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Abstract Event clock automata (ECA) are a model for timed languages that has been intro-
duced by Alur, Fix and Henzinger as an alternative to timed automata, with better theoretical
properties (for instance, ECA are determinizable while timed automata are not). In this pa-
per, we revisit and extend the theory of ECA. We first prove that no finite time abstract
language equivalence exists for ECA, thereby disproving a claim in the original work on
ECA. This means in particular that regions do not form a time abstract bisimulation. Nev-
ertheless, we show that regions can still be used to build a finite automaton recognizing the
untimed language of an ECA. Then, we extend the classical notions of zones and DBMs
to let them handle event clocks instead of plain clocks (as in timed automata) by introduc-
ing event zones and Event DBMs (EDBMs). We discuss algorithms to handle event zones
represented as EDBMs, as well as (semi-) algorithms based on EDBMs to decide language
emptiness of ECA.
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1 Introduction

Timed automata have been introduced by Alur and Dill in the early nineties [3] and are a suc-
cessful and popular model to reason about timed behaviors of computer systems. Where fi-
nite automata represent behaviors by finite sequences of letters (taken from a finite alphabet,
each letter models an action of the system), timed automata define sets of timed words (called
timed languages) that are finite sequences of letters, each paired with a real time stamp. To
this end, timed automata extend finite automata with a finite set of real valued clocks, that
can be tested and reset with each action of the system. The theory of timed automata is
now well developed [1]. Efficient algorithms to analyse timed automata, that rely on pecu-
liar data structures such as zones and DBMs have been proposed [17,23]. These algorithms
have been implemented in several tools such as Kronos [12] or UppAal [5]. Those tools have
been successfully applied in several industrial case studies (for instance [21,7], see http:
//www.it.uu.se/research/group/darts/uppaal/examples.shtml for a
comprehensive list).

The model of timed automata, however, suffers from certain weaknesses, at least from
the theoretical point of view: timed automata are not determinizable and cannot be comple-
mented in general [3]. Intuitively, this stems from the fact that the reset of the clocks cannot
be made deterministic wrt the word being read. Indeed, from a given location, there can be
several transitions, labeled by the same letter a, and with compatible guards, but resetting
different clocks.

This observation has prompted Alur, Fix and Henzinger to introduce the model of event
clock automata (ECA for short) [4], as an alternative formalism for representing timed lan-
guages. Unlike timed automata, ECA force the clock resets to be strongly linked to the
letters that label the transitions. To achieve this, there are, in an ECA, and for each letter a,
two clocks ←−xa and −→xa . The clock ←−xa is the history clock of a and always records the time
elapsed since the last occurrence of a. Symmetrically, −→xa is the prophecy clock for a, and
always predicts the time distance up to the next occurrence of a. Thus, the value of any
history clock increases with time elapsing (like clocks in timed automata do), while the
values of prophecy clocks decrease over time. The main advantage of this definition is that
the value of all clocks is uniquely determined at any point in the timed word being read, no
matter what path is being followed in the ECA. A nice consequence of this definition is that
ECA are determinizable [4], unlike timed automata. However, this comes at a price, as the
expressiveness of ECA is strictly weaker than that of timed automata [3].

Nevertheless, ECA remain an appealing model, and we believe that they could be of
practical interest in the modeling and verification of timed systems. While the theory of
ECA has witnessed some developments [24,18,26,16,19] since the seminal paper, no tool
is available that exploits the full power of event clocks (the only tool we are aware of is
TEMPO [25] and it is restricted to event-recording automata, i.e. ECA with history clocks
only).

In this work, we revisit and extend the theory of ECA, with the hope to make it more
practical and amenable to implementation. A widespread belief [4] about ECA is that they
are similar enough to timed automata that the classical techniques (such as regions, zones or
DBMs) developed for them can readily be applied to ECA. The present research, however,
highlights fundamental discrepancies between timed automata and ECA:

1. First, we show that there is no finite time abstract language equivalence on the valua-
tions of event clocks, whereas the region equivalence [3] is a finite time abstract language
equivalence for timed automata. This implies, in particular, that regions do not form a
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finite time-abstract bisimulation for ECA, thereby contradicting a claim found in the
original paper on ECA [4].

2. With timed automata, checking language emptiness can be done by building the so-
called region automaton [3] which recognizes Untime(L(A)), the untimed version of
A’s timed language. A consequence of the surprising result of point 1 is that, for some
ECA A, the region automaton recognizes a strict subset of Untime(L(A)). Thus, the
region automaton (as defined in [3]) is not a sound construction for checking language
emptiness of ECA.

3. To recover a finite automaton recognising Untime(L(A)), we introduce a novel semantics
for ECA, the so-called weak semantics which is obtained by slightly relaxing the defi-
nition of the elapsing of time on prophecy clocks that are above the maximal constant
cmax appearing in the automaton. We show that this does not impact the recognised
language of the automaton, i.e. the weak semantics recognises the same language as
the classical one, but with the benefit that regions are finite time-abstract bisimulation
on the weak semantics. Equipped with this theoretical tool, we show that the existen-
tial region automaton, which is a slight modification of the original definition of region
automaton (on the classical semantics) allows to recover Untime(L(A)).

4. Efficient algorithms to analyze timed automata are best implemented using zones [1],
that are in turn represented by DBMs [17]. Unfortunately, zones and DBMs cannot be
directly applied to ECA. Indeed, a zone is, roughly speaking, a conjunction of constraints
of the form x− y≺ c, where x, y are clocks, ≺ is either < or ≤ and c is an integer. This
makes sense in the case of timed automata, since the difference of two clock values is
an invariant with time elapsing. This is not the case when we consider event clocks, as
prophecy and history clocks evolve in opposite directions with time elapsing. Thus, we
introduce the notions of event-zones and Event DBMs that can handle constraints of the
form x+ y≺ c, when x and y are of different types.

5. In the case of timed automata two basic, zone-based algorithms for solving language
emptiness have been studied: the forward analysis algorithm that iteratively computes
all the states reachable from the initial state, and the backward analysis algorithm that
computes all the states that can reach a target state. While the former might not terminate
in general, the latter is guaranteed to terminate [1]. We show that this is not the case
anymore with ECA: both algorithms might not terminate again because of event clocks
evolving in opposite directions.

6. Still in the case of timed automata, widening operators have been proposed that over-
come this issue and guarantee the termination of the forward algorithm. The most pop-
ular widening operators is certainly the so-called ‘k-approximation’ [14]. This operator
applies to zones, and consists, roughly speaking, in replacing every constraint of the
form x− y ≺ c by x− y ≺ +∞, and every constraint of the form c ≺ x− y by k ≺ x− y,
when c > k. Usually, this operators is used by setting k = cmax, i.e., the largest con-
stant appearing in the guards of the automaton. Intuitively, this widening seems to make
sense, as the automaton cannot distinguish between two clock values that are > cmax.
Nevertheless, the correctness of this operator has sparkled much debate in the commu-
nity of real-time systems recently. Bouyer has finally settled the question by showing,
that, cmax-approximation is correct when the timed automaton has no diagonal con-
straints in the guards, but that it is an over-approximation when diagonal constraints are
allowed [9]. This means that there are some timed automata with diagonal constraints on
which the forward algorithm, together with the cmax-approximation widening operator,
will compute a strict over-approximation of the reachable states.
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In the present work, we show that, contrary to timed automata case, this operator is
not correct for ECA, even when no diagonal constraints are allowed. More precisely,
applying either the forward or the backward algorithm to ECA, together with the cmax-
approximation widening operator (as defined for timed automata), may yield a strict
over-approximation of the set of reachable states. This observation thus accounts for an
additional difference between timed automata and ECA, and show once again that the
analysis techniques for timed automata cannot be straightforwardly applied to ECA.
Nevertheless, we present an alternative version of the k-approximation operator (actu-
ally, a slight relaxation of the original operator), and prove that it is correct in the case
of ECA, using proof techniques similar to Bouyer’s [9]. To the best of our knowledge,
this yields the first forward and backward zone-based algorithms for ECA that are both
sound and complete.

These observations highlight the structure of the paper: after some preliminaries in section 2,
where we recall the model of ECA and other technical matters, we present several equiva-
lence relations for event-clocks valuations (Section 3). Then, we discuss regions and region
automata in the setting of event-clocks, in Section 5. In Section 6, we introduce event zones
and event-DBMs, which are adaptations of classical clock zones and DBMs to event-clocks.
In section 7, we discuss the classical forward and backward algorithms, when applied to
ECA, as well as the associated widening operators.

This work is an extended and revised version of a conference paper appeared in FOR-
MATS 2011 [20].

The authors would like to express their gratitude towards the anonymous reviewers.
Their numerous comments and suggestions have significantly helped to improve the present
paper.

2 Preliminaries

Let us start by introducing the basic notions that will be used in the present work. We first
discuss them informally, using a running example.

Assume we want to model a log-in procedure. To log in to the system, the user must
first enter his user name (action u of the system). Then, he must type his password (action
p) and gets logged in (action l) if the password is correct, or has to retype his password
(action r) if the previous attempt failed. This can be repeated several times. In order to
avoid dictionary attacks on this log in procedure, additional rules are enforced. First, in case
of a wrong password, the user has to wait at least 1 t.u. before being allowed to try a new
password. Second, the whole log in procedure has to be completed within 5 t.u. after the
user has typed his user name. If the user has not been able to provide a matching password
for the user name within 5 t.u., the log in procedure is reset and starts anew (action t, for
‘time out’).

Obviously, a faithful model of an execution of this procedure has to encode the (exact)
time stamps of the events, in addition to the sequence of actions performed during the ex-
ecution. As an example, a possible execution of the protocol is that the user types his user
name at time 1.3, and types a wrong password at time 3.4. Then, the system waits one time
unit and offers the user to retype his password at time 4.4. The user types again a wrong
password at time 6.2, and the log in procedure is reset at time 6.3, i.e., exactly 5 time units
after the user has provided his user name. Then, the user completes the log in procedure,
by typing his user name at time 7.5, his password at time 8.3, and gets logged in at time
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start username password logged in

u,−→xt = 5

u,−→xl ≤ 5∧−→xt =⊥

t

p

r,←−xp ≥ 1

t

l

Fig. 1 A login protocol modeled as an event-clock automaton on the alphabet Σ = {l,p,r,t,u}.

