That is, ν(w) is the node which is visited after input word w under

strategy profile g, and η(w) is the path corresponding to w in the game, starting at ι and applying g.
For every p ∈ {1,2} and w ∈ Σ]Σ∗, we define

fp(JwKp) = gp(Jη(w)Kgame
p ) .

This is well-defined by construction of the game, using the fact that g is known by both players. Indeed,
JwK1 = w, then it is possible to compute Jη(w)Kgame

1 from JwK1. For player 2, one can show inductively
that for all w,w′ ∈ Σ]Σ∗ such that JwK2 = Jw′K2, Jη(w)Kgame

2 = Jη(w′)Kgame
2 .
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Let w = σ0σ1σ2 . . . ∈ Σ]Σω . We have to show that f LwM ∈ L(ϕ) = L(Aϕ). Let us determine the
sequence s0,s1,s2, . . . of states of A visited while reading f LwM. Set s0 = ι and, for every r ∈ N,

sr+1 = δ
(
sr,
[
σr,
(

f1(σ0 . . .σr), f2(Jσ0 . . .σrK2)
)])

.

For all r ∈ N, we have

sr+1 = δ
(
sr,
[
σr,
(

f1(σ0 . . .σr), f2(Jσ0 . . .σrK2)
)])

= δ
(
sr,
[
σr,
(
g1(η(σ0 . . .σr)),g2(Jη(σ0 . . .σr)K

game
2 )

)])
= τ
(
sr,σr,

(
g1(η(σ0 . . .σr)),g2(Jη(σ0 . . .σr)K

game
2 )

))
.

Since g is winning and by the winning condition W of the game, we obtain f LwM ∈ L(Aϕ), which
concludes the proof of Claim 4. �

Claim 5. If there is a distributed algorithm that fulfills ϕ , then there is a winning strategy profile in Gϕ .

Proof of Claim 5. Let f = ( f1, f2) be a distributed algorithm that fulfills ϕ . Due to Lemma 2, we can
assume that for all words w,w′ ∈ {ε}∪Σ]Σ∗ satisfying δ (ι , f LwM) = δ (ι , f Lw′M), we have f2(wu) =
f2(w′u) for all u ∈ Σ]Σ∗⊥^.

We have to define a strategy profile g = (g1,g2) for the game. Recall that gp : O+
p → Ap. For every

s ∈ S, we will define an “access string” ws ∈ Σ∗ as follows: Set wι = ε . Moreover, for s ∈ S\{ι}, fix any
word ws ∈ Σ]Σ∗ such that δ (ι , f LwsM) = s. If no such word exists, we let ws = ε .

Note that, if the first environment action is not from Σ], then we can output anything. So fix an
arbitrary pair (y1,y2) ∈ Y1×Y2. Now, g is given as follows:

g1 :


(V ×Σ)+→ Y1

(v0,σ0) . . .(vn,σn) 7→

{
f1(σ0 . . .σn) if σ0 ∈ Σ]

y1 otherwise

g2 :


O+

2 → Y2

o 7→ y2 for o ∈ (Σ⊥^)O∗2
o · (s,〈x1 ] x2〉) ·u 7→ f2(ws · 〈x1 ] x2〉 ·u) for o ∈ {ε}∪ (S×Σ])O∗2 and u ∈ Σ∗⊥^

It remains to show that g is winning. So let π = (s0,σ0)(s1,σ1)(s2,σ2) . . . be a play that is compatible
with g, with sr = (sr,Rr). By our assumption that (Σ^×Ω)(Σ×Ω)ω ⊆ L(ϕ), we only need to consider
the case σ0 ∈ Σ]. For all r ∈ N, we have

(sr+1,Rr+1) = τ((sr,Rr),σr,(ar
1,a

r
2)) = δ

(
(sr,Rr),(σr,(ar

1,a
r
2))
)

where ar
p = gp(Jπ≤rK

game
p ) with π≤r = (s0,σ0) . . .(sr,σr).

