
Formal Methods for Mobile Robots:
Current Results and Open Problems

Béatrice Bérard†#, Pierre Courtieu‡, Laure Millet†#, Maria Potop-Butucaru†#,
Lionel Rieg∗, Nathalie Sznajder†#, Sébastien Tixeuil†#‖, Xavier Urbain?

†UPMC Sorbonne Universités, LIP6-CNRS UMR 7606, France
CNRS, LIP6-CNRS UMR 7606, France

‡CNAM, Cédric EA 4629, France
∗ Collège de France, France

‖ Institut Universitaire de France, France
? ENSIIE, Cédric EA4629 and LRI CNRS UMR 8623, France

Abstract - Mobile robot networks emerged in the past few
years as a promising distributed computing model. Existing
work in the literature typically ensures the correctness of mo-
bile robot protocols via ad hoc handwritten proofs, which are
both cumbersome and error-prone.

This paper surveys state-of-the-art results about applying
formal methods approaches (namely, model-checking, pro-
gram synthesis, and proof assistants) to the context of mo-
bile robot networks. Those methods already proved useful
for bug-hunting in published literature, designing correct-by-
design optimal protocols, and certifying impossibility results.
We also present related open questions to further develop this
path of research.

Keywords: Formal Methods, Mobile Robots, Distributed
Algorithms, Model Checking, Program Synthesis, Proof Cer-
tification, Proof Assistant.

1 Introduction

The variety of tasks that can be performed by autonomous
robots and their complexity are both increasing [36], [60].
Many applications envision groups of mobile robots that are
self-organising and cooperating toward the resolution of com-
mon objectives, in the absence of any central coordinating au-
thority.

The seminal model introduced by Suzuki and Yamashita [63]
features a distributed system of k mobile robots that have lim-
ited capabilities: they are identical and anonymous (they exe-
cute the same algorithm and they cannot be distinguished us-
ing their appearance), they are oblivious (they have no mem-
ory of their past actions) and they have neither a common
sense of direction, nor a common handedness (chirality). Fur-
thermore these robots do not communicate by sending or re-
ceiving messages. However they have the ability to sense the
environment and see all positions of the other robots.

Robots operate in cycles of three phases: Look, Compute
and Move. During the Look phase robots take a snapshot of
the positions of the other robots (in their own coordinate sys-
tem). The collected information is used in the Compute phase
where robots decide to move or to stay idle. In the Move
phase, robots may move according to the computation of the
previous phase.

In the original model [63], some non-empty subset of robots
execute the three phases synchronously and atomically, giving
rise to two variants: FSYNC, for the fully-synchronous model
where all robots are scheduled at each step to execute a full
cycle, and SSYNC, for the semi-synchronous model, where
a strict subset of robots can be scheduled. This model had a
huge impact on the community and was instrumental in deriv-
ing many new core problems in the area of distributed mobile
entities. It was later generalised by Flocchini et al. [37] to
handle full asynchrony and remove atomicity constraints (this
model is called ASYNC [36], for asynchronous, in the se-
quel). One of the key differences between the fully- or semi-
synchronous models, and the asynchronous model in the dis-
crete setting is that in the ASYNC model, a robot can compute
its next move based on an outdated view of the system. It is
notorious that handwritten proofs for protocols operating in
the ASYNC model are hard to write and read, due to many
instances of case-based reasoning that is both cumbersome
and error-prone.

Outline. The goal of the survey is to present recent advances
in using formal methods for mobile robots following the model
of Suzuki and Yamashita and derivatives. Formal methods are
needed to certify that obtained results are correct, as previ-
ously published solutions were in fact incorrect.

We consider in this paper three main proposals in the do-
main of formal methods: model-checking, algorithm synthe-
sis, and proof assistants.

The model itself may seem limited (robots have extremely
few capabilities, compared to real life robots), but it permits
to establish fundamental results (what are the tasks that are
feasible, and what are those which are not). That is, it is
a computability-centric model (as opposed to a efficiency-
centric model).

In Section 2, we recall basic notions on model-checking,
synthesis and games and proof assistants. We also briefly
describe previous work on formal methods applied to robot
algorithms. We present in Section 3.1 an overview of the var-
ious settings, as well as the formal models used in the se-
quel. In Section 4, we survey results in the three directions of
model-checking, synthesis and proof-assistants. We conclude
in Section 5 with several problems open for future research.

2 Preliminaries

2.1 Model Cheking
Model-checking [24], [9] is an appealing technique that

was developed for the verification of various models: finite
ones but also in some cases infinite, parameterised, or even
timed and probabilistic models. It has been successfully used
for the verification of distributed systems from classical shared
memory (consensus, transactional memory) to population pro-
tocols [43], [21], [27], [52], [67], [47]. Unfortunately, it was
proved in [5] that parameterised model checking is undecid-
able, and this general result was followed by several stronger
ones for specific models, for instance in [35]. In such cases, a
classical line of work consisted in combining model-checking
with other techniques like abstraction, induction, etc., as first
proposed in [53] or [26]. These techniques were largely used
since, for instance in [12], [31], [18], [6]. Although the prob-
lem is still open, we conjecture that parameterised model check-
ing is undecidable for the robot model which leads to follow
combined approaches.

2.2 Games and Protocols Synthesis
In the formal methods community, automatically synthe-

sising programs that would be correct by design is a problem
that raised interest early [25], [54], [1], [59]. Actually, this
problem goes back to Church [23], [17]. When the program
to generate is intended to work in an open system, maintain-
ing an on-going interaction with a (partially) unknown envi-
ronment, it is known since [17] that seeing the problem as a
game between the system and the environment is a success-
ful approach. The system and its environment are considered
as opposite players that play a game on some graph, the win-
ning condition being the specification the system should fulfill
whatever the environment behavior. Then, the classical prob-
lem in game theory of determining winning strategies for the
players is equivalent to find how the system should act in any
situation, in order to always satisfy its specification. The case
of mobile autonomous robots that we focus on in this paper
falls in this category of problems: the robots may evolve (pos-
sibly indefinitely) on a ring, making decisions based on some
global state of the system at each time instant. The vertices of
graph on which the players will play would then be some rep-
resentation of the different global positions of the robots on
the ring. The presence of an opposite player (or environment)
is motivated by the absence of chirality of the robots: when a
robot is on an axis of symmetry, it is unable to distinguish its
two sides one from another, hence to choose exactly where it
moves ; this decision is supposed to be taken by the opposite
player.

2.3 Certification and proof assistants
Mechanical proof assistants are proof management systems

in which a user can express data, programs, theorems and
proofs. In sharp contrast with automated provers, they are
mostly interactive, and thus require some kind of expertise
from their users. Skeptical proof assistants provide an addi-
tional guarantee by checking mechanically the soundness of

proofs after it has been interactively developped.
Various proof assistants emerged since the 60’s, to name

a few: Agda [3], NqThm [16] and its relative ACL2 [2],
PVS [61], Mizar [56], COQ [28], Isabelle/HOL [57], etc.

In the context of program verification, Isabelle/HOL and
COQ are amongst the most widely used; both are based on
type theory. They have been successfully employed for vari-
ous tasks such as the formalisation of programming language
semantics [50], certification of an OS kernel [45], verification
of cryptographic protocols [4], certification of RSA keys [65],
mathematical developments as involved as the 4-colours thre-
orem [40], the Feit-Thompson theorem [41], or the Kepler
Conjecture [64].

During the last twenty years, the use of tool-assisted verifi-
cation has extended to the validation of distributed processes.

In the context of process algebras, which can be used to
describe and verify algorithms built from merge, sequential
composition and encapsulation, Fokkink [38] and Bezem et
al. [11] use a proof assistant to prove the equality between
two processes, one of them being a specification.

TLA/TLAPS [49], [48] can enjoy an Isabelle back-end for
its provers [30]. Gascard and Pierre [39] focus on intercon-
nection networks that are symmetric: rings, tori, hypercubes.
Based on a compositional approach of certified components,
their work makes use of Nqthm.

Cansell and Méry’s contribution to the RIMEL project [19]
addresses the class of local computation (LC) algorithms. A
catalogue of case studies like election algorithms, spanning
tree construction and even Mazurkiewicz’s enumeration algo-
rithm have been developed in Event-B. The code of these al-
gorithms is obtained by successive refinements starting from
an abstract machine that translates directly to a specification.
This code is annotated with logical formulas — mainly in-
variants on the state of the system — the proofs of which
generate verification conditions through a calculus of weak-
est preconditions.

Küfner et al. [46] propose a methodology to develop (us-
ing Isabelle) proofs of properties of fault-tolerant distributed
algorithms in an asynchronous message passing style setting.
They focus on correctness proofs only.

Chou’s methodology [22] is based on the HOL proof assis-
tant. It aims at proving properties of concrete distributed al-
gorithms through simulation with abstract ones. The method-
ology does not allow to prove impossibility results.