8.4. This execution can be represented by a timed word, which is a finite sequence of pairs
(action, time stamp):

(u,1.3) (p,3.4) (r,4.4) (p,6.2) (t,6.3) (u,7.5) (p,8.3) (l,8.4)

Then, the set of all possible executions of the procedure can be modeled as a (possibly
infinite) set of timed words, i.e. a timed language. To formally define timed languages in a
finite way, one usually relies on some kind of automaton model. A popular automaton model
for timed languages is that of timed automata [1], which exends finite automata by means
of clocks, i.e. real-valued variables whose values evolve with time elapsing, and that can be
tested and reset at will during the execution of the automaton.

Instead, this work considers the model of event-clock automata (ECA for short), intro-
duced in [4]. The most salient difference between timed automata and ECA is that clocks in
ECA are called event clocks, because their values are tightly linked to the events that occur
(i.e., the letters making up the timed word). In and ECA, there are at most two event clocks
associated with each each letter a: the history clocks←−xa that records the time elapsed since
the last occurrence of a (or contains⊥ if no such event ever occured), and the prophecy clock
−→xa which predicts the time up to the next occurrence of a (or contains ⊥ if no more a will
occur). In our example execution, at time 2.1 (after the beginning of the execution), the value
of←−xu is thus 0.8 since, at that time, the last u has occurred at time stamp 1.3; −→xr has value
2.3; and←−xp has value ⊥; for instance. Thus, in an ECA, the value of the clocks is uniquely
determined by the (complete) word being read, contrary to timed automata, where the same
prefix can be read by following two different paths in the automata that have different effects
on the clocks.

Then, our log ing procedure can be modeled by the ECA given in Fig. 1. As can be seen
on the figure, an ECA is a finite automaton whose transitions can be labeled by a condition
or guard on the event clocks, in addition to the action corresponding to the transition. In
Fig. 1, the ECA has four states, labeled ‘start’, ‘username’, ‘password’ and ‘logged in’, that
correspond respectively to the beginning of the login protocol, the fact that the user has typed
his username, the fact that the user has typed his password, and the completion of the login
procedure. Each execution of the log in procedure corresponds to a run of the automaton.
Such a run is a path in the automaton that starts in an initial location1 (in our case, the ‘start’
location), ends in an accepting location2 (in our case, the ‘logged in’ location), and where all
guards on transitions taken along the path are satisfied. Guards on transitions are conditions
on the valuations of the clocks.

1 Initial locations are denoted by a small arrow pointing to the node.
2 Accepting locations are denoted by a doubled border.
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start
−→xl = 8.4
−→xt = 6.3
←−xp =⊥

1.3−→

start
−→xl = 7.1
−→xt = 5.0
←−xp =⊥

u,−→xt =5−−−−→

username
−→xl = 7.1
−→xt = 5.0
←−xp =⊥

2.1−→

username
−→xl = 5
−→xt = 2.9
←−xp =⊥

p−→

password
−→xl = 5
−→xt = 2.9
←−xp = 0

1.0−→

password
−→xl = 4.0
−→xt = 1.9
←−xp = 1.0

r,−→xp≥1
−−−−→

username
−→xl = 4.0
−→xt = 1.9
←−xp = 1.0

1.8−→

username
−→xl = 2.2
−→xt = 0.1
←−xp = 2.8

p−→

password
−→xl = 2.1
−→xt = 0.1
←−xp = 0

0.1−→

password
−→xl = 2.1
−→xt = 0
←−xp = 0.1

t−→

start
−→xl = 2.1
−→xt =⊥
←−xp = 0.1

1.2−→

start
−→xl = 0.9
−→xt =⊥
←−xp = 1.3

u,−→xl≤5∧−→xt=⊥−−−−−−−−→

username
−→xl = 0.9
−→xt =⊥
←−xp = 1.3

0.8−→

username
−→xl = 0.1
−→xt =⊥
←−xp = 2.1

p−→

password
−→xl = 0.1
−→xt =⊥
←−xp = 0

0.1−→

username
−→xl = 0
−→xt =⊥
←−xp = 0.1

l−→

login
−→xl =⊥
−→xt =⊥
←−xp = 0.1

Fig. 2 A run of the ECA in Fig. 1 on (u,1.3)(p,3.4)(r,4.4)(p,6.2)(t,6.3)(u,7.5)(p,8.3)(l,8.4).

For instance, a run of the ECA in Fig. 1, that corresponds to the timed word given above,
is as follows. First, the run starts in the initial state ‘start’. Then it moves to ‘user name’
after 1.3 time units, taking the upper transition on the figure. This transition imposes, thanks
to its guard −→xt = 5 that the next t action will occur exactly 5 t.u. after its firing, i.e., at
time stamp 5+1.3 = 6.3. Then, it takes, after 2.1 t.u. the p-labeled transition to ‘password’
and the r-labeled transition back to ‘user name’, after an additional 1 t.u. Remark that the
delay between the p- and the r-labeled transition had to be ≥ 1 because of the←−xp ≥ 1 guard
on the r-labeled transition. After the time-out (t-labeled transition), the run reaches the
‘start’ location again, and the u-labeled transition bearing guard −→xl ≤ 5∧−→xt = ⊥ is fired
to reach location ‘username’. Here, the constraint −→xt = ⊥ reads ‘the t action will never
happen again’. The run ends by taking the p labeled transition after 0.8 t.u., then the l
labeled transition after 0.1 t.u., to reach the ‘logged in’ location. This run is depicted in
Fig. 2, where each box represents an extended state of the ECA, i.e., a pair (q,v), where
q is a location (displayed on top of the box), and v is a valuation of the clocks. An arrow
labeled by a real number represents the elapsing of time, and the other arrows indicate the
firing of the corresponding transitions. Hence, in a run of an ECA on a given timed word,
the transition taken when reading some letter might depend on the rest of the word.

As our example shows, ECA are expressive enough to model interesting and realistic
computer systems with real-time constraints. Other examples can be found in [4] and [25]
for instance. From a theoretical point of view, the class of languages that can recognised by
ECA is a strict subclass of the languages recognised by timed automata, and contains strictly
all languages recognised by deterministic timed automata [4].

2.1 Basic notions

Words and timed words An alphabet Σ is a finite set of symbols. A (finite) word is a finite
sequence w = w0w1 · · ·wn of elements of Σ . We denote the length of w by |w|. We denote
by Σ ∗ the set of finite words over Σ . A (finite) timed word over Σ is a pair θ = (τ,w) such
that w is a word over Σ and τ = τ0τ1 · · ·τ|w|−1 is a word over R≥0 with τi−1 ≤ τi for all
1≤ i≤ |w|−1. We denote by TΣ ∗ the set of finite timed words over Σ . A timed language is
a subset of TΣ ∗. For a timed word θ = (τ,w), we let Untime(θ) = w. For a timed language
L, we let Untime(L) = {Untime(θ) | θ ∈ L}.
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Event clocks Given an alphabet Σ , we define the set of associated event clocks CΣ =HΣ ∪
PΣ , where HΣ = {←−xa | a ∈ Σ} is the set of history clocks, and PΣ = {−→xa | a ∈ Σ} is the
set of prophecy clocks. Let C ⊆ CΣ be a set of event clocks. A valuation of the clocks in
C is a function v : C→ R≥0 ∪{⊥}, where ⊥ means that the clock value is undefined. We
denote by V (C) the set of all valuations of the clocks in C. For a valuation v ∈ V (C), for
all x ∈ C such that v(x) 6= ⊥, if x ∈ HΣ , we let 〈v(x)〉 = dv(x)e− v(x) and if x ∈ PΣ , we
let 〈v(x)〉= v(x)−bv(x)c, where bv(x)c and dv(x)e denote respectively the floor and ceiling
of v(x). Intuitively, for all clocks x, 〈v(x)〉 is the remaining time before x crosses an integer
value (provided it is not reset). We also denote by v± the valuation s.t. v±(x) = v(x) for all
x ∈HΣ , and v±(x) =−v(x) for all x ∈ PΣ .

For all valuations v ∈ V (C) and all d ∈ R≥0 such that v(x) ≥ d for all x ∈ PΣ ∩C, we
define the valuation v+d obtained from v by letting d time units elapse: for all x ∈HΣ ∩C,
(v+d)(x) = v(x)+d and for all x ∈ PΣ ∩C, (v+d)(x) = v(x)−d, with the convention that
⊥+d =⊥−d =⊥. A valuation is initial iff v(x) =⊥ for all x ∈HΣ , and final iff v(x) =⊥
for all x ∈ PΣ . We note v[x := c] the valuation that matches v on all its clocks except for v(x)
that equals c. We extend this notation to set of clocks X .

An atomic constraint over a set of variables X is either true or of the form x∼ c, where
x ∈ X , c ∈ N and ∼ ∈ {<,>,=}. An atomic event clock constraint on a set of event clocks
C is either an atomic constraint on C, or a constraint of the form x = ⊥, for some x ∈C. A
constraint over X is a Boolean combination of atomic constraints. An event clock constraint
over a set of event clocks C is a Boolean combination of atomic event clock constraints3.
We denote Constr (X) the set of all possible constraints over the set of variables X , and by
ECConstr (C) the set of all possible event clock constraints over the set of event clocks C.
A valuation v : X 7→ R≥0 ∪ {⊥} satisfies a constraint ψ ∈ ECConstr (X), denoted v |= ψ

according to the following rules: v |= true, v |= x ∼ c iff v(x) 6=⊥ and v(x)∼ c, v |= x =⊥
iff v(x) =⊥, v |= ¬ψ iff v 6|= ψ , and v |= ψ1∧ψ2 iff v |= ψ1 and v |= ψ2.

2.2 Event-clock automata: syntax and semantics

We are now ready to recall the definition of event-clock automata. We start with the syntax,
then give two semantic interpretations of ECA, the former in terms of finite word language,
the latter in term of infinite words. Remark that, throughout this paper, we will focus mainly
on finite words languages of ECA because our results can easily be adapted to the infinite
words case.

Definition 1 ([4]) An event-clock automaton A = 〈Q,qi,Σ ,C,δ ,α〉 (ECA for short) is a
tuple, where

1. Q is a finite set of locations,
2. qi ∈ Q is the initial location,
3. Σ is an alphabet,
4. C ⊆ CΣ is a set of event clocks on Σ ,
5. δ ⊆ Q×Σ ×ECConstr (C)×Q of edges,
6. α ⊆ Q is the set of accepting locations

We also require that, for each q ∈ Q, σ ∈ Σ , δ is defined for a finite number of ψ ∈
ECConstr (C).