It is enough to show that, for all r ∈ N, we have

(sr+1,Rr+1) = δ
(
(sr,Rr),

[
σr,
(

f1(σ0 . . .σr), f2(Jσ0 . . .σrK2)
)])

.

We proceed by induction on the number k of letters from Σ] in π≤r. So suppose

π≤r = (s0,σ0) . . .(sm−1,σm−1)︸ ︷︷ ︸
=: w

(sm,〈xm
1 ] xm

2 〉)(sm+1,〈xm+1
1 ^ xm+1

2 〉) . . .(sr,〈xr
1 ^ xr

2〉) .
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Set JεKgame
2 = ε and let u = 〈⊥^ xm+1

2 〉 . . .〈⊥^ xr
2〉. Then,

sr+1 = δ
(
sr,
[
σr,
(
g1(Jπ≤rK

game
1 ),g2(Jπ≤rK

game
2 )

)])
= δ

(
sr,
[
σr,
(
g1(π≤r),g2(JwKgame

2 · (sm,〈xm
1 ] xm

2 〉) ·u)
)])

= δ
(
sr,
[
σr,
(

f1(σ0 . . .σr), f2(wsm · 〈xm
1 ] xm

2 〉 ·u)
)])

(∗)
= δ

(
sr,
[
σr,
(

f1(σ0 . . .σr), f2(σ0 . . .σm−1 · 〈xm
1 ] xm

2 〉 ·u)
)])

= δ
(
sr,
[
σr,
(

f1(σ0 . . .σr), f2(Jσ0 . . .σrK2)
)])

Equation (∗) is trivial for m = 0 (i.e., k = 1), as then wsm = ε (by definition). Otherwise, it follows from
the induction hypothesis: The word σ0 . . .σm−1 contains k−1 signals from Σ]. That is, if m ≥ 1, then
sm = δ (ι , f Lσ0 . . .σm−1M). �

E Proof of Lemma 6

Lemma 6. For all w,w′ ∈ Σ∗ and p ∈ {1,2}, the following hold:

(a) J⟪w⟫Kp = J⟪w′⟫Kp =⇒ JwKsimp(w) = Jw′Ksimp(w′)

(b) JwKp = Jw′Kp =⇒ J⟪w⟫Ksimp(w) = J⟪w′⟫Ksimp(w′)

Part (a)

First, assume p = 1. Observe that for w ∈ Σ∗, ⟪w⟫ ∈ (Σ′)∗. Further, within the domain (Σ′)∗, J·K1 is the
identity. Together with the injectivity of ⟪·⟫, J⟪w⟫Kp = J⟪w′⟫Kp implies w = w′; the lemma’s statement
follows for p = 1.

Second, assume p = 2 and that J⟪w⟫K2 = J⟪w′⟫K2. For p′ ∈ P, let ⟪·⟫p′ denote the transduction
defined by the same transducer but with initial state p′. In particular, we have ⟪·⟫ = ⟪·⟫1. We start by
observing that the function J·K2 is length preserving and the projection onto a sequence of communication
graphs is the same in ⟪w⟫ and ⟪w′⟫. Moreover, the latter are of the form

⟪w⟫= ûσ

v̂︷ ︸︸ ︷
〈z1 ^ x1〉 . . .〈zn ^ xn〉

⟪w′⟫= ûσ 〈z′1 ^ x1〉 . . .〈z′n ^ xn〉︸ ︷︷ ︸
v̂′

for some û ∈ (Σ′)∗ and σ ∈ {ε}∪Σ′] such that σ 6= ε or û = σ = ε .

• Suppose û = σ = ε . Then, by the definition of ⟪·⟫, we have w = v̂ and w′ = v̂′. We deduce
JwKsim2(w) = Jw′Ksim2(w′) with sim2(w) = 2.