Castéran et al. [20] use COQ to state and prove invari-
ants but also generic results about subclasses of LC systems,
thanks to Castéran and Filou’s library Loco [51]. Genericity
is worth emphasising here as the approach is not limited to
particular instances of algorithms. Castéran et al. actually
propose proofs of negative results in COQ for some kinds of
distributed algorithms in this graph relabelling setting.

Deng and Monin [32] use COQ to prove the correctness of
distributed self-stabilising protocols in the population proto-
col model. This model permits to describe interactions of an
arbitrary large size of mobile entities, however the considered
entities lack movement control and geometric awareness that
are characteristic of robot networks.

As a matter of fact, surprisingly few works consider using

mechanised assistance for networks of mobile entities.

2.4 Previous attempts for mobile robots
To our knowledge, in the context of mobile robots oper-

ating in discrete space, only two previous attempts, by De-
vismes et al. [33] and by Bonnet et al. [14], [15], investigate
the possibility of automated verification of mobile robots pro-
tocols. The first paper uses LUSTRE [44] to describe and
verify the problem of exploration with stop of a 3 × 3 grid
by 3 robots in the SSYNC model, and to show by exhaustive
searching that no such protocol can exist. The second paper
considers the perpetual exclusive exploration by k robots of
n-sized rings, and generates mechanically all unambiguous
protocols for k and n in the SSYNC model (that is, all proto-
cols that do not have symmetrical configurations). Those two
works are restricted to the simpler SSYNC model rather than
the more general and more complex ASYNC model. Sec-
ond, they are either specific to a hard-coded topology (e.g., a
3 × 3 grid [33]) that prevents easy reuse in more generic sit-
uations, or make additional assumptions about configurations
and protocols to be verified (e.g. unambiguous protocols [14],
[15]) that prevent combinatorial explosion but forbid reuse for
proof-challenging protocols, which would most benefit from
automatic verification.

3 Formal Modelling

This section reviews the classical model for mobile robots
that is due to Suzuki and Yamashita [63] (Section 3.1), then
surveys formal modelling schemes that are tailored for model-
cheking (Section 2.1), protocol synthesis (Section 3.3), and
proof assistants (Section 3.4).

3.1 A Model for mobile robot networks
Robots We consider a set of k mobile entities called robots,
that are endowed with sensing, computing, and moving capa-
bilities. They can observe (sense) the positions of other robots
in the space they evolve in and based on these observations,
they perform some local computations that can drive them to
move to other locations.

Sensing Robots are usually endowed with visibility sensors
that permit them to obtain the location of other robots. The
obtained location is either fine grained (which usually denotes
an arbitrary degree of precision in the such obtained location)
or coarse grained (robots can only be observed at some spe-
cific discrete locations, each location being adjacent to at least
one another). In the first case, the literature mostly refers to
the continuous space model, while in the latter case, it is the
discrete space model.

In some problem instances, robots may share the same po-
sition, which is called a multiplicity point or a tower. The abil-
ity for a robot to detect multiplicity is crucial to solve some
particular tasks. We distinguish weak and strong multiplic-
ity detection. The weak multiplicity detector detects whether
there is zero, one or more than one robot at a particular loca-
tion. The strong multiplicity detector senses the exact num-
ber of robots at a particular location. The multiplicity detector

may be local or global. The local detector returns information
only at the current position of the robot, while the global mul-
tiplicity detector return information about all observed posi-
tions.

A third characteristic of robot sensing capabilities is their
visibility radius. It can be infinite (that is a robot is able to
sense the position of all other robots) or finite. In the latter
case, there exists a bound (that can be expressed either by a
distance – in case of continuous space, or by a number of hops
– in case of discrete space) beyond which a robot cannot sense
anything.

It should be understood that all the sensing performed by
robots are presented in the robot’s own ego-centric coordinate
system (that is called the local coordinate system in the se-
quel). The local coordinate systems of robots is not necessar-
ily the same for all robots with respect to origin (the local co-
ordinate systems are self-centered), direction (all robots need
not agree on a common vertical north direction), and chirality
(robots may have different sensing of left and right).

Computing As in classical distributed systems, robots are
assumed to be able to perform the computing steps in negli-
gible time.

Robots may be oblivious in the sense that they do not re-
member previously executed steps. Hence, volatile memory
can be used to perform computing tasks in a single Look-
Compute-Move loop, but the contents of the memory used in
the computation are erased before the next loop occurs. By
contrast, robots may have non-volatile memory: in this case
they are non-oblivious.

Moving Robots may move only to the location computed in
the computing phase of the current loop. In some instances,
due to symmetry, the computed location may be ambiguous.
To model this case, it is assumed that the actual move is de-
cided by an adversary (also called demon, or scheduler). The
demon can be viewed as an opponent in the game context. In
the discrete space model, a robot may move only to a location
that is adjacent to its current location. In the continuous space
model, a robot moves toward its computed destination. With
the rigid assumption, a move always perfoms to completion
(that is, the robot is never interrupted). In the original model,
a robot may be interrupted by an adversary before it finishes
its move, but not before it has moved at least a minimum dis-
tance δ > 0, where δ is a parameter of the model (unknown
to the robots).

Atomicity There are two main models for atomicity. The
historical model is the atomic model, where look-compute-
move loops are executed in a lock-step fashion. In particular,
in the atomic model, the robots that are selected for execution
all sense at the same time, all compute at the same time, all
move at the same time. In the current terminology [36], the
atomic model is either referred to as the FSYNC (in the case
where all robots execute at the same time) or as the SSYNC
(in the case where a non-empty subset of the robots execute
at the same time) model.

A less constrained model is the asynchronous and non-
atomic model (or ASYNC in the current terminology [36]),
where robots look-compute-move loops are completely non-
atomic and can each last an arbitrary period of time. In partic-
ular, in the ASYNC model, it is possible for a robot to observe
another robot while it moves, or to perform the computing
(and moving) phase with an observation that is long outdated.
Of course, all executions in the atomic model are also valid in
the ASYNC model. Thus, impossibility results for the atomic
model extend in the ASYNC model, and protocols for the
ASYNC model are also valid for the atomic model, but the
converse is not true.

Demons Demons are an abstraction to characterise the de-
gree of asynchrony in the robot network [34]. Demons can
be seen as a predicate on system executions, that is, only ex-
ecutions matching the demon predicate can appear in a given
context. The larger the set of executions in the predicate is,
the more powerfull (and more general) the demon is. The
most general demon in the context of mobile robots is the fair
demon, which guarantes that in any configuration, any robot
is activated within a finite number of steps. If the demon is
k-fair, then between any two actions of a particular robot,
any other robot is activated at most k times. Finally, the syn-
chronous demon activates all robots all the time, always.

Faults Robots usually operate without failures (in which
case they are said to be correct). Yet, some unexpected be-
haviours may occur. In the worst case, robots are Byzantine,
meaning that they can behave arbitrarily. Note that to have an
impact on the others, the only part of the misbehaviour to take
into account is the move part. A less serious fault is the crash
fault, where a robot unexpectedly stops moving forever.

3.2 A formal model for robots on graphs

In this section we describe the model proposed by Bérard
et al. for the robots (in Section 3.2.1), the demons (in Sec-
tion 3.2.2), and the system resulting from their interactions
(in Section 3.2.3). This model encompasses all three FSYNC,
SSYNC, and ASYNC operating modes, but assumes that in-
dividual robots can only operate in a discrete setting (that is,
a graph).

3.2.1 Robot Modelling

All robots execute the same algorithm [36], hence the be-
haviour of each of them can be described by the finite au-
tomaton of Figure 1. They operate in Look, Compute, and
Move cycles.

Ready
to look

Ready to
compute

Ready
to move

Look Compute

Move

Figure 1: A generic automaton for the robot behaviour.

To start a cycle, a robot takes a snapshot of its environment,
which is represented by the Look transition. Then, it com-
putes its future location, represented by the Compute transi-
tion. Finally the robot moves along an edge of the graph ac-
cording to its previous computation, this effective movement
is represented by the Move transition.

The algorithm is implemented in the Compute transition,
hence the “Ready to move” state is divided into as many parts
as there are possible movements according to the protocol un-
der study.

Note that the original model [63] abstracts the precise time
constraints (like the computational power or the locomotion
speed of robots) and keeps only sequences of instantaneous
actions, assuming that each robot completes each cycle in fi-
nite time. This model can be reduced by combining the Look
and Compute phases to obtain the LC phase. This is simply
done by merging the two states “Ready to look” and “Ready
to compute” into a single state “Ready to Look-Compute”.

3.2.2 Demon Modelling

Unlike robots that have the same behaviour regardless of the
model, the demon is parameterised by the execution model
and by the number of robots. It is also modelled by a finite
automaton, one for each variant of the execution model. By
synchronising one of these demons with robot automata, we
obtain an automaton that represents the global behaviour of
robots in the chosen model.