3 In the rest of the paper, we often use x ≥ c and x ≤ c as shorthands for x > c∨ x = c and x < c∨ x = c
respectively.
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Observe that this standard definition of event-clock automata disallows silent transitions
(i.e. ε-labeled transitions). Intuitively, this can be explained by the fact that such transitions
would not modify the value of clocks anyway. Then, using a result by Diekert, Gastin and
Petit on timed automata [?], one can easily show that ε-labeled transition can be removed in
ECA too, without modifying the accepted language.

We distinguish two syntactic subclasses of ECA, corresponding to the cases where only
history clocks, or only prophecy clocks are present. Formally, an ECA A= 〈Q,qi,Σ ,C,δ ,α〉 is:

1. an event recording automaton (ERA for short) iff C ⊆HΣ ;
2. an event predicting automaton (EPA for short) iff C ⊆ PΣ .

Runs and accepted language The semantics of ECA is best described in terms of a timed
transition system, i.e. an infinite transition system where the elapsement of time is made
explicit4. An extended state (or simply state) of an ECA A = 〈Q,qi,Σ ,C,δ ,α〉 is a pair (q,v)
where q ∈ Q is a location, and v ∈ V (C) is a valuation. Then, the infinite (timed) transition
system associated to A is defined as follows:

Definition 2 Let A = 〈Q,qi,Σ ,C,δ ,α〉 be an ECA. Its classical semantics is the infinite
timed transition system TSA =

〈
QA,QA

i ,→,αA
〉
, where:

1. QA = Q×V (C) is the set of extended states of A,
2. QA

i = {(qi,v) | v is initial},
3. αA = {(q,v) | q ∈ α and v is final}, and
4. the transition relation→⊆

(
QA×R≥0×QA

)
∪
(
QA×Σ ×QA

)
is s.t.:

(a)
(
(q,v), t,(q,v′)

)
∈ → iff v′ = v+ t (in particular, this implies that v(x) ≥ t for all

prophecy clocks x), and
(b)

(
(q,v),a,(q′,v′)

)
∈→ iff there are (q,a,ψ,q′)∈ δ and v ∈ V (C) s.t. v[−→xa := 0] = v,

v[←−xa := 0] = v′ and v |= ψ . Intuitively, v is the clock valuation obtained after letting
time elapse, and where: (i)←−xa still has its old value, in the sense that it contains the
time elapsed since the last a (recall that←−xa will be equal to 0 after the transition has
fired) and; (ii) −→xa already has its new value, i.e., the value predicting the time to the
next a, that it will contain after the firing of the transition.

We use the notations (q,v) t−→ (q,v′) whenever
(
(q,v), t,(q,v′)

)
∈ →, (q,v) a−→ (q′,v′)

whenever
(
(q,v),a,(q′,v′)

)
∈→ and (q,v)

t,a−→ (q′,v′) whenever there is (q′′,v′′) s.t. (q,v) t−→
(q′′,v′′) a−→ (q′,v′′). Intuitively, this semantics means that a history clock←−xa always records
the time elapsed since the last occurrence of the corresponding a event, and that a prophecy
clock −→xa always predicts the delay up to the next occurrence of a. Thus, when firing an a-
labeled transition, the guard must be tested against v (as defined above) because it correctly
predicts the next occurrence of a and correctly records its last occurrence (unlike v and v′,
as v(−→xa ) = 0 and v′(←−xa ) = 0).

Thanks to this definition of the transition relation, we are ready to define the notion of
run:

Definition 3 Let TSA =
〈
QA,QA

i ,→,αA
〉

be the timed transitions system of some ECA A. A
(q,v)-run of TSA on the timed word θ =(τ,w) is a finite sequence ρ =(q0,v0)(t0,w0)(q1,v1)
(t1,w1)(q2,v2) · · ·(qn,vn) s.t.:

4 Remark that the term ‘timed transition system’ has been used with other meanings. In particular, in [4],
timed transitions systems are actually a model that can be seen as a variant of timed automata.
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1. (q0,v0) = (q,v), t0 = τ0,
2. for any 1≤ i≤ |w|−1: ti = τi− τi−1, and
3. for any 0≤ i≤ |w|−1: (qi,vi)

ti,wi−−→ (qi+1,vi+1).

A (q,v)-run is initialized iff (q,v) ∈ QA
i (in this case, we simply call it a run). Let us now

explain how to interpret the set of accepting states of the ECA:

Definition 4 Let TSA =
〈
QA,QA

i ,→,αA
〉

be the timed transitions system of some ECA A.
A (q,v)-run, ending in (qn,vn) is accepting iff (qn,vn) ∈ αA.

Whenever ρ is an accepting run on θ , we say that ρ accepts θ . Thanks to these notions, we
can now define the language accepted by a timed transition system TSA =

〈
QA,QA

i ,→,αA
〉
,

for some ECA A.

Definition 5 TSA =
〈
QA,QA

i ,→,αA
〉

be the timed transitions system of some ECA A. Then,
the language accepted by TSA from (q,v) is the set L(TSA,(q,v)) of all timed words that are
accepted by a (q,v)-run of TSA. The language accepted by TSA is the set L(TSA) of all
timed words accepted by an initialized run of TSA.

By abuse of notation, we often use the language accepted by A or language accepted
by A from (q,v) to refer respectively to the language of TSA and the language accepted by
TSA from (q,v). We often denote them by L(A) and L(A,(q,v)) respectively. Recall that in
Section 4 we will define an alternative semantics for ECA.

2.3 Reachability problem

In this paper, we focus mainly on the reachability problem that consists in determining
whether a given set of target locations Qtarget is reachable:

Problem 6 (Reachability problem) Given an ECA A and set of locations Qtarget of A, the
reachability problem asks whether there exists a finite (initialized) run (q0,v0)(t0,w0) · · ·(qn,vn)
of A with qn ∈ Qtarget.

We say that Qtarget is reachable in A iff the answer to the reachability problem is ‘yes’ on
that instance.

Two related problems are the language emptiness problem (does L(A) = ∅ ?) and the
language inclusion problem (does L(A) ⊆ L(B) ?). The latter allows, for instance, to check
that all executions of a system modeled as an ECA A are included in a set of correct ex-
ecutions, defined as an ECA B. It is well-known that these problems can be reduced to
the reachability problem. In particular, language inclusion boils down to asking whether
L(A)∩L(B) = ∅. Since ECA are closed under intersection and complement [4] (due to the
determinization procedure), one can compute an ECAC s.t. L(C) = L(A)∩L(B), and test for
its language emptiness.

As stated in the introduction, ECA have been introduced as an alternative to timed au-
tomata, for the specification of timed languages. The original work on ECA [4] contains a
thorough comparisons of the expressiveness of these two models. In particular, it is shown
that each ECA can be turned into a non-deterministic timed automaton that accepts the same
language. For the sake of completeness, we recall the details of the construction in Ap-
pendix A. It allows us to characterise precisely5 the size of the timed automaton, a result

5 Remark that, although the construction and Lemma 51 are given in the case where the ECA contains no
punctual guards, Theorem 7 is still valid in the general case, as removing punctuality from the guards does
not change the number of states nor the number of clocks of the ECA.
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q0 q1 q2
b, −→xa = 1

b, −→xb = 1∧−→xa > 1

a

c

Fig. 3 The event-predicting automaton Ainf

that will be important later in the paper, to motivate our new version of the region automa-
ton for ECA:

Theorem 7 ([4]) For all ECA A=
〈
QA,qA

i ,Σ ,C,δ A,αA
〉
, one can build a TA B= 〈QB,QB

i ,Σ ,
XB,δ B,αB〉 s.t.:

– both automata accept the same timed language: L(A) = L(B),
– |QB| ≤ |QA|×2(4×cmax+6)×|Σ |,
– |XB| ≤ (4× cmax+6)×|Σ |,
– the maximal constant cmax is the same in both A and B.

3 Time-abstract Equivalence relations for event-clocks

A classical technique to analyze timed transition systems is to define time abstract equiva-
lence relations on the set of states of their underlying timed transition system, and to reason
on the resulting quotient transition system. In the case of timed automata, a fundamental
concept is the region equivalence [3], which is a finite time-abstract bisimulation, and al-
lows to decide properties of TA such as reachability. Contrary to a widespread belief [4],
we show that the classical semantics of ECA does not enjoy these properties. To prove that
ECA admit no finite time-abstract bisimulation in general, we prove a stronger result: the
subclass of EPA (under the classical semantics) admits no finite time-abstract language
equivalence.

Let C be a class of timed transition systems on the alphabet Σ . Let us first recall the
three classical equivalence notions on clock valuations:

– ≈L⊆V (CΣ )×V (CΣ ) is a time abstract language equivalence for the class C iff for all
T ∈C , for all pairs of states (q,v1) and (q,v2) of T , s.t. (v1,v2)∈≈L: Untime(L(q,v1))=
Untime(L(q,v2)).

– . ⊆ V (CΣ )×V (CΣ ) is a time abstract simulation relation for the class C iff, for all
T ∈ C , for all pairs of states (q,v1) and (q,v2) of T , s.t. (v1,v2) ∈., for all t1 ∈ R≥0,
for all a∈ Σ : (q,v1)

t1,a−−→ (q′,v′1) implies that there exists t2 ∈R≥0 s.t. (q,v2)
t2,a−−→ (q′,v′2)

and v′1 . v′2. In this case, we say that v2 simulates v1. Finally, '⊆ V (CΣ )×V (CΣ ) is
a time abstract simulation equivalence iff there exist time abstract simulation relations
.1 and .2 s.t. v1 ' v2 iff v1 .1 v2 and v2 .2 v1.

– ∼ is a time abstract bisimulation equivalence for the class C iff it is a symmetric time
abstract simulation for the class C .

We say that an equivalence relation is finite iff it is of finite index. The relationship between
those different equivalence notions is easy to establish, following the definition:

Lemma 8 Any time abstract bisimulation is a time abstract simulation equivalence, and
any time abstract simulation equivalence is a time abstract language equivalence
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Let us first prove the absence of finite time abstract language equivalence for the class
of timed transition systems generated by EPA, according to the classical semantics (see
Definition 2). We establish this results thanks to Ainf depicted in Fig. 3, with set of clocks
P{a,b,c} (it is thus well an EPA):

Proposition 9 There is no finite time abstract language equivalence for EPA, using the
classical semantics.