• Suppose that ε 6= σ = 〈χ1 ] χ2〉 6= 〈# ] #〉. Then, w = uv and w′ = u′v′ for some u,v,u′,v′ such
that ⟪u⟫ = û and ⟪u′⟫ = û and ⟪v⟫sim1(u) = σ v̂ and ⟪v′⟫sim1(u) = σ v̂′. By injectivity of ⟪·⟫, we
have u = u′.

– Suppose sim1(u) = 1, i.e., sim2(u) = 2. By the definition of ⟪·⟫, we obtain v = σ v̂ and
v′ = σ v̂′. Therefore, JwK2 = Jw′K2 = uσ〈⊥^ x1〉 . . .〈⊥^ xn〉.
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– Suppose sim1(u) = 2, i.e., sim2(u) = 1. By the definition of ⟪·⟫, we can deduce that v =
〈χ2 ] χ1〉〈x1 _ z1〉 . . .〈xn _ zn〉 and v′ = 〈χ2 ] χ1〉〈x1 _ z′1〉 . . .〈xn _ z′n〉. We conclude
JwK1 = Jw′K1 = u〈χ2 ] χ1〉〈x1 _⊥〉 . . .〈xn _⊥〉.

• Suppose that σ = 〈# ] #〉. Then, n≥ 1. Moreover, w = uv and w′ = u′v′ for some u,v,u′,v′ such
that ⟪u⟫ = û and ⟪u′⟫ = û and ⟪v⟫sim1(u) = σ v̂ and ⟪v′⟫sim1(u) = σ v̂′. By injectivity of ⟪·⟫, we
have u = u′.

– Suppose sim1(u) = 1. By the definition of ⟪·⟫, we obtain v = 〈x1 _ z1〉 . . .〈xn _ zn〉 and
v′ = 〈x1 _ z′1〉 . . .〈xn _ z′n〉. Therefore, sim2(w) = sim2(w′) = 1. We have that JwK1 =
JuvK1 = JuK1〈x1 _⊥〉 . . .〈x1 _⊥〉= Juv′K1 = Jw′K1.

– Suppose sim1(u) = 2. Now, by the definition of ⟪·⟫, we obtain v = 〈x1 ^ z1〉 . . .〈xn ^ zn〉
and v′ = 〈x1 ^ z′1〉 . . .〈xn ^ z′n〉. Therefore, sim2(w) = sim2(w′) = 2. We have that JwK2 =
JuvK2 = JuK2〈⊥^ x1〉 . . .〈⊥^ xn〉= Juv′K2 = Jw′K2.

Part (b)

Suppose JwKp = Jw′Kp. Note that this implies simp(w) = simp(w′) =: pw.
First, assume that one of the following holds:

• w = u〈x1 ] x2〉, or

• w = u〈x1 ^ x2〉 and p = 1, or

• w = u〈x1 _ x2〉 and p = 2.

Then, w = w′ and we are done.
For the remaining cases, we proceed by induction. The statement is obvious for w = ε .

Now, assume w = u〈x1 ^ x2〉 and p = 2. Then, pw = 2 and JwK2 = JuK2〈⊥^ x2〉= Jw′K2. Thus, we
have w′= u′〈x′1 ^ x2〉 for some u′ and x′1 such that JuK2 = Ju′K2. The latter implies sim2(u) = sim2(u′) =:
pu. By induction hypothesis, we get J⟪u⟫Kpu = J⟪u′⟫Kpu .

Suppose pu = 1. Then,

J⟪w⟫Kpw = J⟪u〈x1 ^ x2〉⟫K2

= J⟪u⟫〈# ] #〉〈x1 ^ x2〉K2

= ⟪u⟫〈# ] #〉〈⊥^ x2〉

and from pu = 1 and JuK2 = Ju′K2

= ⟪u′⟫〈# ] #〉〈⊥^ x2〉
= J⟪u′⟫〈# ] #〉〈x′1 ^ x2〉K2

= J⟪u′〈x′1 ^ x2〉⟫K2 = J⟪w′⟫Kpw

Suppose pu = 2. Then,

J⟪w⟫Kpw = J⟪u〈x1 ^ x2〉⟫K2

= J⟪u⟫〈x1 ^ x2〉K2

= J⟪u⟫K2〈⊥^ x2〉
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and by induction hypothesis