To describe these demon models, we consider a set Rob =
{r1, . . . , rk} of robots. We denote by LCi,Movei the respec-
tive LC and Move phases of robot ri. Note that LCi and
Movei are actually sets of possible actions in the correspond-
ing phases. For a subset Sched ⊆ Rob, we denote the syn-
chronisation of all LCi (resp. Movei) actions of all robots in
Sched by

∏
ri∈Sched

LCi (resp.
∏

ri∈Sched
Movei).

In the SSYNC model, a non-empty subset of robots is sched-
uled for execution at every phase, and operations are executed
synchronously. In this case, the automaton is a cycle, where a
set Sched ⊆ Rob is first chosen. In this cycle the LC and Move
phases are synchronised for this set of robots. A generic au-
tomaton for SSYNC is described in Figure 2(a). Actually, the
“Sched chosen” state has to be divided into 2k states, where k
is the number of robots, in order to represent all possible sets
Sched.

The FSYNC model is a particular instance of the SSYNC
model, where all robots are scheduled for execution at every
phase, and operate synchronously thereafter: In each global
cycle, Sched = Rob, hence all global cycles are identical.

The ASYNC model is totally asynchronous: any finite de-
lay may elapse between LC and Move phases. During each
phase a set Sched is chosen, and all robots in this set execute
an action: the action Acti is either in LCi or in Movei depend-
ing on the current state of robot ri. Hence, a robot can move
according to an outdated observation. The automaton for this
demon is depicted in Figure 2(b).

Move
Done

Sched
chosen

LC
Done

Choose Sched

∏
i∈Sched

LCi

∏
i∈Sched

Movei

(a) SSYNC model.

Act
Done

Sched
chosen

Choose Sched

∏
i∈Sched

Act i

(b) ASYNC model.

Figure 2: The Demons automata.

3.2.3 System Modelling

To describe the global model, we denote by Pos = {0, . . . , n−
1} ⊆ N the set of positions on the graph. A configuration of
the system is a mapping c : Rob→ Pos associating with each
robot r its position c(r) ∈ Pos. Hence, in a graph of n nodes
with k robots, there are nk possible configurations.

The model of the system is an automaton

M = (S, s0, A, T)

obtained by the synchronised product of k robot automata and
all the possible configurations, as defined above, the demon
is used to define the synchronisation function. The alpha-
bet of actions is A =

∏
ri∈Rob Ai, with Ai = LCi ∪ Movei

for each robot ri. In this product, states are of the form
s = (s1, . . . , sk, c) where si is the local state of robot ri,
and c the configuration. An initial state is of the form s0 =
(s1,0, . . . , sk,0, c) where si,0 is the initial local state of robot
ri and c is an arbitrary configuration.

A transition of the system is labelled by a tuple

a = (a1, . . . , ak)

where ai ∈ Ai ∪ {ε,−} for all 1 ≤ i ≤ k and

(s1, . . . , sk, c)
a−→ (s′1, . . . , s

′
k, c
′)

if and only if for all i, si
ai−→ s′i, and c′ is obtained from c

by updating the positions of all robots such that ai ∈ Movei.
To represent the scheduling, we denote by

∏
ri∈SchedActi the

action (a1, . . . , ak) such that ai = − if ri /∈ Sched and ai ∈
LCi ∪Movei ∪ {ε} otherwise.

3.3 Protocol Synthesis and Reachability
games

To enable robot protocol synthesis (that is, the automatic
generation of robot protocols for a given problem in a given
setting), the approach of Millet et al. [55] is to reuse the mod-
elling presented in Section 3.1 for robots, schedulers, and
their interactions, and to revisit reachability games in this con-
text.

We now present classical notions on this subject. If A is a
set of symbols, A∗ is the set of finite sequences of elements
of A (also called words), and Aω the set of infinite such se-
quences, with ε the empty sequence. We noteA+ = A∗\{ε},
and A∞ = A∗ ∪Aω . For a sequence w ∈ A∞, we denote its
length by |w|. If w ∈ A∗, |w| is equal to its number of ele-
ments. If w ∈ Aω , |w| = ∞. For all words w = a1 · · · ak ∈

A∗, w′ = a′1 · · · ∈ A∞, we define the concatenation of w
and w′ by the word noted w ·w′ = a1 · · · aka′1 · · · . We some-
times omit the symbol and simply write ww′. If L ⊆ A∗ and
L′ ⊆ A∞, we define L · L′ = {w · w′ | w ∈ L,w′ ∈ L′}.

A game is composed of an arena and winning conditions.

Arena An arena is a graph A = (V,E) in which the set of
vertices V = Vp] Vo is partitioned into Vp, the vertices of
the protagonist, and Vo the vertices of the opponent. The set
of edges E ⊆ V × V allows to define the set of successors of
some given vertex v, noted vE = {v′ ∈ V | (v, v′) ∈ E}. In
the following, we only consider finite arenas.

Plays To play on an arena, a token is positioned on an initial
vertex. Then the token is moved by the players from one ver-
tex to one of its successors. Each player can move the token
only if it is on one of her own vertices. Formally, a play is a
path in the graph, i.e., a finite or infinite sequence of vertices
π = v0v1 · · · ∈ V∞, where for all 0 < i < |π|, vi ∈ vi−1E.
Moreover, a play is finite only if the token has been taken to a
position without any successor (where it is impossible to con-
tinue the game): if π is finite with |π| = n, then vn−1E = ∅.

Strategies A strategy for the protagonist determines where
she brings the token whenever it is her turn to play. To do
so, the player takes into account the history of the play, and
the current vertex. Formally, a strategy for the protagonist
is a (partial) function σ : V ∗ · Vp → V such that, for all
sequence (representing the current history) w ∈ V ∗, all v ∈
Vp, σ(w · v) ∈ vE (i.e. the move is possible with respect to
the arena). A strategy σ is memoryless if it does not depend
on the history. Formally, it means that for all w,w′ ∈ V ∗, for
all v ∈ Vp, σ(w · v) = σ(w′ · v). In that case, we may simply
see the strategy as a function σ : Vp → V .

Given a strategy σ for the protagonist, a play π = v0v1 · · · ∈
V∞ is said to be σ-consistent if for all 0 < i < |π|, if
vi−1 ∈ Vp, then vi = σ(v0 · · · vi−1). Given an initial vertex
v0, the outcome of a strategy σ is the set of plays starting in v0
that are σ-consistent. Formally, given an arena A = (V,E),
an intial vertex v0 and a strategy σ : V ∗Vp → V , we let

Outcome(A, v0, σ) =

{
v0π ∈ V∞ | v0π is a play and

is σ-consistent

}

Winning conditions, winning plays, and winning strate-
gies We define the winning condition for the protagonist as
a subset of the plays Win ⊆ V∞. Then, a play π is winning

a set of symbols, A⇤ is the set of finite sequences of elements
of A (also called words), and Aw the set of infinite such se-
quences, with e the empty sequence. We note A+ = A⇤ \{e},
and A• = A⇤ [Aw. For a sequence w 2 A•, we denote its
length by |w|. If w 2 A⇤, |w| is equal to its number of ele-
ments. If w 2 Aw, |w| = •. For all words w = a1 · · ·ak 2 A⇤,
w0 = a01 · · · 2 A•, we define the concatenation of w and w0 by
the word noted w · w0 = a1 · · ·aka01 · · · . We sometimes omit
the symbol and simply write ww0. If L ✓ A⇤ and L0 ✓ A•, we
define L ·L0 = {w ·w0 | w 2 L,w0 2 L0}.

A game is composed of an arena and winning condi-
tions.

Arena An arena is a graph A = (V,E) in which the set of
vertices V = Vp]Vo is partitioned into Vp, the vertices of
the protagonist, and Vo the vertices of the opponent. The set
of edges E ✓V ⇥V allows to define the set of successors of
some given vertex v, noted vE = {v0 2V | (v,v0)2 E}. In the
following, we will only consider finite arenas.

Plays To play on an arena, a token is positioned on an ini-
tial vertex. Then the token is moved by the players from one
vertex to one of its successors. Each player can move the to-
ken only if it is on one of her own vertices. Formally, a play
is a path in the graph, i.e., a finite or infinite sequence of ver-
tices p = v0v1 · · · 2V •, where for all 0 < i < |p|, vi 2 vi�1E.
Moreover, a play is finite only if the token has been taken
to a position without any successor (where it is impossi-
ble to continue the game): if p is finite with |p| = n, then
vn�1E = /0.

Strategies A strategy for the protagonist determines to which
position she will bring the token whenever it is her turn to
play. To do so, the player takes into account the history of
the play, and the current vertex. Formally, a strategy for the
protagonist is a (partial) function s : V ⇤ ·Vp ! V such that,
for all sequence (representing the current history) w2V ⇤, all
v2Vp, s(w ·v)2 vE (i.e. the move is possible with respect to
the arena). A strategy s is memoryless if it does not depend
on the history. Formally, it means that for all w,w0 2V ⇤, for
all v 2 Vp, s(w · v) = s(w0 · v). In that case, we may simply
see the strategy as a function s : Vp !V .