Proof Let us assume that ≈L is a time abstract language equivalence on the class of timed
transition systems generated by EPA (using the semantics of Definition 2). We will show,
thanks to Ainf , that ≈L has necessarily infinitely many equivalence classes.

For any n∈N, let vn denote the initial valuation of P{a,b,c} s.t. vn(−→xa )= n, vn(−→xb )= 0 and
vn(−→xc ) = ⊥, and let θ n denote the timed word (b,0)(b,1)(b,2) · · ·(b,n− 1)(a,n). Observe
that, for any n≥ 0, there is only one finite run of Ainf starting in (q0,vn) and this run accepts
the finite word θ n. Hence, for any n≥ 0: Untime(L(A,(q0,vn))) = Untime({θ n}) = bna.

Let VN = {vn | n ∈ N}. Clearly, for all vn1 ,vn2 ∈ VN with n1 6= n2, we have vn1 6≈L vn2 ,
and so ≈L has necessarily an infinite number of equivalence classes. Thus, there is no finite
time abstract language equivalence on the class of EPA. ut

Summing up Proposition 9, and Lemma 8, we obtain:

Corollary 10 With the classical semantics, there is no finite time abstract language equiva-
lence, no finite time abstract simulation equivalence and no finite time abstract bisimulation
for EPA and for ECA.

Observe however, that in the case of ERA, there is a finite time-abstract bisimulation,
which is the region equivalence [3], that we discuss in section 5. Before that, we introduce
an alternative semantics for ECA, that admits a finite time abstract bisimulation.

4 An alternative semantics for ECA

In this section, we define an alternative semantics for ECA, that we call the weak semantics.
The benefits of this new definition are twofold. First, the weak semantics preserves the
untimed language of the ECA. Second, the classical region equivalences (as defined in the
next section) do form a finite time-abstract bisimulation on the weak semantics (unlike the
classical one). Hence, the weak semantics allows to build a region automaton that accepts
exactly Untime(L(A)) for all ECA A.

Weak time successors We start with the definition of the set of weak time successors of
some valuation v by t time units:

v+w t =


(
x ∈ PΣ and v(x)> cmax

)
implies v′(x)> cmax− t

v′ ∈ V (CΣ ) ∀x : and(
x /∈ PΣ or v(x)≤ cmax or v(x) =⊥

)
implies v′(x) = (v+ t)(x)


As can be seen, weak time successors introduce non-determinism on prophecy clocks that

are larger than cmax. So, v+w t is a set of valuations. Observe that for all v, t: (v+t)∈ v+w t.
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Weak transition system We can now define the weak semantics of ECA:

Definition 11 Let A = 〈Q,qi,Σ ,C,δ ,α〉 be an ECA. Its weak semantics is the infinite timed
transition system TSw

A = (QA,QA
i ,→w,α

A) where:

1. QA = Q×V (C) is the set of states;
2. QA

i = {(qi,v) | v is initial} is the set of initial states;
3. αA = {(q,v) | q ∈ α and v is final} is the set of final sates;
4. the weak transition relation→w⊆ (QA×R≥0×QA)∪ (QA×Σ ×QA) is such that:

(a)
(
(q,v),a,(q′,v′)

)
∈→w iff there are (q,a,ψ,q′)∈ δ and v∈V (C) s.t. v[−→xa := 0] = v,

v[←−xa := 0] = v′ and v |= ψ , and
(b)

(
(q,v), t,(q,v′)

)
∈→w iff v′ ∈ v+w t.

Observe that TSw
A and TSA differ only in the way the elapsing of time is handled. In the

sequel, we denote by wL(A,q) the set of words accepted by some run of TSw
A starting in q,

and by wL(A) the language accepted by some run of TSw
A starting in an initial state. Runs of

TSw
A are called weak runs of A. Observe that each run of A (under the classical semantics)

is also a weak run of A. It is thus immediate that L(A) ⊆ wL(A). However, the converse
also holds. Indeed, the non-determinism in the elapsment of time (in weak runs) occurs
only for prophecy clocks which are larger than cmax. Since the ECA cannot distinguish
between those valuations, we can, from any weak run, build a run in the sense of the classical
semantics, by adapting the values of the prophecy clocks larger than cmax, when need be.
This is the intuition behind the proof of the next proposition:

Proposition 12 For all ECA A: L(A) = wL(A).

Proof We have already established that L(A) ⊆ wL(A). Let us show that L(A) ⊇ wL(A).
Let θ = (τ0,w0) · · ·(τn,wn) be a timed word in wL(A), and let (q0,v0)

t0−→w (q0,v′0)
w0−→

(q1,v1) · · ·(qn+1,vn+1) be the corresponding accepting weak run of A. We can also build an
accepting run of A on θ by setting the valuations of the prophecy clocks greater than cmax
to a value compatible with real time-elapsing. For any 0 ≤ i ≤ n, we build vi as follows.
For all clock x, s.t. x ∈ PΣ and v′i(x) > cmax, we let kx > i denote the least position s.t.
v′kx

(x) ≤ cmax. Remark that such a position always exists in an accepting run, because all
prophecy clocks will eventually be equal to ⊥. Then define:

vi(x) =

{
v′kx

(x)+∑
kx
j=i+1 t j if x ∈ PΣ and v′i(x)> cmax

v′i(x) otherwise

Remark that v′i and vi differ only on prophecy clocks larger than cmax, and that v′i(x)> cmax
iff vi(x)> cmax for any i and x. Moreover, the sequence of vi clearly form a sequence of time
successors. We further define ṽi for all i as follows: ṽi(x) = ti+vi(x) for all x∈PΣ s.t. vi(x)>
cmax and ṽi(x) = vi(x) otherwise. Hence, it can be checked that for all 0≤ i≤ n, (qi, ṽi)

ti−→
(qi,vi)

wi−→ (qi+1, ṽi+1), and so that (q0, ṽ0)
t0−→ (q0,v0)

w0−→ (q1, ṽ1)
t1−→ (q1,v1) · · ·(qn+1, ṽn+1).

Moreover, we let ṽn+1(x) = vn+1(x) = ⊥ for all x ∈ PΣ . Thus, θ ∈ L(A) and thus, L(A) ⊇
wL(A). ut

5 Regions and event clocks

In this section, we recall and discuss the classical notion of region that is known to form finite
time-abstract bisimulation for the class of TA. While Corollary 10 tells us that regions are
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−→xb

−→xa

1

1

v1 v2

v

Fig. 4 The set of regions Reg
(
P{a,b},1

)
. Dashed arrows show the trajectories followed by the valuations

with time elapsing in the classical semantics. The dotted arrow indicates a potential weak time successor
of v2.

not a time-abstract bisimulation for ECA, when considering the classical semantics (contrary
to what was claimed in [4]), we show that they are a (finite) time-abstract bisimulation
when considering the weak semantics that we have introduced in the previous section (see
Definition 11). We close the section by discussing several notions of region automaton, and
show which ones allow to recognise the untimed language of the ECA.

5.1 Regions

Let us fix a set of clocks C ⊆ CΣ and a constant cmax ∈ N. Let us first recall the notion of
region equivalence for ECA [4] (a straightforward adaptation of the Alur-Dill region equiv-
alence for TA [3]). This equivalence is denoted by ≈cmax: for all v1,v2 ∈ V (C): v1 ≈cmax v2
iff:

(C1) for all x ∈C, v1(x) =⊥ iff v2(x) =⊥,
(C2) for all x∈C s.t. v1(x) 6=⊥: either v1(x)> cmax and v2(x)> cmax, or dv1(x)e= dv2(x)e

and bv1(x)c= bv2(x)c,
(C3) for all x1, x2 ∈ C s.t. v1(x1) 6= ⊥, v1(x2) 6= ⊥, v1(x1) ≤ cmax and v1(x2) ≤ cmax:
〈v1(x1)〉 ≤ 〈v1(x2)〉 if and only if 〈v2(x1)〉 ≤ 〈v2(x2)〉.

Equivalence classes of ≈cmax are called regions and the set of those classes is denoted by
Reg (C,cmax).

Example 13 Fig. 4, illustrates Reg ({−→xa ,
−→xb},1). The dashed arrows show the respective tra-

jectories of valuations v1 and v2 with time elapsing (under the classical notion of time suc-
cessor). The dotted arrow shows one potential weak time successor (v) of v2

Observe that, for any cmax, and for any finite set of clocks C, Reg (C,cmax) is a finite
set. A region r on set of clocks C is initial (resp. final) iff it contains only initial (final)
valuations.

Regions are not a language equivalence for the classical semantics Since the regions de-
fined above are of finite index, Corollary 10 implies that, when considering the classical
semantics, they cannot form a language equivalence for ECA. This implies that regions are
not a time abstract bisimulation, contrary to what was claimed in the seminal paper on ECA

[4]. Let us explain intuitively why it is not the case. Consider Reg
(
P{a,b},1

)
and the two val-

uations v1 and v2 in Fig. 4. Clearly, v1 can reach the region where −→xa = 1 and −→xb > 1, while
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−→xb

−→xa

1

1

2

2

3

3

v3 v4

v1 v2

r1 r2

Fig. 5 A possible refinement of Reg
(
P{a,b},1

)
. Curved arrows are used to refer to selected regions.

v2 cannot. Conversely, v2 can reach −→xa > 1 and −→xb = 1 but v2 cannot. It is easy to build an
ECA with cmax = 1 that distinguishes between those two cases and accepts different words.

When considering the depiction of regions in Fig 4 and the reason why they are not a
language equivalence, it is tempting to try and refine regions as in Fig. 5. Remark that this
refinement corresponds to the definition of regions introduced by Bouyer in [9]. Clearly,
in this case, v1 and v2 are in different regions. Yet, one can be convinced that this re-
finement fails to be a time abstract language equivalence (as implied by Corollary 10) by
considering now valuations v3 and v4 in Fig. 5. It is easy to see that, for Ainf in Fig. 3:
Untime(L(Ainf,(q0,v3))) = {bbba} 6= {bbbba}=Untime(L(Ainf ,(q0,v4))), although v3 and
v4 belong to the same region. Indeed, from v3, the (q0,q0) edge can be taken 3 times before
we reach −→xa = 1 and the (q0,q1) edge can be fired. However, the (q0,q0) edge has to be
taken 4 times from v4 before we reach −→xa = 1 and the (q0,q1) edge can be taken. The prob-
lem can already be observed when the first b-labeled transition is fired in Ainf. Letting 1 time
unit elapse from v3, then firing the transition and letting −→xb take value 1 after the transition
reaches region r1 (dashed gray line from v3 on the figure). On the other hand, performing
the same actions from v4 (dashed gray line from v4 on the figure) reaches region r2.