= J⟪u′⟫K2〈⊥^ x2〉
= J⟪u′⟫〈x′1 ^ x2〉K2

= J⟪u′〈x′1 ^ x2〉⟫K2 = J⟪w′⟫Kpw

Now, assume w = u〈x1 _ x2〉 and p = 1. Then, pw = 2 and JwK1 = JuK1〈x1 _⊥〉= Jw′K1. Thus, we
have w′= u′〈x1 _ x′2〉 for some u′ and x′2 such that JuK1 = Ju′K1. The latter implies sim1(u) = sim1(u′) =:
pu. By induction hypothesis, we get J⟪u⟫Kpu = J⟪u′⟫Kpu .

Suppose pu = 1. Then,

J⟪w⟫Kpw = J⟪u〈x1 _ x2〉⟫K2

= J⟪u⟫〈# ] #〉〈x2 ^ x1〉K2

= ⟪u⟫〈# ] #〉〈⊥^ x1〉

and from pu = 1 and JuK1 = Ju′K1

= ⟪u′⟫〈# ] #〉〈⊥^ x1〉
= J⟪u′⟫〈# ] #〉〈x′2 ^ x1〉K2

= J⟪u′〈x1 _ x′2〉⟫K2 = J⟪w′⟫Kpw

Suppose pu = 2. Then,

J⟪w⟫Kpw = J⟪u〈x1 _ x2〉⟫K2

= J⟪u⟫〈x2 ^ x1〉K2

= J⟪u⟫K2〈⊥^ x1〉

and by induction hypothesis

= J⟪u′⟫K2〈⊥^ x1〉
= J⟪u′⟫〈x′2 ^ x1〉K2

= J⟪u′〈x1 _ x′2〉⟫K2 = J⟪w′⟫Kpw

F Proof of Lemma 8

Lemma 8. Let ϕ ∈ LTL(N ). The following statements are equivalent:

(i) There is a distributed algorithm f (over N ) such that, for all w ∈ Σω , f LwM ∈ L(ϕ).

(ii) There is a distributed algorithm f ′ (over N ′) such that, for all w ∈ Σω , f ′L⟪w⟫M ∈ ⟪L(ϕ)⟫.

We start by showing (i)→ (ii). Let f = ( f1, f2) be a distributed algorithm over N that fulfills L(ϕ).
Let f ′ = ( f ′1, f ′2) be a distributed algorithm over N ′ such that, for all w ∈ Σ+, w′ ∈ (Σ′)+, and p ∈ {1,2},

f ′p(J⟪w⟫Kp) := fsimp(w)(JwKsimp(w))

f ′p(w
′〈# ] #〉) := # .

(3)
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Note that this is well-defined due to Lemma 6(a). We have to show that, for all w ∈ Σω , we get
f ′L⟪w⟫M ∈ ⟪L(ϕ)⟫. This follows from the fact that, for all w ∈ Σ∗, we have

f ′L⟪w⟫M = ⟪ f LwM⟫
which we show by induction (in the following, let f ′(u) stand for ( f ′1(JuK1), f ′2(JuK2))):

• From the definitions, we obtain f ′L⟪ε⟫M = ⟪ f LεM⟫.
• For w ∈ Σ∗ with sim1(w) = 1 and ŵ = w〈x1 ^ x2〉 (therefore, sim1(ŵ) = 1), we have

f ′L⟪w〈x1 ^ x2〉⟫M = f ′L⟪w⟫〈x1 ^ x2〉M
= f ′L⟪w⟫M · (〈x1 ^ x2〉, f ′(⟪w⟫〈x1 ^ x2〉)

)
= f ′L⟪w⟫M · (〈x1 ^ x2〉, f ′(⟪ŵ⟫))
(3)
= f ′L⟪w⟫M · (〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2))