Given a strategy s for the protagonist, a play p = v0v1 · · · 2
V • is said to be s-consistent if for all 0 < i < |p|, if vi�1 2
Vp, then vi = s(v0 · · ·vi�1). Given an initial vertex v0, the
outcome of a strategy s is the set of plays starting in v0 that
are s-consistent. Formally, given an arena A = (V,E), an in-
tial vertex v0 and a strategy s : V ⇤Vp !V , we let

Outcome(A,v0,s) = {v0p2V • | v0p is a play and is s-consistent}

.

P1P4

O1 P2

O3

O2

P3

Fig. 3: A two-player game. In this figure protagonist vertices
are represented by rectangles and antagonist vertices by cir-
cles. The winning condition is Reach({P3}). Any path in
the graph is a play. From P2 the protagonist has no winning
strategy. From P1 a (memoryless) winning strategy is to go
to O2. Winning positions are {P1,P3}.

Winning conditions, winning plays, winning strategies We
define the winning condition for the protagonist as a sub-
set of the plays Win ✓ V •. Then, a play p is winning for
the protagonist if p 2 Win. In this work, we focus on the
simple case of reachability games: the winning condition is
then expressed according to a subset of vertices T ✓ V by
Reach(T) = {p = v0v1 · · · 2V • | 90  i < |p| : vi 2 T}. This
means that the protagonist wins a play whenever the token
is brought on a vertex belonging to the set T . Once it has
happened, the play is winning, regardless of the following
actions of the players.

Given an arena A = (V,E), an initial vertex v0 2V and a
winning condition Win, a winning strategy s for the protag-
onist is a strategy such that any s-consistent play is winning.
In other words, a strategy s is winning if Outcome(A ,v0,s)✓
Win. The protagonist wins the game (A ,v0,Win) if she has a
winning strategy for (A ,v0,Win). We say that s is winning
on a subset U ✓ V if it is winning starting from any vertex
in U : if Outcome(A ,v0,s) ✓ Win for all v0 2 U . A subset
U ✓ V of the vertices is winning if there exists a strategy s
that is winning on U .

Solving a reachability game Given an arena A = (V,E), a
subset T ✓V , one wants to determine the set U ✓V of win-
ning positions for the protagonist, and a strategy s : V ⇤Vp !
V for the protagonist, that is winning on U for Reach(T).

Figure 3 represents a reachability 2-player game. We re-
call now a well-known result on reachability games:

Theorem 1 ([14]) The set of winning positions for the pro-
tagonist in a reachability game can be computed in linear
time in the size of the arena. Moreover, from any position,
the protagonist has a winning strategy if and only if she has
a memoryless winning strategy.

3 Encoding the gathering problem into a game

As we have claimed in the introduction, the gathering prob-
lem for synchronous robots is actually a game between the

4

Figure 3: A two-player game. In this figure protagonist ver-
tices are represented by rectangles and antagonist vertices by
circles. The winning condition is Reach({P3}). Any path in
the graph is a play. From P2 the protagonist has no winning
strategy. From P1 a (memoryless) winning strategy is to go to
O2. Winning positions are {P1, P3}.

for the protagonist if π ∈ Win . In this work, we focus on
the simple case of reachability games: the winning condition
is then expressed according to a subset of vertices T ⊆ V by
Reach(T) = {π = v0v1 · · · ∈ V∞ | ∃0 ≤ i < |π| : vi ∈ T}.
This means that the protagonist wins a play whenever the to-
ken is brought on a vertex belonging to the set T . Once it has
happened, the play is winning, regardless of the following ac-
tions of the players.

Given an arena A = (V,E), an initial vertex v0 ∈ V and a
winning condition Win , a winning strategy σ for the protago-
nist is a strategy such that any σ-consistent play is winning. In
other words, a strategy σ is winning if Outcome(A, v0, σ) ⊆
Win. The protagonist wins the game (A, v0,Win) if she has
a winning strategy for (A, v0,Win). We say that σ is winning
on a subset U ⊆ V if it is winning starting from any vertex
in U : if Outcome(A, v0, σ) ⊆Win for all v0 ∈ U . A subset
U ⊆ V of the vertices is winning if there exists a strategy σ
that is winning on U .

Solving a reachability game Given an arenaA = (V,E), a
subset T ⊆ V , one wants to determine the set U ⊆ V of win-
ning positions for the protagonist, and a strategy σ : V ∗Vp →
V for the protagonist, that is winning on U for Reach(T).

Figure 3 represents a reachability 2-player game. We recall
now a well-known result [42] on reachability games:

Theorem 1 The set of winning positions for the protagonist
in a reachability game can be computed in linear time in the
size of the arena. Moreover, from any position, the protagonist
has a winning strategy if and only if she has a memoryless
winning strategy.

3.4 A Formal Model with Coq for Robots in
Continuous Spaces

In this section, we survey the modelling in COQ that was
introduced by Auger et al. [7], [8] and by Courtieu et al. [29].
This model enables to deal with FSYNC and SSYNC exe-
cution models in a two-dimensional Euclidian space setting

(where coordinates are modeled by real numbers), but as-
sumes the rigid model of movement, where move phases al-
ways complete.

Since there is a wide variety of different assumptions, the
model must be highly flexible. The higher-order expressive-
ness of proof assistants allows many aspect of the model to
remain abstract. In a particular setting, one may instantiate
carefully the abstract parts with concrete definitions corre-
sponding to the assumptions under consideration. We provide
such examples of particular instances in the following.

The formal framework is parameterised by the following:
(1) The number of correct and Byzantine robots. (2) The
topological space in which robots move, i.e. the type of loca-
tions (infinite line, discrete grid, discrete ring network, etc).
(3) The observing capabilities of robots, i.e. what kind of
spectrum do they receive from their sensors. This is where
anonymity and multiplicity assumptions are specified for ex-
ample. (4) The distributed protocol running on each non-
Byzantine robot, which we call the robogram. (5) The exe-
cution model (FSYNC, etc.) and the degree of fairness un-
der consideration. Proof of distributed systems are supposed
to state properties for any execution, i.e. for any infinite se-
quence of successive activations of robots that obeys the as-
sumptions under consideration (fairness, etc.). Traditionally,
such an infinite sequence is called a demon. Characterising
the authorised executions through the definition of a given de-
mon is one of the crucial step of instantiating our framework
on a particular setting.

3.4.1 Robots

We consider the union of two given disjoint finite sets of
(robot) identifiers: G referring to robots that behave correctly,
and B referring to the set of Byzantine ones. Note that at this
level, in order to express any kind of properties about pro-
grams, all robots can be identified. The behaviour of correct
and byzantine robots is defined later.

Variable nG nB: nat.
(* Number of good and byz. robots.
Left abstract *)
Definition G := Finite nG.
(* Type of good robots *)
Definition B := Finite nB.
(* Type of byzantine robots *)
Inductive ident := Good: G → ident
| Byz: B → ident.
(* Disjoint union *)

In some cases the assumptions require that local robograms
cannot tell robots apart (anonymity), or detect whether they
are correct or Byzantine. This restriction of the model can be
ensured by the notion of spectrum, described below, which
characterises what a robot can see of the global position.

Locations, Positions, Similarities Robots are distributed in
space, at places called locations. Positions are functions from
the set of identifiers to the space of locations. The space of
location is left abstract in the model, it can be instantiated by
any type: the infinite line Q [7], [8] or R [29], the plan R×R,
a ring network Z/nZ, a line network [i, j], etc.

gp denotes a position for correct robots, and bp a position
for Byzantine ones. The position of all robots is then given
by the combination gp] bp defined by a record in COQ.

Variable location : Type.
(* Space occupied by robots. Left abstract. *)
Record position := {
gp: G → location ;
bp: B → location
}.

Spectrum Generally speaking, robots compute their target
position from the configuration they perceive of their siblings
in the considered space. Depending on assumptions (e.g. a-
nonymity, multiplicity detection, etc.) the observation may
be more or less accurate. To allow for different assumptions
to be studied, we leave the type spectrum, together with the
notion of spectrum of a position, abstract.

Variable spectrum : Type.
Variable spectrum_of : position → spectrum.

In the following we distinguish a demon position (resp. spec-
trum), that is expressed in the global frame of reference (viewed
from nominal position, orientation and zoom), from a robot
position (resp. spectrum), that is expressed in the robot’s
frame of reference. At each step of the distributed protocol
(see definition of round below) the demon position and spec-
trum are transformed (i.e., recentered, rotated and scaled) into
the considered robots ones before being given as parameters
to robograms. Depending on the assumptions under consid-
eration, the zoom and rotation factors may be fixed for each
robot or chosen by the demon at each step. They may also be
shared by all robots or not, etc.