These two examples illustrate the issue with prophecy clocks and regions. Roughly
speaking, to keep the set of regions finite, valuations where the clocks are too large (for
instance, > cmax in the case of Reg (C,cmax)) belong to the same region. This is not a
problem for history clocks as a history clock larger than cmax remains over cmax with time
elapsing, until it is reset. This is not the case for prophecy clocks whose values decrease with
time elapsing: eventually, those clocks reach a value ≤ cmax, but the region equivalence is
too coarse to allow to predict the region they reach.

However, note that, when considering the weak semantics as introduced in the previous
section, valuation v in Fig. 4 is a potential weak time successor of v2. Actually, we will
prove in Theorem 16 hereunder that regions are a time abstract bisimulation for the weak
semantics.

Moreover, under the classical semantics, and when we restrict to the class of event
recording automata, regions form a finite time-abstract bisimulation too. This is not sur-
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prising as an ERA is essentially a special case of timed automaton. More precisely, each
ERA can be turned into a timed automaton as follows: for each clock ←−xa in the ERA, in-
troduce a clock xa in the TA which is reset every time an a-labeled transition is fired [4].
As this construction preserves determinism, and since regions form a finite time abstract
bisimulation for TA [3], so do they for ERA:

Theorem 14 For all cmax ∈ N, ≈cmax is a finite time abstract bisimulation for the class of
(timed transitions systems generated by) ERA with maximal constant cmax.

Regions are a time-abstract bisimulation for the weak semantic As already explained, the
main benefit of the weak semantics introduced in Section 4 is that regions are a time-abstract
bisimulation in this case. To prove this result we rely on the following property which is
reminiscent of time abstract bisimulation:

Lemma 15 Let C be a set of clocks and let cmax∈N. For all v1,v2 ∈ V (C) s.t. v1 ≈cmax v2,
for all t1 ∈ R≥0, there exist t2 and v′ ∈ (v2+w t2) s.t. v1 + t1 ≈cmax v′.

Proof The cases where v1 ≈cmax v1 + t1 are trivial. We first restrict ourselves to the case
where v1 and v1 + t1 belong to adjacent regions, that is,

∀0≤ t ′ ≤ t1,
(

either v1 + t ′ ≈cmax v1,
or v1 + t ′ ≈cmax v1 + t1

)
(1)

Let us now show how to chose t2. Let C0
v denote the set of clocks x s.t. 〈v(x)〉= 0. Under the

hypothesis (1), we have to consider two cases:

1. Either C0
v1
=∅ and C0

v1+t1 6=∅. In that case, let x be a clock in C0
v1+t1 . We let t2 = 〈v2(x)〉

2. Or C0
v1
6=∅ and C0

v1+t1 =∅. In that case, we need to consider two sub-cases. If there is x
s.t. 〈v2(x)〉 6= 0, we let t2 be a value s.t. 0 < t2 < min{〈v2(x)〉 | 〈v2(x)〉 6= 0}. Otherwise,
all the clocks in v2 have a null fractional part, and we can take any delay < 1 for t2: we
let t2 = 0.1.

Now, let us show that there exists v ∈ v2+w t2 s.t. v ≈cmax v1 + t1. For that purpose, we
first build a valuation v3 as follows. For any history clock x, we let v3(x) = v2(x). For all
prophecy clocks x s.t. v2(x)≤ cmax, or v2(x) =⊥, we let v3(x) = v2(x) too. For all prophecy
clocks x s.t. v2(x)> cmax (and thus v1(x)> cmax since v1 ≈cmax v2), we consider two cases.
Either (v1+t1)(x)> cmax. In that case we let v3(x) = cmax+t2+1. Or (v1+t1)(x) = cmax.
In that case we let v3(x)= cmax+t2. Remark that the case (v1+t1)(x)< cmax is not possible
since we have assumed that v1(x)> cmax and that v1 and v1 + t1 are in adjacent regions.

We now let v′ = v3 + t2. It is easy to check that v′ ≈cmax (v1 + t1). Moreover, v′ ∈
(v2+w t2), since v3 has been obtained from v2 by replacing values larger than cmax by other
values larger than cmax.

To conclude, observe that if v3 ∈ (v2+w t2) and v2 ∈ (v1+w t1), then v3 ∈ (v1+w(t1 +
t2)). This allows to handle the case where v1 and v1 + t1 are not in adjacent regions: by
decomposing t1 into a sequence t ′1, t

′
2, . . . , t

′
n s.t. t1 = t ′1 + t ′2 + · · ·+ t ′n, and for all 1 ≤ i < n,

v1+∑
i
j=1 t ′j and v1+∑

i+1
j=1 t ′j are in adjacent regions. Then, applying the reasoning above, we

get a sequence t ′′1 , . . . , t
′′
n of time delays and a sequence v′0,v

′
1, . . . ,v

′
n of valuations s.t. v′0 = v2,

for all 0 ≤ i < n, v′i+1 ∈ v′i+w t ′′i and v′i+1 ≈cmax v1 +∑
i+1
j=1 t ′j. Thus, v′n ∈ v2+w ∑

n
j=1 t ′′j and

v′n ≈cmax v1 +∑
n
j=1 t ′j = v1 + t1. ut

We can now prove that regions are a timed abstract bisimulation for the weak semantics:
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Theorem 16 Under the weak semantics, ≈cmax is a time abstract bisimulation for the class
of ECA with maximal constant cmax.

Proof Let v1 and v2 be two valuations s.t. v1 ≈cmax v2, and let q be an ECA location.
We consider separately the discrete and continuous transitions that can occur in the

transitions systems. Let a∈ Σ be such that (q,v1)
a−→ (q′,v′1). Thus, there are (q,a,ψ,q′)∈ δ

and v ∈ V (C) such that v[−→xa := 0] = v1, v[←−xa := 0] = v′1 and v |= ψ . Let v′2 be the valuation
defined by

v′2(x) =


v2(x) if x ∈C \{−→xa ,

←−xa}
0 if x =←−xa

v(x) if x =−→xa

and v be the valuation defined by v[−→xa := 0] = v2 and v[←−xa := 0] = v′2. It is immediate that
that v≈cmax v and thus that v |= ψ . Hence, (q,v2)

a−→ (q,v′2) with v′1 ≈cmax v′2.

Now let us assume a timed transition (q,v1)
t1−→ (q,v′1) with v′1 ∈ v1+w t1.

– If v′1 = v1+ t1, by Lemma 15, there exist t2 ∈R≥0 and v′2 ∈ V (C) such that v′2 ∈ v2+w t2
and v′1 ≈cmax v′2.

– Otherwise, let Ccmax
v1

be the set of prophecy clocks such that v1(x)> cmax. We let v1 be
the valuation such that v′1 = v1 + t1. Observe that, for all x /∈Ccmax

v1
, v1(x) = v1(x), and

for all x ∈Ccmax
v1

, since v′1(x)> cmax− t1 (by definition), we deduce that v1(x)> cmax.
Hence v1 ≈cmax v1 ≈cmax v2, and, by Lemma 15, there exist t2 ∈ R≥0 and v′2 ∈ V (C)
such that v′2 ∈ v2+w t2 and v′2 ≈cmax v′1. ut

Discussion This result might seem in contradiction with the facts that (i) both the clas-
sical and the weak semantics accept the same language (L(A) = wL(A), Proposition 12),
which implies that Untime(L(A)) = Untime(wL(A)) and (ii) ECA admit no finite time-
abstract language equivalence (Corollary 10). One might thus wonder why the region equiv-
alence, which is a time-abstract language equivalence for the weak semantics, cannot be
used to define a finite time-abstract language equivalence for the classical semantics. To
explain why those results are coherent, we consider again the EPA Ainf (Fig. 3). Let v be
the valuation s.t. v(−→xa ) = 42, v(−→xb ) = 0, and v(−→xc ) = ⊥. Then, it is easy to check that
Untime(L(A,(q0,v)) = {b42a}) but that Untime(wL(A,(q0,v))) = {bia | i ≥ 1}. That is,
more words can be accepted from (q0,v) in the weak semantics than in the classical se-
mantics. However, these extra words do not modify the accepted language of the whole
ECA A, since they can be accepted, in the classical semantics, from other initial configura-
tions, as we have just shown. Now consider v′ s.t. v′(−→xa ) = 2, v′(−→xb ) = 0, and v′(−→xc ) = ⊥.
Similarly, Untime(L(A,(q0,v′))) = {b2a} and Untime(wL(A,(q0,v′))) = {bia | i ≥ 1}. It is
then clear that v and v′ are time-abstract language equivalent in the weak semantics (and
indeed v≈1 v′), but not in the classical one.

5.2 Region automata

Let us now consider the consequences of Corollary 10 and Theorem 16 on the notion of
region automaton. We first define two variants of the region automaton:

Definition 17 Let T =
〈
QA,QA

i ,→A,α
A
〉

be a timed transition system which is either TSA
or TSw

A for some ECA A = 〈Q,qi,Σ ,C,δ ,α〉. Let R be a set of regions on V (C). Then,
the existential (resp. universal) R-region automaton of T is the finite transition system
RA(∃,R,T ) (resp. RA(∀,R,T )) defined by

〈
QR,QR

i ,Σ ,δ R,αR
〉

s.t.:
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Table 1 The different region automata we consider. Gray cells indicate the automata that recognise
Untime(L(A)).

Classical semantics Weak semantics
Univ. RegAut∀ (A) = RA(∀,Reg (CΣ ,cmax) ,TSA) wRegAut∀ (A) = RA(∀,Reg (CΣ ,cmax) ,TSw

A)
Exist. RegAut∃ (A) = RA(∃,Reg (CΣ ,cmax) ,TSA) wRegAut∃ (A) = RA(∃,Reg (CΣ ,cmax) ,TSw

A)

1. QR = Q×R
2. QR

i = {(qi,r) | r is an initial region}
3. δ R ⊆QR×Σ ×QR is s.t.