)
IH
= ⟪ f LwM⟫ · (〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2))

)
and from sim1( f LwM)) = sim1(w) = 1 (because the projection of f LwM to Σ equals w)

= ⟪ f LwM · (〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
= ⟪ f Lw〈x1 ^ x2〉M⟫= ⟪ f LŵM⟫

• For w ∈ Σ∗ with sim1(w) = 1 and ŵ = w〈x1 ] x2〉 (therefore, sim1(ŵ) = 1), we have

f ′L⟪w〈x1 ] x2〉⟫M = f ′L⟪w⟫〈x1 ] x2〉M
= f ′L⟪w⟫M · (〈x1 ] x2〉, f ′(⟪w⟫〈x1 ] x2〉)

)
= f ′L⟪w⟫M · (〈x1 ] x2〉, f ′(⟪ŵ⟫))
(3)
= f ′L⟪w⟫M · (〈x1 ] x2〉,( f1(JŵK1), f2(JŵK2))

)
IH
= ⟪ f LwM⟫ · (〈x1 ] x2〉,( f1(JŵK1), f2(JŵK2))

)
and from sim1( f LwM)) = sim1(w) = 1

= ⟪ f LwM ·
(
〈x1 ] x2〉,( f1(JŵK1), f2(JŵK2))

)⟫
= ⟪ f Lw〈x1 ] x2〉M⟫= ⟪ f LŵM⟫

• For w ∈ Σ∗ with sim1(w) = 1 and ŵ = w〈x1 _ x2〉 (therefore, sim1(ŵ) = 2), we have

f ′L⟪w〈x1 _ x2〉⟫M = f ′L⟪w⟫〈# ] #〉〈x2 ^ x1〉M
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x2 ^ x1〉, f ′(⟪w⟫〈# ] #〉〈x2 ^ x1〉))
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x2 ^ x1〉, f ′(⟪ŵ⟫))
(3)
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x2 ^ x1〉,( f2(JŵK2), f1(JŵK1)))
IH
= ⟪ f LwM⟫(〈# ] #〉,(#,#))(〈x2 ^ x1〉,( f2(JŵK2), f1(JŵK1)))

and from sim1( f LwM)) = sim1(w) = 1

= ⟪ f LwM(〈x1 _ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
= ⟪ f Lw〈x1 _ x2〉M⟫= ⟪ f LŵM⟫
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• For w ∈ Σ∗ with sim1(w) = 2 and ŵ = w〈x1 _ x2〉 (therefore, sim1(ŵ) = 2), we have

f ′L⟪w〈x1 _ x2〉⟫M = f ′L⟪w⟫〈x2 ^ x1〉M
= f ′L⟪w⟫M(〈x2 ^ x1〉, f ′(⟪w⟫〈x2 ^ x1〉))
= f ′L⟪w⟫M(〈x2 ^ x1〉, f ′(⟪ŵ⟫))
(3)
= f ′L⟪w⟫M(〈x2 ^ x1〉,( f2(JŵK2), f1(JŵK1)))
IH
= ⟪ f LwM⟫(〈x2 ^ x1〉,( f2(JŵK2), f1(JŵK1)))

and from sim1( f LwM)) = sim1(w) = 2

= ⟪ f LwM(〈x1 _ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
= ⟪ f Lw〈x1 _ x2〉M⟫= ⟪ f LŵM⟫