Example 1 In a framework where anonymity holds and where
robots do not enjoy multiplicity detection, one can define a
spectrum as a set of robot locations (each element of the set is
a location occupied by at least one robot), and spectrum_of
as a function returning the set of locations occurring in its pa-
rameter p.

Definition location := R.
Definition spectrum := set location.
Definition spectrum_of p : spectrum

:= collect_locations p.

Notice that a spectrum being a set in this example, it masks
the number of robots occupying the same location, thus ensur-
ing that multiplicity is undetected. To account for multiplicity,
one may define another instance where spectra are multisets,
and collect_locations keeps record of redundant loca-
tions.

Robogram The robogram is a function computing a target
location from a spectrum.

Definition robogram := spectrum → location.

More precisely it computes the target location from the robot
spectrum, that is: expressed in the robot’s own frame of ref-
erence.

3.4.2 Demonic action and round

Assuming the SSYNC model, at each round the demon se-
lects the new location of byzantine robots, the set of correct
robots to be activated, and a frame for each of them. More
precisely the frame is a way to change the frame of reference.
Depending on the space the robots move in, it can be for in-
stance rotation and scale factors. The type of demonic action
is left abstract in the model but it should provide all these op-
erations.

Example 1 (continued) We continue on the previous exam-
ple where we suppose the set of locations to be the infinite
real line. The frame can be expressed by a real number as
follows: the absolute value denotes the scaling with reference
to the demon’s point of view, a negative number means that
the position is rotated (in this case: swapped), and the spe-
cial 0 value means that the robot is actually not activated at
this round.

Record demonic_action := {
locate_byz : B → location ;
frame : G → R }

From these definitions we can formalise what it is for the
distributed algorithm to perform a round. In an SSYNC con-
text, a round consists in the computation of the new position
of correct robots (i.e. a function of type G →location) from
a robogram, a demonic action and the previous position. The
function round defined below is thus a function returning a
function. For each robot g it computes its new location by
feeding the robogram with the spectrum recentered and dis-
torted by the demon.

Definition round (r : robogram)
(da : demonic_action) (gp : G → location) :
G → location :=
fun g:G ⇒

let l := gp g in
(* current location of g *)
let k := da.(frame) g in
(* scale and rotation factor for g *)
if k = 0 then l
(* g not activated, g stays at l *)
else
let pos := repos gp da.(locate_byz) k l in
(* position viewed from g *)
let newloc := r (spectrum_of pos) in
(* apply r on g’s spectrum *)
l + /k * newloc.
(* Uncenter, unscale, unrotate *)

Where repos gp bp k l returns the l-centered, k-zoomed
and rotated version of position {|gp;bp|}.

Demon, Fairness An actual demon is simply an infinite se-
quence (stream) of demonic actions, that is a coinductive ob-
ject [62]. Coinductive types are of invaluable help to ex-
press in a direct way infinite behaviours, infinite datatypes
and properties on them. The COQ proof assistant provides
means for the developer to define and to quantify over both
inductive and coinductive types, so as to express inductive

and coinductive properties. Roughly, coinduction is used for
properties that hold forever, and induction for properties that
hold eventually.

CoInductive demon :=
NextDemon : demonic_action → demon → demon.

The set of authorised demons also depends on the assump-
tions under consideration. For example, we define below the
well-known notion of being a fair demon by a coinductive
property over demons, which state that at each step of the de-
mon any robot is activated after a finite number of steps.

Inductive LocallyFairForOne g (d : demon) :
Prop :=
| ImmediatelyFair :

frame (demon_head d) g 6= 0
→ LocallyFairForOne g d

| LaterFair :
frame (demon_head d) g = 0

→ LocallyFairForOne g
(demon_tail d)

→ LocallyFairForOne g d.

CoInductive Fair (d : demon) :
Prop :=
AlwaysFair :
(∀ g, LocallyFairForOne g d)

→ Fair (demon_tail d)
→ Fair d.

Some of those definitions may be shortened, but this is a
rather direct and generic way to express that, at each point of
an infinite execution, a property holds eventually.

4 Survey of Results

Making use of the formal modelling presented in the pre-
vious section, recent papers were able to use formal methods
to verify existing algorihtms (Section 4.1), synthesise new al-
gorithms that are correct by design (Section 4.2), and provide
certified impossibility results (Section 4.3). In this section,
we review the main contributions published so far.

4.1 Model Checking
The model checking approach of Bérard et al. was used for

studying the Min-Algorithm presented by Blin et al. [13]. The
followed approach was to outline the properties that need to
be satisfied for the particular problem of perpetual exclusive
exploration, using LTL logic.

Problem specification The Exclusive Perpetual Exploration
problem in [13] is defined in the general asynchronous model
as follows.

For any graph G of size n and any initial configuration
where robots are located on different vertices, an algorithm
solves the perpetual exclusive exploration problem if it guar-
antees two properties: the exclusivity property and the live-
ness property. The first one requires that no two robots visit
the same vertex or traverse the same edge at the same time,
whereas the liveness property requires that each robot visits
each vertex infinitely often.

In the considered models an execution where no robot is
ever scheduled can happen, as well as an execution where a
particular robot is never scheduled. To prevent such execu-
tions a fairness assumption has to be added: All robots have
to be scheduled infinitely often. Thus the liveness property
is satisfied only on executions where the fairness assumption
holds.

Min-Algorithm In [13] the authors proposed an algorithm
called Min-Algorithm, for k = 3 robots in a ring of size
n ≥ 10, such that n is not a multiple of 3. Starting from
tower-free configurations (where no two robots occupy the
same position), this algorithm ensures exclusive and perpet-
ual exploration. It is based on a classification of tower-free
configurations and a specific action to be taken by the robot in
any recognized configuration. An equivalence class of tower-
free configurations on the ring is described by a sequence of
symbols R and F , indexed by integers: Ri stands for i con-
secutive nodes occupied by a robot, and Fj stands for j con-
secutive nodes free of robots. The algorithm is presented in
Tables 1 and 2.

Verification The previous algorithm was modeled then im-
plemented into the DiVinE [10] model-checker, using a ring
of size 10, the smallest advertized size for the algorithm to
work. The algorithm was verified to work properly in the
FSYNC and SSYNC model, but a counter-example was found
when run using the ASYNC model, among the 13.106 possi-
ble movements. This counter-example ends up in two robots
colliding (and thus breaking the exclusion property), as ex-
plicited in Figure 4.

In this counter example every ring represents a configura-
tion, a configuration change occurs when a robot moves, in
each configuration a computation is represented by a full ar-
row, and outdated computation by a dotted arrow.

Following the verification, a simple fix on the rule

RC5 :: (R2, F1, R1, Fz) → (R1, F1, R1, F1, R1, Fz−1)

allowed to correct the algorithm.

4.2 Algorithm Synthesis
The algorithm synthesis approach of Millet et al. [55] was

used to produce a mobile robot protocol for the gathering
problem in a ring shaped network. The followed approach
was to encode a particular arena for the gathering task, and
later use the UPPAAL TIGA tool to generate a winning strat-
egy that can be developed into an algorithm.

Problem specification The Gathering problem is defined
in the general asynchronous model as follows.

For any graph G of size n and any initial configuration, an
algorithm solves the gathering problem if it guarantees that in
any execution, all robots meet at the same vertex (not known
beforehand) and remain there infinitely thereafter. Similarly
as in the previous section, all robots have to be scheduled in-
finitely often.

Legitimate Phase: z 6= {0, 1, 2, 3, 4}
RL1:: (R2, F2, R1, Fz) → (R1, F1, R1, F2, R1, Fz−1)
RL2:: (R1, F1, R1, F2, R1, Fz) → (R2, F3, R1, Fz)
RL3:: (R2, F3, R1, Fz) → (R2, F2, R1, Fz+1)

Table 1: Rules for the legitimate phase of Min-Algorithm

Convergence Phase:
RC1:: (R2, Fy, R1, Fz) → (R2, Fmin(y,z), R1, Fmax(y,z)+1) avec y 6= z 6= {1, 2, 3}
RC2:: (R1, Fx, R1, Fy, R1, Fy) → (R1, Fx, R1, Fy−1, R1, Fy+1) avec x 6= y 6= 0
RC3:: (R1, Fx, R1, Fy, R1, Fz) → (R1, Fx−1, R1, Fy+1, R1, Fz) avec x < y < z
RC4:: (R3, Fz) → (R2, F1, R1, Fz−1) if a single robot moves

→ (R1, F1, R1, F1, R1, Fz−2) if two robots move
RC5:: (R2, F1, R1, Fz) → (R2, F2, R1, Fz−1)

Table 2: Rules for the convergence phase of Min-Algorithm

4.2.1 Arena encoding for gathering

The authors construct an arena so that the player has a win-
ning strategy if and only if a mobile robot algorithm permits
robots to gather at a particular node independentely of the
initial configuration. In each configuration, the robots can
choose among the following actions: ∆ = {y,x, ↑, ?},
which contains M = {y,x, ↑}, the set of possible move-
ments, and “?", used by disoriented robots indicating their
will to move, yet unability to decide the exact direction of
movement (e.g. due to symmetry). We note y =x, x =y,
↑ =↑ and ? =?.