(
(q1,r1),a,(q2,r2)

)
∈ δ iff there exists a valuation (resp. for

all valuations) v1 ∈ r1, there exists a time delay t ∈ R≥0 and a valuation v2 ∈ r2 s.t.
(q1,v1)

t,a−→A (q2,v2).
4. αR = {(q,r) | q ∈ α and r is a final region}

Let R =
〈
QR,QR

i ,Σ ,δ R,αR
〉

be a region automaton and w be an (untimed) word over Σ .
A run of R on w = w0w1 . . .wn is a finite sequence (q0,r0)(q1,r1) . . . (qn+1,rn+1) of states
of R such that: (q0,r0) ∈ QR

i and such that: for all 0≤ i≤ n:
(
(qi,ri),wi,(qi+1,ri+1)

)
∈ δ R.

Such a run is accepting iff (qn+1,rn+1) ∈ αR (in that case, we say that w is accepted by R).
The language L(R) of R is the set of all untimed words accepted by R.

Let A be an ECA with alphabet Σ and maximal constant cmax. If we adapt and apply the
notion of region automaton, as defined for TA [3], to A, considering the classical semantics,
we obtain RA(∀,Reg (CΣ ,cmax) ,TSA). To alleviate notations, we denote it by RegAut∀ (A).
In the rest of the paper, we also consider several other variants that we denote by the short-
cuts given in Table 1.

Observe that in the case of TA, the distinction between universal and existential region
automata has no influence, because regions form a time-abstract bisimulation, and thus ex-
istential and universal region automata coincide. Let us see how these results adapt (or not)
to ECA.

Recognized language of RegAut∀ (A) Let us show that, in general, when the classical se-
mantics is considered, the universal region automaton does not recognize the untimed lan-
guage of the ECA.

Lemma 18 There is an ECA A such that L(RegAut∀ (A))( Untime(L(A)).

Proof Consider the automaton Ainf in Fig. 3, with cmax = 1. Assume there is an edge of the
form

(
(q0,r),b,(q0,r′)

)
in RegAut∀ (Ainf), where r is initial. By the guard of the (q0,q0)

loop, r′ is a region s.t. for all v ∈ r′: v(−→xb ) = 1 and v(−→xa )> 1. To fire the (q0,q0) loop again,
we need to let time elapse up to the point where −→xb = 0. Then consider two valuations v and
v′ s.t. v(−→xb ) = v′(−→xb ) = 1, v(−→xa ) = 1.1 and v′(−→xa ) = 2.1. Clearly, {v,v′} ⊆ r′. However, firing
the (q0,q0) loop from (q0,v) leads to (q0,v′′), with v′′(−→xa ) = 0.1, and firing the same (q0,q0)
loop from (q0,v′) leads to (q0,v′′′) with v′′′(−→xa ) = 1.1. Thus, v′′ and v′′′ do not belong to the
same region. Since we are considering a universal automaton, we conclude that there is no
edge of the form

(
(q0,r′),b,(q0,r′′)

)
. Hence, RegAut∀ (Ainf) cannot recognize an arbitrary

number of b’s from any of its initial states (actually, one can easily check that the accepted
language of RegAut∀ (Ainf) is abc∗). Thus, L(RegAut∀ (Ainf))( Untime(L(Ainf)). ut

Remark 19 Note that there also exists an ECA A such that L(RegAut∀ (A)) = ∅ although
Untime(L(A)) 6=∅, hence the universal region automaton cannot be used to solve the empti-
ness problem of an ECA. Consider for instance the ECA pictured in Figure 6. In this case,
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q0 q1

a,b

b, −→xa > 1∧−→xb = 1

Fig. 6 An ECA A such that Untime(L(A)) 6=∅ and L(RegAut∀ (A)) =∅

Untime(L(A))= bbb∗a({a,b})∗. In RegAut∀ (A), there is an edge of the form ((q0,r),b,(q1,r′))
where r is an initial region. Moreover, the guard on the transition from q0 to q1 in A implies
that r′ is such that : for all valuation v ∈ r′, v(−→xa ) > 1 and v(−→xb ) = 1. As in the proof of
Lemma 18, it is easy to show that one can find two valuations v and v′ in r′ such that, after
letting 1 time unit elapse, v+1 and v′+1 will not belong to the same region, hence (q1,r′)
has no successor in the universal region automaton and L(RegAut∀ (A)) =∅.

Recognized language of region automata for the weak semantics Thanks to the time abstract
bisimulation property enjoyed by the regions on the weak semantics (Theorem 16), and
thanks to the fact that L(A) = wL(A) for all ECA A (Proposition 12) we can show that both
the existential and the universal region automata defined on the weak semantics recognise
the untimed language of A. To obtain this result, we rely on the following stronger lemma,
stating that, in the weak semantics, existential and universal automata are the same objects:

Lemma 20 For all ECA A: wRegAut∀ (A) = wRegAut∃ (A).

Proof By definition, wRegAut∀ (A) and wRegAut∃ (A) have the same sets of states, final
states and initial states. Still by definition,→∀⊆→∃, where→∀ and→∃ denote the transition
relations of wRegAut∀ (A) and wRegAut∃ (A) respectively. However, thanks to the time-
abstract bisimulation property (Theorem 16), we also have →∀⊇→∃. Hence the Lemma.
ut

Then, we can show that both region automata for the weak semantics recognise the
untimed language of the ECA:

Theorem 21 For all ECA A: L(wRegAut∀ (A)) = L(wRegAut∃ (A)) = Untime(L(A))

Proof Since ≈cmax is a time-abstract bisimulation on TSw
A , by Theorem 16, we can adapt

the classical proof on timed automata [3] to show that: L(wRegAut∀ (A)) = Untime(wL(A))
Then, thanks to Lemma 20, L(wRegAut∃ (A)) = L(wRegAut∀ (A)) for all ECA A. Hence, we
conclude that wRegAut∀ (A) and wRegAut∃ (A) both recognise Untime(wL(A)). Since, by
Proposition 12, wL(A) = L(A), we obtain the Theorem. ut

Recognized language of RegAut∃ (A) We complete the picture by showing that it is possi-
ble to define a region automaton that is based on the classical semantics of ECA and still
recognises Untime(L(A)). It is the existential region automaton RegAut∃ (A).

Lemma 22 For all ECA A: wRegAut∃ (A) = RegAut∃ (A).

Proof Let us assume that wRegAut∃ (A) =
〈

Q̃R, Q̃i
R
, Σ̃ , δ̃ R, α̃R

〉
and that RegAut∃ (A) =〈

QR,QR
i ,Σ ,δ R,αR

〉
First, recall that wRegAut∃ (A) and RegAut∃ (A) differ only on the transition relation, i.e.

Q̃R = QR, Q̃i = Qi, Σ̃ = Σ and α̃R = αR. The transitions relations δ̃ R and δ R are based on
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the weak semantics and on the classical semantics respectively. Moreover, recall that these
two semantics differ only on the elapsing of time and that, for all valuation v, and all time
delay t, (v+ t) ∈ (v+w t). Thus, δ R ⊆ δ̃ R.

Let
(
(q1,r1),a,(q2,r2)

)
be a transition in δ̃ R, and let us show that it belongs to δ R too.

Since
(
(q1,r1),a,(q2,r2)

)
∈ δ̃ R, there are v1 ∈ r1, a time delay t ∈ R≥0 and a valuation

v2 ∈ r2 s.t. (q1,v1)
t,a−→w (q2,v2) (where→w denotes the weak semantics). Thus, there is a

valuation v s.t. v ∈ v1+w t, and (q1,v)
a−→w (q2,v2). Let r be the region containing v. Let us

build a valuation v′1 ∈ r1 s.t. v′1 + t = v as follows. For all clocks x:

v′1(x) =

{
v(x)+ t if x ∈ PΣ and v1(x)> cmax
v1(x) otherwise

Let us show that v′1 ∈ r1. First, we observe that v′1 and v1 coincide on all clocks s.t. v1(x)≤
cmax, and on all history clocks y s.t. v1(y) > cmax. Thus to prove that v′1 ∈ r1, it remains
to show that, on all clocks x ∈ PΣ s.t. v1(x) > cmax, v′1(x) > cmax too. Since v ∈ v1+w t,
and since v1(x) > cmax, the definition of +w ensures that v(x) > cmax− t. Thus, v′1(x) =
v(x)+ t > cmax− t + t = cmax. Let us now show that v′1 + t = v. The following holds for all
clocks x. In the case where x∈PΣ and v1(x)> cmax, we have (v′1+t)(x)= v′1(x)−t = v(x)+
t− t = v(x). Otherwise, (v′1 + t)(x) = (v1 + t)(x) by definition of v′1, and (v1 + t)(x) = v(x),
by definition of the weak time successors, and since v1(x)≤ cmax.

Thus, we have (q1,v′1)
t−→ (q1,v) (where → denotes the classical semantics of ECA).

Since both semantics coincide on discrete transitions, we have (q1,v′1)
t−→ (q1,v)

a−→ (q2,v2).
We conclude that the transition

(
(q1,r1),a,(q2,r2)

)
is present in δ R too. ut

Thanks to the former lemma, and to Theorem 21, we can conclude that the existen-
tial region automaton (based on the classical semantics) accepts Untime(L(A)) (unlike its
universal counterpart):

Theorem 23 For all ECA A: L(RegAut∃ (A)) = Untime(L(A)).

Size of the existential region automaton We have just introduced three constructions to ob-
tain, from any ECA A, a finite automaton recognising Untime(L(A)). This construction,
however, is not the first to achieve this: in the original paper [4] on ECA, the following
construction is proposed. First transform A into a non-deterministic timed automaton B s.t.
L(B) = L(A), using the technique recalled in Section A, then compute the region automa-
ton of B. Unfortunately, as stated by Theorem 7, building B can, in the worst case, incur
a blow up in the number of clocks and locations. More precisely, it is well known [3] that
the number of Alur-Dill regions on n clocks and with maximal constant cmax is at most
R(n,cmax) = n!×2n× (2×cmax+2)n. Thus, applying the classical region automaton con-
struction [3] to the TA B, obtained from the ECA A with alphabet Σ , m locations and maximal
constant cmax, yields a region automaton with a number of states equal, in the worst case,
to:

m×2(4cmax+6)×|Σ |×R
(
(4cmax+6)×|Σ |,cmax

)
In the case of event clocks, we cannot directly reuse the value of R(n,cmax) given above,

as we have to take into account the ⊥ value as a supplementary value for the clocks. Hence:

Lemma 24 For all set of event clocks C, and all natural constant cmax: |Reg (C,cmax) | ≤
R(|C|,cmax+1).