• For w ∈ Σ∗ with sim1(w) = 2 and ŵ = w〈x1 ] x2〉 (therefore, sim1(ŵ) = 2), we have

f ′L⟪w〈x1 ] x2〉⟫M = f ′L⟪w⟫〈x2 ] x1〉M
= f ′L⟪w⟫M(〈x2 ] x1〉, f ′(⟪w⟫〈x2 ] x1〉))
= f ′L⟪w⟫M(〈x2 ] x1〉, f ′(⟪ŵ⟫))
(3)
= f ′L⟪w⟫M(〈x2 ] x1〉,( f2(JŵK2), f1(JŵK1)))
IH
= ⟪ f LwM⟫(〈x2 ] x1〉,( f2(JŵK2), f1(JŵK1)))

and from sim1( f LwM)) = sim1(w) = 2

= ⟪ f LwM(〈x1 ] x2〉,( f1(JŵK1), f2(JŵK2)))⟫
= ⟪ f Lw〈x1 ] x2〉M⟫= ⟪ f LŵM⟫

• For w ∈ Σ∗ with sim1(w) = 2 and ŵ = w〈x1 ^ x2〉 (therefore, sim1(ŵ) = 1), we have

f ′L⟪w〈x1 ^ x2〉⟫M = f ′L⟪w⟫〈# ] #〉〈x1 ^ x2〉M
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x1 ^ x2〉, f ′(⟪w⟫〈# ] #〉〈x1 ^ x2〉))
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x1 ^ x2〉, f ′(⟪ŵ⟫))
(3)
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2)))
IH
= ⟪ f LwM⟫(〈# ] #〉,(#,#))(〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2)))

and from sim1( f LwM)) = sim1(w) = 2

= ⟪ f LwM(〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
= ⟪ f Lw〈x1 ^ x2〉M⟫= ⟪ f LŵM⟫

We next show (ii) → (i). Let f ′ = ( f ′1, f ′2) be a distributed algorithm over the network model N ′

such that, for all w ∈ Σω , f ′L⟪w⟫M ∈ ⟪L(ϕ)⟫. We can assume that, for all p ∈ P and u ∈ (Σ′)∗, we have
f ′p(u〈# ] #〉) = #. Let f = ( f1, f2) be the distributed algorithm over N defined, for all w ∈ Σ+ and
p ∈ {1,2}, by

fp(JwKp) := f ′simp(w)(J⟪w⟫Ksimp(w)) . (4)
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This is well-defined due to Lemma 6(b). We have to show that, for all w ∈ Σω , f LwM ∈ L(ϕ). By
injectivity of ⟪·⟫, this follows from the fact that, for all w ∈ Σ∗, we have

⟪ f LwM⟫= f ′L⟪w⟫M .

To show the latter, we again proceed by induction:

• From the definitions, we obtain ⟪ f LεM⟫= f ′L⟪ε⟫M.
• For w ∈ Σ∗ with sim1(w) = 1 and ŵ = w〈x1 ^ x2〉, we have

⟪ f Lw〈x1 ^ x2〉M⟫= ⟪ f LwM(〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
(4)
= ⟪ f LwM(〈x1 ^ x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))⟫

and from sim1( f LwM)) = sim1(w) = 1

= ⟪ f LwM⟫(〈x1 ^ x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))
IH
= f ′L⟪w⟫M(〈x1 ^ x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))

= f ′L⟪w〈x1 ^ x2〉⟫M = f ′L⟪ŵ⟫M

• For w ∈ Σ∗ with sim1(w) = 1 and ŵ = w〈x1 ] x2〉, we have

⟪ f Lw〈x1 ] x2〉M⟫= ⟪ f LwM(〈x1 ] x2〉,( f1(JŵK1), f2(JŵK2)))⟫
(4)
= ⟪ f LwM(〈x1 ] x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))⟫

and from sim1( f LwM)) = sim1(w) = 1

= ⟪ f LwM⟫(〈x1 ] x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))
IH
= f ′L⟪w⟫M(〈x1 ] x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))

= f ′L⟪w〈x1 ] x2〉⟫M = f ′L⟪ŵ⟫M

• For w ∈ Σ∗ with sim1(w) = 1 and ŵ = w〈x1 _ x2〉, we have

⟪ f Lw〈x1 _ x2〉M⟫= ⟪ f LwM(〈x1 _ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
(4)
= ⟪ f LwM(〈x1 _ x2〉,( f ′2(J⟪ŵ⟫K2), f ′1(J⟪ŵ⟫K1)))⟫

and from sim1( f LwM)) = sim1(w) = 1

= ⟪ f LwM⟫(〈# ] #〉,(#,#))(〈x2 ^ x1〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))
IH
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x2 ^ x1〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))

= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x2 ^ x1〉,
( f ′1(J⟪w⟫〈# ] #〉〈x2 ^ x1〉K1), f ′2(J⟪w⟫〈# ] #〉〈x2 ^ x1〉K2)))

= f ′L⟪w⟫〈# ] #〉〈x2 ^ x1〉M
= f ′L⟪w〈x1 _ x2〉⟫M = f ′L⟪ŵ⟫M
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• For w ∈ Σ∗ with sim1(w) = 2 and ŵ = w〈x1 _ x2〉, we have

⟪ f Lw〈x1 _ x2〉M⟫= ⟪ f LwM(〈x1 _ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
(4)
= ⟪ f LwM(〈x1 _ x2〉,( f ′2(J⟪ŵ⟫K2), f ′1(J⟪ŵ⟫K1)))⟫

and from sim1( f LwM)) = sim1(w) = 2

= ⟪ f LwM⟫(〈x2 ^ x1〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))
IH
= f ′L⟪w⟫M(〈x2 ^ x1〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))

= f ′L⟪w⟫M(〈x2 ^ x1〉,( f ′1(J⟪w⟫〈x2 ^ x1〉K1), f ′2(J⟪w⟫〈x2 ^ x1〉K2)))

= f ′L⟪w⟫〈x2 ^ x1〉M
= f ′L⟪w〈x1 _ x2〉⟫M = f ′L⟪ŵ⟫M

• For w ∈ Σ∗ with sim1(w) = 2 and ŵ = w〈x1 ] x2〉, we have

⟪ f Lw〈x1 ] x2〉M⟫= ⟪ f LwM(〈x1 ] x2〉,( f1(JŵK1), f2(JŵK2)))⟫
(4)
= ⟪ f LwM(〈x1 ] x2〉,( f ′2(J⟪ŵ⟫K2), f ′1(J⟪ŵ⟫K1)))⟫

and from sim1( f LwM)) = sim1(w) = 2

= ⟪ f LwM⟫(〈x2 ] x1〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))
IH
= f ′L⟪w⟫M(〈x2 ] x1〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))

= f ′L⟪w⟫M(〈x2 ] x1〉,( f ′1(J⟪w⟫〈x2 ] x1〉K1), f ′2(J⟪w⟫〈x2 ] x1〉K2)))

= f ′L⟪w⟫〈x2 ] x1〉M
= f ′L⟪w〈x1 ] x2〉⟫M = f ′L⟪ŵ⟫M

• For w ∈ Σ∗ with sim1(w) = 2 and ŵ = w〈x1 ^ x2〉, we have

⟪ f Lw〈x1 ^ x2〉M⟫= ⟪ f LwM(〈x1 ^ x2〉,( f1(JŵK1), f2(JŵK2)))⟫
(4)
= ⟪ f LwM(〈x1 ^ x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))⟫

and from sim1( f LwM)) = sim1(w) = 2

= ⟪ f LwM⟫(〈# ] #〉,(#,#))(〈x1 ^ x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))
IH
= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x1 ^ x2〉,( f ′1(J⟪ŵ⟫K1), f ′2(J⟪ŵ⟫K2)))

= f ′L⟪w⟫M(〈# ] #〉,(#,#))(〈x1 ^ x2〉,
( f ′1(J⟪w⟫〈# ] #〉〈x1 ^ x2〉K1), f ′2(J⟪w⟫〈# ] #〉〈x1 ^ x2〉K2)))

= f ′L⟪w⟫〈# ] #〉〈x1 ^ x2〉M
= f ′L⟪w〈x1 ^ x2〉⟫M = f ′L⟪ŵ⟫M
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