The arena is Agather = (Vp] Vo, E), with Vp = (C/ ≡)
denoting the player states, and Vo = C × (∆k) denoting the
environment states. The size of the arena is then linear in n
and exponential in k. The arcs in the arena are defined by
relation E as a strict alternating sequence of states between
the two players: E ⊆ (Vp × Vo) ∪ (Vo × Vp).

From a player state, the player chooses for each robot a
move. There is the additional constraint that in any equiv-
alence class, two robots with the same view take the same
decision (the robot algorithm is deterministic).

A decision function f is a function that proposes a move
based on a robot view. It is defined by f : V → ∆ such
that, for any view V ∈ V , if |V | = 1 then f(V) ∈ {↑, ?},
and if f(V) =? then |V | = 1 (a disoriented robot can only
choose to move or not to move). When a decision function is
run, the robots moves must be coherent with a global sense of
orientation. Since C = (d1, . . . , dk) ∈ C, and f : V → ∆,
for any 1 ≤ i ≤ k, we define f(C, i) = f(view i(C)) if
(di, · · · , dk, d1, · · · di−1) is the smallest element of view i(C)
(in lexicographic order), and f(C, i) = f(view i(C)) other-
wise.

Then, for every v ∈ Vp, v
′ ∈ Vo, (v, v′) ∈ E iff there

exists a decision function f such that v′ =
(
C, (a1, . . . , ak)

)

with C = rep(v) = (d1, . . . , dk), and for every 1 ≤ i ≤ k,
ai = f(C, i).

The game then continues from an enviroment position where
the previous choices of the player are remembered. If a dis-
oriented robot has deciced to move, the environment chooses
the move to be performed by the robot among {y,x}.

In v′ = (C, (a1, . . . , ak)) ∈ Vo, a set of movements

(mi)i∈{1,...,k} ∈Mk

is v′-compatible if: for every 1 ≤ i ≤ k such that ai 6=?,
mi = ai, and for every 1 ≤ i ≤ k such that ai =?, mi 6=↑.

Getting from an environment state to a player state is then
expressed as: for every v ∈ Vp, v′ = (C, (a1, . . . , ak)) ∈
Vo, (v′, v) ∈ E iff there exists a tuple that is v′-compatible
(mi)i∈{1,...,k} and such that v = [C ⊕ (mi)i∈{1,...,k}]≡.

Theorem 2 The winning position for the player in the

(Agather,W)

game corresponds exactly to the gatherable configurations.

4.2.2 Synthesis of a gathering algorithm for three robots

The aforementioned arena permits to synthesise a determinis-
tic protocol for the gathering problem of k robots in a n-sized
ring. Let T = [(−1, · · · ,−1, n − 1)]≡ ∈ Vp be the equiva-
lence class of all configurations where all robots are gahtered
at a single node. Millet et al. [55] implemented the arena for
three robots and various ring sizes (n ∈ [3, 15] et n = 100)
using the game resolution tool UPPAAL TIGA [66]. It was
possible to confirm the impossibility of gathering from a start-
ing configuration that is periodic, and possibility of gathering
otherwise (that is, there exists a winning strategy in those re-
maining cases).

To obtain optimal strategies (with respect to the overall
number of movements), one can use weighted arcs in the
arena depending on the number of moving robots on that arc.

Figure 5 presents classes of configurations (satisfying some
constraintϕ), and the strategy found in this class (in the “Strat-
egy” column). The “Robot Algorithm” column presents the
corresponding robot algorithm executed by Robot r when its
view viewr satisfies ϕ. For all other views, the robot al-
gorithm is ↑. This algorithm is correct by construction for
n ∈ [3, 15] and n = 100. An induction proof is given in [55],
extending the results to any ring size n.

RC4

RC4

RC5

RC2

RL1

RL2

RC2

RL2

Figure 4: Counter example

Strategy Robot Algorithm
Vp ϕ Vo viewr ϕ f : viewr

[(−1,−1, n− 1)]≡ ((−1,−1, n− 1), (↑, ↑, ↑))
[(−1, d1, d2)]≡ d1 < d2 ((−1, d1, d2), (↑, ↑,x)) {(d1,−1, d2), (d2,−1, d1)} d1 < d2 y
[(−1, n−12 , n−12)]≡ ((−1, n−12 , n−12), (↑, ↑, ?)) {(n−1

2 ,−1, n−12)} ?
[(d1, d1, d2)]≡ rep = (d1, d1, d2) ((d1, d1, d2), (y, ↑,x)) {(d1, d1, d2), (d2, d1, d1)} d1 < d2 y
[(d1, d1, d2)]≡ rep = (d2, d1, d1) ((d2, d1, d1), (↑, ↑, ?)) {(d1, d2, d1)} d2 < d1 ?
[(d1, d2, d3)]≡ d1 < d2 < d3 (y, ↑, ↑)) {(d2, d1, d3), (d3, d1, d2)} d1 < d2 < d3 y

Figure 5: A Strategy and its corresponding algorithm

4.3 Certification of Impossibility Results

So far the aforementioned formalism proved to be useful
and with a (relative) ease of use to certify impossibility results
regarding oblivious and anonymous mobile robots [29], even
when one allows for byzantine behaviours [7], [8].

From the point of view of the person who specifies the
model and the properties, the theorems are stated in a natural
way: mostly by quantifying over relevant demons, protocols
(robograms), and concluding with a negation of the solution
characterisation.

For instance, the impossibility of gathering for an even num-
ber of oblivious and anonymous mobile entities moving along
R in [29] is simply expressed as follows:

Theorem noGathering :
∀ (G : finite) (r : robogram (G] G)),
inhabited G
→ ∀ k : nat, (1 <= k)

→ ¬ (∀ d, kFair k d → solGathering r d)

It can be read as “for every finite set G that is non-empty,
for every robogram r distributed over twice the cardinal of G
robots (thus an even number), for every fairness constraint k,
there is a k-fair demon d for which r fails to gather all robots”.

Its proof amounts to showing that for a non-null even num-
ber of robots, any k and any robogram r there exists a k-fair
demon that prevents r to gather all robots.

From the point view of the person with proof-assistant ex-
pertise who develops the actual (interactive) proof, the size
of the development is reasonably short as it makes a fair use
of the provided libraries. The size of the specialised devel-
opment for the relevant notions and the aforementioned the-
orems (thus excluding for example the complete library for
reals) is approximately 480 lines of specifications and 430
lines only of proofs. The file dedicated to the theorem itself is
about 200 lines of specifications for 250 lines of proof scripts.
This is a good indication on how adequate the framework is,
as proofs are not too intricate and remain human readable.

Proving negative results has been emphasised here, yet it is

worth noticing that this approach is not limited to impossibil-
ity results. Indeed, protocols can also be proved correct using
this formal development, as it is easy to write an actual pro-
gram within the language of COQ, a functional language. The
statements are then of the form: for all demons, for any num-
ber of robots and initial positions that fulfill some constraint,
the given robogram is a solution to some problem.

5 Open Problems

We surveyed recent results that make use of formal meth-
ods in the context of mobile robot networks. Model checking
and algorithm synthesis were used in the discrete space model
to find errors in existing literature (and possibly relieve pro-
tocol designers from the burden of manually checking small
instances of the problem, thus permitting them to concentrate
on abstract configurations where some global invariants hold)
and general protocols that are correct by design in this con-
text, while proof assistant was used to devise general impos-
sibility results in the continuous space model. Many open
challenges remain, we list a few of them in the sequel, hoping
to pave the way for future research.

Arbitrary Sized Networks The main limitations implied
by the model-checking and algorihtm synthesis approaches is
that the space where robots evolve is bounded. That is, the
number of robots k and the size of the ring n are given as pa-
rameter to generate the possible configuration. This permits
to keep the modelling of the system simple, and to enumerate
all possible situations. Getting generic results for any size n
still requires a handmade approach, taking the mechanically
verified instances as a base case for human generated induc-
tion. Mechanising the second part (e.g. with COQ or another
similar tool) is a promising path.

Discrete vs. Continuous Space Going from the discrete
space to the continuous space is another challenge (in the

case of model-cheking and algorithm synthesis). Then, it be-
comes impossible to enumerate all possible configurations of
robots, yet a completely different modelling of the configura-
tions (e.g. based on some geometric invariants observed by
the robots) could lead to limiting their classes to a tractable
number. However, in this case, none of the presented ap-
proaches so far can be reused.

On the positive side, thanks to the abstraction level of the
Pactole framework [58], setting the space to be R, thus both
unbounded and continuous, is not as complicated as one could
imagine; it emphasises the relevance of a formal proof ap-
proach and how it is complementary to other formal verifica-
tion techniques.