Thus, the size of RegAut∃ (A) is bounded as follows:



20 Gilles Geeraerts et al.

Proposition 25 For all ECA A with m locations and n clocks, RegAut∃ (A) has at most
m×R(n,cmax+1) locations.

Since n ≤ 2×|Σ | by definition of ECA, and by Theorem 7, we conclude that, in the worst
case, RegAut∃ (A) is smaller than the region automaton obtained by the technique of [4]
given in Section A (and can be directly constructed from A).

5.3 Discussion

We close this section by a brief discussion recalling the results we have obtained. We have
considered, both for the classical and the weak semantics, two possible definitions for the
region automaton depending on the definition of the transition relation (either existential or
universal). The following corollary summarises the main results of this section regarding the
accepted languages:

Corollary 26 For all ECA A:

L(RegAut∃ (A)) = L(wRegAut∀ (A)) = L(wRegAut∃ (A))

=

Untime(L(A))

Moreover, there exists an EPA with three clocks s.t.:

L(RegAut∀ (A))( Untime(L(A))

Thus, RegAut∃ (A) seems the most adequate tool so far to reason about the untimed language
of A, as its definition relies on the classical semantics of ECA, and on the classical Alur-
Dill definition of regions. Finally, Proposition 25 shows that the definition of RegAut∃ (A)
induces a potentially smaller automaton than the one that can be obtained by first translating
the ECA into a TA, as was originally suggested in [4].

Yet, for practical purposes, it is well-known that zones are a more efficient data structure
than regions to implement algorithms analysing real-time models such as timed automata.
The purpose of the next section is to introduce an ECA version of the classical zone data
structure.

6 Zones and event-clocks

In the setting of TA, the zone data structure [17] has been introduced as an effective way
to improve the running time and memory consumption of on-the-fly algorithms for check-
ing emptiness. In this section, we adapt this notion to the framework of ECA, and discuss
forward and backward analysis algorithms. Roughly speaking, a zone is a symbolic repre-
sentation for a set of clock valuations that are defined by constraints of the form x− y ≺ c,
where x,y are clocks, ≺ is either < or ≤, and c is an integer constant. Keeping the differ-
ence between clock values makes sense in the setting of timed automata as all the clocks
have always real values and the difference between two clock values is an invariant over the
elapsing of time. To adapt the notion of zone to ECA, we need to overcome two difficulties.
First, as already pointed out when discussing the notion of region, prophecy and history
clocks evolve in different directions with time elapsing. Hence, it is not always the case that
if v(x)−v(y) = c then (v+t)(x)−(v+t)(y) = c for all t (for instance if x is a prophecy clock
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and y a history clock). However, the sum of clocks of different types is now an invariant, so
event clock zones must be definable, either by constraints of the form x− y ≺ c, if x and y
are both history or both prophecy clocks, or by constraints of the form x+ y≺ c otherwise,
yielding the use of some kind of octagons. Formally, we introduce the notion of event-zone
as follows.

Definition 27 For a set C of clocks over an alphabet Σ , an event-zone is a subset of V (C)
that is defined by a conjunction of constraints of the form x = ⊥; x ∼ c; x1 − x2 ∼ c if
x1,x2 ∈ HΣ or x1,x2 ∈ PΣ ; and x1 + x2 ∼ c if either x1 ∈ HΣ and x2 ∈ PΣ or x1 ∈ PΣ and
x2 ∈HΣ , with x,x1,x2 ∈C, ∼ ∈ {≤,≥,<,>} and c ∈ Z.

6.1 Event-clock Difference Bound Matrices

In the context of TA, Difference Bound Matrices (DBMs for short) have been introduced
to represent and manipulate zones [6,17]. It has been shown that DBMs stay an efficient
encoding even for octagons [22], a class our event-zones fall into. However, in this particular
case, we are interested in a sub-case of octagons, in which the type of constraints considered
(sum or difference) depend only on the type of variables involved: when the clocks are of
the same type, we are interested in the difference of their values, otherwise we take into
account their sum. Hence, to adapt DBMs to event clocks, we need to be able to (i) encode
constraints of the form x+ y≺ c and of the form x′− y′ ≺ c, depending on the types of x, y,
x′ and y′, (ii) encode constraints of the form x =⊥, and (iii) encode the fact that a variable
is not constrained by the zone. Indeed, in a DBM, this is encoded by the pair of constraints
x≥ 0 and x <+∞. This is not sound in our case since 0≤ x <+∞ implies that x 6=⊥. Thus,
we introduce a special symbol ? to denote the absence of constraint.

Formally, an EDBM M, on the set of clocks C = {x1, . . . ,xn}, is a (n+1) square matrix of
elements from

(
Z×{<,≤}

)
∪{(∞,<),(⊥,=),(?,=)} s.t. for all 0≤ i, j,≤ n: Mi, j = (⊥,=)

implies i = 0 or j = 0 (i.e., ⊥ can only appear in the first position of a row or column). As
in the case of DBMs, we assume that the extra clock x0 is always equal to zero. Thus, in
particular, a constraint of the form xi = ⊥ will be encoded with either Mi,0 = (⊥,=) or
M0,i = (⊥,=).

Moreover, since prophecy clocks decrease with time evolving, while history clocks in-
crease, prophecy clocks are encoded by their opposite value in the matrix. As we will see,
this allows the EDBM to naturally encode differences of pairs of variables, when the two
clocks are of the same type, and sums of variables when the two clocks are of different
types.

An EDBM represents an event-zone as follows. Let

x± =

{
x if x ∈HΣ

−x otherwise

Then, each element (mi, j,≺i, j) (with mi, j 6∈ {?,⊥}) of an EDBM represents the constraint
x±i −x±j ≺i, j mi, j. Thus, intuitively, the constraint ranges over the value of the history clocks
and the opposite value of the prophecy clocks, which is coherent with the fact that prophecy
clocks decrease with time elapsing. Finally, the special symbol ? encodes the absence of
constraint. In particular, for the elements Mi,0, M0,i, it indicates that the clock xi can take any
real value, or the ⊥ value.
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M1 =



x0 x1 x2 x3 x4

x0 (0,≤) (?,=) (?,=) (?,=) (?,=)

x1 (⊥,=) (?,=) (?,=) (?,=) (?,=)

x2 (0,≤) (?,=) (0,≤) (?,=) (?,=)

x3 (?,=) (?,=) (?,=) (0,≤) (1,<)

x4 (?,=) (?,=) (2,≤) (0,<) (0,≤)



M2 =



x0 x1 x2 x3 x4

x0 (0,≤) (⊥,=)(⊥,=)(⊥,=) (∞,<)(∞,<)(∞,<) (0,≤)(0,≤)(0,≤) (0,≤)(0,≤)(0,≤)
x1 (⊥,=) (?,=) (?,=) (?,=) (?,=)

x2 (0,≤) (?,=) (0,≤) (0,≤)(0,≤)(0,≤) (0,≤)(0,≤)(0,≤)
x3 (∞,<)(∞,<)(∞,<) (?,=) (∞,<)(∞,<)(∞,<) (0,≤) (1,<)

x4 (∞,<)(∞,<)(∞,<) (?,=) (2,≤) (0,<) (0,≤)



M3 =



x0 x1 x2 x3 x4

x0 (0,≤) (⊥,=) (∞,<) (0,≤) (0,≤)
x1 (⊥,=) (?,=) (?,=) (?,=) (?,=)

x2 (0,≤) (?,=) (0,≤) (0,≤) (0,≤)
x3 (∞,<) (?,=) (3,<)(3,<)(3,<) (0,≤) (1,<)

x4 (∞,<) (?,=) (2,≤) (0,<) (0,≤)



Fig. 7 Three EDBMs representing the event-zone x1 = ⊥∧ 0 < x3 − x4 < 1∧ x2 + x4 ≤ 2 (where x1,x2
are prophecy clocks, and x3,x4 are history clocks). M2 is in normal form, but not canonical. M3 is canonical.
Differences between two successive EDBMs are highlighted. Variables names have been displayed to enhance
readability.

Formally, let v be a valuation on the set of clocks C = {x1, . . . ,xn}, let M be an EDBM
on C. Then for all 0 ≤ i, j ≤ n, we say that v satisfies Mi, j = (mi, j,≺i, j) (denoted v |= Mi, j)
iff:

1. either mi, j =?
2. or i = 0 and mi, j = v(x j) =⊥
3. or j = 0 and mi, j = v(xi) =⊥
4. or mi, j 6∈ {?,⊥} and v±(xi)− v±(x j) ≺i, j mi, j (where we let ⊥+ c = c+⊥ = ⊥− c =

c−⊥=⊥ for all c).

Then, assuming that v(x0)= 0 for any valuation v, we define the set of valuations represented
by M as:

JMK = {v | ∀0≤ i, j ≤ n : v |= Mi, j}

When JMK =∅, we say that M is empty.

Example 28 As an example, consider the three EDBMs in Fig. 7, They all represent x1 =
⊥∧ 0 < x3− x4 < 1∧ x2 + x4 ≤ 2 (where x1,x2 are prophecy clocks, and x3,x4 are history
clocks).
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Canonical and normal form EDBMs As in the case of DBMs, we need to rely on a canon-
ical notion of EDBM, in which the constraints represented in the matrix are as tight as
possible. To show how to effectively turn a given EDBM M into a canonical EDBM M′

such that JMK = JM′K, we first introduce the notion of normal form EDBM. An EDBM is in
normal form if the constraints on the clocks that are not required to have a value in R are as
tight as possible.

Definition 29 (normal form EDBM) An EDBM M is in normal form if

(i) Mi,0 = (⊥,=) iff M0,i = (⊥,=) for all 1≤ i≤ n
(ii) Mi,0 = (?,=) iff M0,i = (?,=) for all 1≤ i≤ n
(iii) if Mi,0 ∈ {(⊥,=),(?,=)} for some 1≤ i≤ n, then Mi, j = M j,i = (?,=), for all 1≤ j≤

n.