Atomic vs. Non-atomic Executions For the algorithm syn-
thesis and proof assistant, we focused on the atomic FSYNC
and SSYNC models. Breaking the atomicity of the individual
Look-Compute-Move cycles (that is, considering automatic
algorithm production for the ASYNC model [36], or writing
impossibility results that are specific to that model) implies
that robots cannot maintain a current global view of the sys-
tem (their own view may be outdated), nor be aware of the
view of other robots (that may be outdated as well). Then,
the two-players game encoding of Millet et al. [55] is not
feasible anymore. A natural approach would be to use dis-
tributed games, but they are generally undecidable as previ-
ously stated. So, a completely new approach is required for
the automatic generation of non-atomic mobile robot algo-
rithms.

The modelling of ASYNC is feasible in a proof assistant,
and should not bring any additional difficulties in the speci-
fication of properties in that context. However, it would cur-
rently have a significant cost in terms of intricacy of the asso-
ciated proofs. A really manageable formal development in an
ASYNC model requires more automation at the proof level.

Toward Weaker Requirements A noteworthy added bene-
fit of the COQ abstract framework is that keeping the abstrac-
tions as general as possible may lead to relaxing premises of
theorems, thus potentially discovering new results (e.g. for-
malising weaker demons [34] and weaker forms of Byzantine
behaviours could lead to stronger impossibility results).

Toward New Robotic Problems Solved While the mod-
elling in the discrete space approaches is generic, the encod-
ing of the problem has to be specific (LTL logic for model
checking, identifying the winning configurations in the al-
gorithm synthesis approach). The COQ approach remains
generic with respect to the algorithm thank to its higher-order
logic capabilities, however the suitability of the approach to
obtain positive results (that is, certified algorihtms solving a
praticular problem) has not been demonstrated yet on practi-
cal examples. This issue remains challenging as expertise is
required to design the proper encoding in each formal model.
Facilitating this step for algorithm designer is a long term re-
search goal.

REFERENCES

[1] Martín Abadi, Leslie Lamport, and Pierre Wolper. Re-
alizable and unrealizable specifications of reactive sys-
tems. In Proc. ofICALP’89, volume 372 of LNCS, pages
1–17. Springer, 1989.

[2] ACL2. http://www.cs.utexas.edu/users/
moore/acl2/.

[3] Agda. http://wiki.portal.chalmers.se/
agda/pmwiki.php.

[4] José Bacelar Almeida, Manuel Barbosa, Endre
Bangerter, Gilles Barthe, Stephan Krenn, and San-
tiago Zanella Béguelin. Full Proof Cryptography:
Verifiable Compilation of Efficient Zero-Knowledge
Protocols. In Ting Yu, George Danezis, and Virgil D.
Gligor, editors, ACM Conference on Computer and
Communications Security, pages 488–500. ACM, 2012.

[5] Krzysztof R. Apt and Dexter Kozen. Limits for auto-
matic verification of finite-state concurrent systems. Inf.
Process. Lett., 22(6):307–309, 1986.

[6] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck.
Parameterized verification with automatically computed
inductive assertions. In Proc. of 13th Int. Conf. on
Computer Aided Verification (CAV’01), volume 2102 of
LNCS, pages 221–234. Springer, 2001.

[7] Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien
Tixeuil, and Xavier Urbain. Brief announcement: Cer-
tified impossibility results for byzantine-tolerant mobile
robots. In Yehuda Afek, editor, International Sympo-
sium on Distributed Computing (DISC), volume 8205
of Lecture Notes in Computer Science, pages 577–578,
Jerusalem, Israel, October 2013. Springer.

[8] Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien
Tixeuil, and Xavier Urbain. Certified impossibility re-
sults for byzantine-tolerant mobile robots. In Teruo
Higashino, Yoshiaki Katayama, Toshimitsu Masuzawa,
Maria Potop-Butucaru, and Masafumi Yamashita, edi-
tors, SSS, volume 8255 of Lecture Notes in Computer
Science, pages 178–190, Osaka, Japan, November 2013.
Springer.

[9] C. Baier and J. P. Katoen. Principles of model checking.
MIT press, 2008.

[10] J. Barnat, L. Brim, M. Češka, and P. Ročkai. Di-
VinE: Parallel Distributed Model Checker (Tool pa-
per). In Parallel and Distributed Methods in Verification
and High Performance Computational Systems Biology,
pages 4–7. IEEE, 2010.

[11] Marc Bezem, Roland Bol, and Jan Frisco Groote. For-
malizing Process Algebraic Verifications in the Calculus
of Constructions. Formal Aspects of Computing, 9:1–48,
1997.

[12] N. Bjørner, A. Browne, E. Y. Chang, M. Colón, A. Ka-
pur, Z. Manna, H. Sipma, and T. E. Uribe. Step:
Deductive-algorithmic verification of reactive and real-
time systems. In Proc. of 8th Int. Conf. on Computer
Aided Verification (CAV’96), volume 1102 of LNCS,
pages 415–418. Springer, 1996.

[13] L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil.
Exclusive perpetual ring exploration without chirality.

Distributed Computing, pages 312–327, 2010.
[14] François Bonnet, Xavier Défago, Franck Petit, Maria

Potop-Butucaru, and Sébastien Tixeuil. Brief announce-
ment: Discovering and assessing fine-grained metrics in
robot networks protocols. In Proc. of SSS 2012, volume
7596 of LNCS, pages 282–284. Springer, 2012.

[15] François Bonnet, Xavier Défago, Franck Petit, Maria
Potop-Butucaru, and Sébastien Tixeuil. Discovering and
assessing fine-grained metrics in robot networks proto-
cols. In 33rd IEEE International Symposium on Reliable
Distributed Systems Workshops, SRDS Workshops 2014,
Nara, Japan, October 6-9, 2014, pages 50–59. IEEE,
2014.

[16] Robert Stephen Boyer and J Strother Moore. A Compu-
tational Logic Handbook. Academic Press, 1988.

[17] J. Richard Büchi and Lawrence H. Landweber. Solving
sequential conditions by finite-state strategies. Trans.
Amer. Math. Soc., 138:295–311, 1969.

[18] D. Cansell, D. Méry, and S. Merz. Diagram refinements
for the design of reactive systems. J. Univ. Comp. Sci.,
7(2):159–174, 2001.

[19] Dominique Cansell and Dominique Méry. Logics of
Specification Languages, chapter The Event-B Mod-
elling Method: Concepts and Case Studies, pages 47–
152. Springer-Verlag, 2007.

[20] Pierre Castéran, Vincent Filou, and Mohamed Mosbah.
Certifying Distributed Algorithms by Embedding Local
Computation Systems in the Coq Proof Assistant. In
Adel Bouhoula and Tetsuo Ida, editors, Symbolic Com-
putation in Software Science (SCSS’09), 2009.

[21] I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Al-
gorithmic verification of population protocols. In Sta-
bilization, Safety, and Security of Distributed Systems,
pages 221–235. Springer Berlin Heidelberg, 2010.

[22] Ching-Tsun Chou. Mechanical Verification of Dis-
tributed Algorithms in Higher-Order Logic. The Com-
puter Journal, 38:158–176, 1995.

[23] Alonzo Church. Logic, arithmetics, and automata. In
Proc. ofInt. Congr. of Mathematicians, pages 23–35,
1963.

[24] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[25] E. M. Clarke and E. A. Emerson. Design and synthe-
sis of synchronization skeletons using branching time
temporal logic. In Proc. ofIBM Workshop on Logics of
Programs, 1981.

[26] E. M. Clarke, O. Grumberg, and S. Jha. Veryfying pa-
rameterized networks using abstraction and regular lan-
guages. In Proc. of 6th Int. Conf. on Concurrency The-
ory (CONCUR’95), volume 962 of LNCS, pages 395–
407. Springer, 1995.

[27] J. Clément, C. Delporte-Gallet, H. Fauconnier, and
M. Sighireanu. Guidelines for the verification of pop-
ulation protocols. In Distributed Computing Systems,
pages 215–224. IEEE, 2011.

[28] Coq. https://coq.inria.fr/.
[29] Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and

Xavier Urbain. Impossibility of gathering, a certifi-

cation. Information Processing Letters, 115:447–452,
2015.

[30] Denis Cousineau, Damien Doligez, Leslie Lamport,
Stephan Merz, Daniel Ricketts, and Hernán Vanzetto.
TLA + Proofs. In Dimitra Giannakopoulou and Do-
minique Méry, editors, FM, volume 7436 of Lecture
Notes in Computer Science, pages 147–154, Paris,
France, August 2012. Springer-Verlag.

[31] L. de Alfaro, Z. Manna, H. B. Sipma, and T. E. Uribe.
Visual verification of reactive systems. In Proc. of 3d
Int. Workshop on Tools and Algorithms for Construction
and Analysis of Systems (TACAS’97), volume 1217 of
LNCS, pages 334–350. Springer, 1997.

[32] Yuxin Deng and Jean-François Monin. Verifying Self-
stabilizing Population Protocols with Coq. In Wei-
Ngan Chin and Shengchao Qin, editors, Third IEEE In-
ternational Symposium on Theoretical Aspects of Soft-
ware Engineering (TASE 2009), pages 201–208, Tian-
jin, China, July 2009. IEEE Computer Society.

[33] S. Devismes, A. Lamani, F. Petit, P. Raymond, and
S. Tixeuil. Optimal grid exploration by asynchronous
oblivious robots. In Proc. of SSS, pages 64–76. Springer,
2012.

[34] Swan Dubois and Sébastien Tixeuil. A Taxonomy
of Daemons in Self-stabilization. Technical Report
1110.0334, ArXiv eprint, October 2011.

[35] J. Esparza, A. Finkel, and R. Mayr. On the verification
of broadcast protocols. In 14th Annual Symp. on Logic
in Computer Science, pages 352–359. IEEE, 1999.

[36] P. Flocchini, G. Prencipe, and N. Santoro. Distributed
Computing by Oblivious Mobile Robots. Morgan &
Claypool Publishers, 2012.

[37] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer.
Gathering of asynchronous robots with limited visibil-
ity. Theoretical Computer Science, pages 147–168,
2005.

[38] Wan Fokkink. Modelling Distributed Systems. EATCS
Texts in Theoretical Computer Science. Springer-
Verlag, 2007.

[39] Eric Gascard and Laurence Pierre. Formal Proof of Ap-
plications Distributed in Symmetric Interconnexion Net-
works. Parallel Processing Letters, 13(1):3–18, 2003.

[40] Georges Gonthier. Formal Proof—The Four-Color The-
orem. In Notices of the AMS, volume 55, page 1370.
december 2008.

[41] Georges Gonthier. Engineering Mathematics: the Odd
Order Theorem Proof. In Roberto Giacobazzi and Rad-
hia Cousot, editors, POPL, pages 1–2. ACM, 2013.

[42] Erich Grädel, Wolfgang Thomas, and Thomas Wilke,
editors. Automata, Logics, and Infinite Games: A Guide
to Current Research [outcome of a Dagstuhl seminar,
February 2001], volume 2500 of Lecture Notes in Com-
puter Science. Springer, 2002.

[43] R. Guerraoui, T. A. Henzinger, and V. Singh. Model
checking transactional memories. Distributed Comput-
ing, pages 129–145, 2010.

[44] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language lustre.

Proceedings of the IEEE, 79(9):1305–1320, September
1991.

[45] Gerwin Klein, June Andronick, Kevin Elphinstone, Ger-
not Heiser, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an operating system kernel.
Communications of the ACM, 53(6):107–115, 2010.

[46] Philipp Küfner, Uwe Nestmann, and Christina Rick-
mann. Formal Verification of Distributed Algorithms -
From Pseudo Code to Checked Proofs. In Jos C. M.
Baeten, Thomas Ball, and Frank S. de Boer, editors,
IFIP TCS, volume 7604 of Lecture Notes in Computer
Science, pages 209–224, Amsterdam, The Netherlands,
September 2012. Springer-Verlag.

[47] Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Probabilistic verification of herman’s self-
stabilisation algorithm. Formal Asp. Comput., 24(4-
6):661–670, 2012.

[48] Leslie Lamport. Byzantizing Paxos by Refinement.
In David Peleg, editor, DISC, volume 6950 of Lecture
Notes in Computer Science, pages 211–224. Springer,
2011.

[49] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982.

[50] Xavier Leroy. A Formally Verified Compiler Back-End.
Journal of Automated Reasoning, 43(4):363–446, 2009.

[51] Loco. http://www.labri.fr/~casteran/
Loco.

[52] T. Lu, S. Merz, and C. Weidenbach. Towards ver-
ification of the pastry protocol using tla+. In For-
mal Techniques for Distributed Systems, pages 244–258.
Springer Berlin Heidelberg, 2011.

[53] Z. Manna and A. Pnueli. Temporal verification dia-
grams. In Proc.of Int. Conf. on Theoretical Aspects of
Computer Software (TACS’94), volume 789 of LNCS,
pages 726–765. Springer, 1994.

[54] Zohar Manna and Pierre Wolper. Synthesis of commu-
nicating processes from temporal logic specifications.
ACM Trans. Program. Lang. Syst., 6(1):68–93, 1984.

[55] Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder,
and Sébastien Tixeuil. On the synthesis of mobile robots
algorithms: The case of ring gathering. In Pascal Felber
and Vijay K. Garg, editors, Stabilization, Safety, and Se-
curity of Distributed Systems - 16th International Sym-
posium, SSS 2014, Paderborn, Germany, September 28 -
October 1, 2014. Proceedings, volume 8756 of Lecture
Notes in Computer Science, pages 237–251. Springer,
2014.

[56] Mizar. http://mizar.uwb.edu.pl/.
[57] Tobias Nipkow, Lawrence C. Paulson, and Markus Wen-

zel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2002.

[58] Pactole. http://pactole.lri.fr.
[59] Amir Pnueli and Roni Rosner. On the synthesis of a

reactive module. In Proc. ofPOPL’89, pages 179–190.
ACM, 1989.

[60] M. Potop-Butucaru, M. Raynal, and S. Tixeuil. Dis-
tributed computing with mobile robots: An introductory
survey. In Network-Based Information Systems (NBiS),
2011 14th International Conference on, pages 318–324,
2011.

[61] PVS. http://pvs.csl.sri.com/.
[62] Davide Sangiorgi. Introduction to Bisimulation and

Coinduction. Cambridge University Press, 2012.
[63] I. Suzuki and M. Yamashita. Distributed anonymous

mobile robots: Formation of geometric patterns. SIAM
Journal on Computing, pages 1347–1363, 1999.

[64] Flyspeck Development Team. The Flyspeck Project.
https://code.google.com/p/flyspeck/.

[65] Laurent Théry and Guillaume Hanrot. Primality Prov-
ing with Elliptic Curves. In Klaus Schneider and Jens
Brandt, editors, 20th International Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs 2007),
volume 4732 of Lecture Notes in Computer Science,
pages 319–333, Kaiserslautern, Germany, September
2007. Springer-Verlag.

[66] Uppaal Tiga. http://people.cs.aau.dk/
~adavid/tiga/.

[67] T. Tsuchiya and A. Schiper. Verification of consensus
algorithms using satisfiability solving. Distributed Com-
puting, pages 341–358, 2011.

(Received April XX, 2015)
(Revised YY XX, 2015)

Béatrice Bérard is full professor at
University Pierre & Marie Curie (Paris 6, France)
in the Modelling and Verification group. Her
research interests cover formal verification and
synthesis of reactive systems, possibly integrating
quantitative features like time or probabilities.

Pierre Courtieu
is associate professor at CNAM, Paris (France).
He received his PhD from University Paris-Sud
XI in 2001, and is a specialist of theorem proving
and proof of programs. He is a member of the
steering committee of the COQ proof assistant.

Laure Millet is currently
a third year PHD student at University Pierre
& Marie Curie - Paris 6 (France). She is working
on formal methods and verification of distributed
algorithms for autonomous and mobile robots.

Maria Potop-Butucaru is full professor at
University Pierre & Marie Curie (Paris 6, France)
in the Network and Performance Analysis
group. She was previously, assistant professor
in University Paris 11 and associate professor in
University Rennes 1. Her research area includes
distributed and fault tolerant algorithms and
formal methods for static and dynamic systems
with special focus on sensor and robot networks.

Lionel Rieg is currently Attaché
Temporaire d’Enseignement et de Recherche
(a temporary research assistant position)
at Collège de France, Paris (France). Holder
of the high academic competitive examination
Agrégation in mathematics, he defended
his PhD at École Normale Supérieure de Lyon
in 2014. He is a specialist in logics, in particular
regarding the Curry-Howard correspondance.

Nathalie Sznajder
is assistant professor at University
Pierre & Marie Curie - Paris 6 (France),
LIP6. She received her PhD from ENS Cachan
in 2009 and spent a year as a post-doctoral
researcher at Université Libre in Bruxelles.
Her research interests cover formal verification
and control of (distributed, timed) systems.

Sébastien Tixeuil
is full professor at University Pierre & Marie
Curie - Paris 6 (France) and Institut Universitaire
de France, where he leads the Networks
and Systems department at LIP6. He received his
Ph.D. from University of Paris Sud-XI in 2000.
His research interests include fault and attack
tolerance in dynamic networks and systems.
He has co-authored more than 150 research
papers in international journal and conferences.

Xavier Urbain
is associate professor at ENSIIE, Évry
(France). He received his PhD from University
Paris-Sud XI in 2001, as well as his Habilitation
in 2010. He is a specialist of automated
deduction and certified proof, in particular
aimed at exhibiting properties of programs.