Given a normal form EDBM M, it is then easy to extract the set of clocks constrained by
M to have their value in R: we let CM(R) = {xi ∈C | for all v ∈ JMK,v(xi) ∈ R} be the set
of such clocks. When M is in normal form, CM(R) has the following property: for all xi ∈C,
xi ∈CM(R) if and only if Mi,0 /∈ {(⊥,=),(?,=)}. We further let IM(R) = {0}∪{1≤ i≤ n |
xi ∈CM(R)} be the set of indices of the clocks that are in CM(R), augmented with 0. Then,
we denote by M[CM(R)] = (Mi, j)i, j∈IM(R) the EDBM M restricted to the clocks constrained
to have their value in R. Actually, M[CM(R)] is a classical DBM.

Definition 30 (canonical EDBM) An EDBM M is canonical if it is in normal form and if
the DBM M[CM(R)] is canonical [17], i.e., if the constraints represented in the matrix are as
tight as possible.

To canonically represent the empty zone, we select a particular EDBM M∅ s.t. JM∅K =∅.

Example 31 For example, consider again the three EDBMs in Fig. 7. M1 is not in normal
form (and thus neither canonical), because, for instance, M1

1,0 = (⊥,=), but M1
0,1 = (?,=).

M2 is in normal form, but still not canonical. Indeed, in M2[CM(R)], we find the constraints
x4 + x2 ≤ 2 and x3− x4 < 1. This implies that x3 + x2 < 3, hence the constraint in M2

3,2 can
be strengthened. Doing so yields M3, which is now canonical.

Then, given an EDBM M, Algorithm 1 allows to compute a canonical EDBM M′ s.t.
JMK = JM′K. This algorithm relies on the function DBMCanonical(M,S), where M is an
(`+ 1)× (`+ 1) EDBM, and S ⊆ {0, . . . , `}. DBMCanonical(M,S) applies the classical
algorithm to obtain canonical DBMs [17] on the DBM obtained by projecting away from M
all the lines and columns i 6∈ S. Algorithm 1 proceeds in three steps. In the first loop, we look
for lines (resp. columns) i s.t. Mi,0 (resp. M0,i) is (⊥,=), meaning that there is a constraint
imposing that xi = ⊥. In this case, the corresponding M0,i (resp. Mi,0) must be equal to
(⊥,=) too, and all the other elements in the ith line and column must contain (?,=). If we
find a j s.t. Mi, j 6= (?,=) or M j,i 6= (?,=), then the zone is empty, and we return M∅. Then, in
the second loop, the algorithm looks for lines (resp. columns) i with the first element equal
to (?,=) but containing a constraint of the form (c,≺), which imposes that the variable i
must be different from ⊥. We record this information by replacing the (?,=) in Mi,0 (resp.
M0,i) by the weakest possible constraint that forces xi to have a value different from ⊥. This
is either (0,≤) or (∞,<), depending on the type of xi and is taken care by the SetCst()
function. At this point, the EDBM M is in normal form, and the set S contains the indices
of all variables that are constrained to be real, and hence is exactly CM(R). The algorithm
finishes by calling the algorithm to obtain canonical DBMs. Remark, in particular, that the
algorithm returns M∅ iff M is empty which also provides us with a test for EDBM emptiness
(see next section).
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1 EDBMCanonical(M) begin
2 Let S = {0} ;
3 foreach 1≤ i≤ n s.t. Mi,0 = (⊥,=) or M0,i = (⊥,=) do
4 if M0,i /∈ {(?,=),(⊥,=)} or Mi,0 /∈ {(?,=),(⊥,=)} or ∃1≤ j ≤ n s.t. Mi, j 6= (?,=) or

M j,i 6= (?,=) then
5 return M∅;

6 Mi,0← (⊥,=) ; M0,i← (⊥,=) ;

7 foreach 0≤ i, j ≤ n s.t. Mi, j /∈ {(?,=),(⊥,=)} do
8 S← S∪{i, j} ;

9 foreach i, j ∈ S do
10 SetCst(Mi, j) ;

11 M′← DBMCanonical(M,S) ;
12 if M′ = Empty then return M∅ ;
13 ;
14 return M′ ;

15 SetCst(Mi, j) begin
16 if Mi, j = (?,=) then
17 if (xi ∈ PΣ or xi = x0) and (x j ∈HΣ or x j = x0) then Mi, j ← (0,≤) ;
18 ;
19 else Mi, j ← (∞,<) ;
20 ;

Algorithm 1: An algorithm to turn EDBMs into canonical form.

Proposition 32 For all EDBM M, EDBMCanonical(M) returns a canonical EDBM M′

s.t. JM′K = JMK.

Proof Let M be an EDBM. We first consider the case where M′ = M∅ has been returned in
line 5. In this case, the conditionnal of the loop in line 3 guarantees that either Mi,0 = (⊥,=),
or that M0,i = (⊥,=). Then, conditionnal in line 4 guarantees that we are in one of the
four following cases: 1. Mi,0 = (⊥,=) and M0,i /∈ {(?,=),(⊥,=)}; or 2. M0,i = (⊥,=) and
Mi,0 /∈ {(?,=),(⊥,=)}; or 3. Mi,0 = (⊥,=) and there is 1 ≤ j ≤ n s.t. Mi, j 6= (?,=); or
4. M0,i = (⊥,=) and there is 1≤ j≤ n s.t. M j,i 6= (?,=). In the two first cases, the constraints
v(xi) = ⊥ and 0 ≤ v(xi) < ∞ must hold for all v ∈ JMK. In the third case, either Mi, j =
(⊥,=), and no valuation v can satisfy either of the four cases of the definition of v |= M;
or Mi, j = (m,≺) 6∈ {(⊥,=),(?,=)} and all valuations v must satisfy v±(xi)− v±(x j) ≺ m
with v(xi) = ⊥. The fourth case is symmetric to the third case with the roles of i and j
swapped. In all cases, we conclude that no valuation v is s.t. v |= M, hence JMK =∅. Thus,
JM′K = JM∅K = JMK and M∅ is a canonical EDBM by definition.

Otherwise, let M7 and M11 be the modified matrix M before respectively line 7 and
line 11 and M′ be the EDBM returned by EDBMCanonical(M). The matrix M7 is such
that

(?) for all 1≤ i≤ n, M7
i,0 = (⊥,=) if and only if M7

0,i = (⊥,=)

(??) if M7
i,0 = (⊥,=) for some 1≤ i≤ n, then M7

i, j = M7
j,i = (?,=) for all 1≤ j ≤ n.

Moreover, it is easy to see that the for loop of line 3 does not modify the semantics of the
EDBM, i.e. JMK = JM7K.

The for loop in starting in line 7 builds a set S of indices, s.t.:

S = {0≤ i≤ n | ∃0≤ j ≤ n,M7
i, j /∈ {(?,=),(⊥,=)}}∨M7

j,i /∈ {(?,=),(⊥,=)}



On regions and zones for event-clock automata 25

Thus, before executing line 9, S = IM(R). Then, for all i, j ∈ S, if M7
i, j = (?,=) or M7

j,i =

(?,=), then M7 can safely be replaced by (<,∞) which is the weakest constraint that forces
v±(xi)−v±(x j) to be a real value. This is what the SetCst(Mi, j) procedure does, and thus
JM11K = JM7K = JMK.

Then, the algorithm calls DBMCanonical in line 11, which is the classical normalisa-
tion operator on DBM. In the case where DBMCanonical finds a set of constraints that are
not satisfiable, it returns ‘Empty’, we have that JM11K = ∅, and EDBMCanonical(M)
returns M∅. Otherwise, DBMCanonical returns an EDBM M′ s.t. JM′K = JM11K = JMK
and s.t. M[CM(R)] is a canonical DBM. Thus, by definition of canonical EDBM, we only
need to show that M11 is in normal form to establish that M′ is canonical and conclude the
proof.

To show that M11 is in normal form, we first observe that, for all i /∈ S, for all 0≤ j ≤ n,
M11

i, j = M7
i, j. Then,

– Let 1≤ i≤ n and assume that M11
0,i = (⊥,=). Then i /∈ S and M11

0,i = M7
0,i. By (?), M7

i,0 =

(⊥,=) = M11
i,0 . Symmetrically, if M11

i,0 = (⊥,=) then M11
0,i = (⊥,=).

– Let 1 ≤ i ≤ n, and assume that M11
0,i = (?,=). Again, i /∈ S, and we have M11

i,0 = M7
i,0 ∈

{(⊥,=),(?,=)}. By (?), we deduce that M7
i,0 = (?,=). Again, by symmetry, if M11

i,0 =

(?,=) then M11
0,i = (?,=).

– Let 1≤ i≤ n such that M11
i,0 = (⊥,=). Then i /∈ S and for all 1≤ j ≤ n, M11

i, j = M6
i, j and

M11
j,i = M7

j,i. By (??), M11
i, j = M11

j,i = (?,=).
– Let 1≤ i≤ n such that M11

i,0 = (?,=). Then i /∈ S, and, by definition of S, and by definition
of an EDBM, for all 1≤ j ≤ n, M11

i, j = M11
j,i = (?,=). ut

6.2 Symbolic operations on zones

In this section, we discuss symbolic operations on zones, that is, we show how basic op-
erations on zones can be directly computed on their EDBM representations. Most of the
operations described here are extensions of the classical operations on DBMs, in order to
cope with the (?,=) and (⊥,=) elements.

Intuitively, the six basic operations we need to perform on event-zones are: to compute
the future and the past of an event-zone; to compute the intersection of two event-zones;
to project away a given event-clock from the set of valuations of an event-zone (we call the
operation the release of the event clock); to test inclusion of an event-zone into another; and,
finally, to test whether an event-zone is empty. These operations will form the basis of the
symbolic algorithms for testing language emptiness of ECA, that we discuss in Section 7.

Let us now formalise those operations. For that purpose, we define an ordering ≤ on
EDBM elements. We let (m,≺)≤ (m′,≺′) iff one of the following holds: either (i) m′ = ?;
or (ii) m,m′ ∈ Z∪{∞} and m < m′; or (iii) m = m′ and either ≺=≺′ or ≺′=≤. We also
extend the + operator to EDBM elements as follows. Let (m,≺) and (m′,≺′) be two EDBM
elements s.t. m,m′ 6∈ {?,⊥,∞}. Then, (m,≺)+ (m′,≺′) = (m+m′,≺′′), where ≺′′=≤ iff
≺=≺′=≤, and ∞+ c = c+∞ = ∞ for all c ∈ Z∪{∞}. In the case where either m ∈ {?,⊥}
or m′ ∈ {?,⊥}, the sum is not defined.

Future For an event-zone Z, we let

−→
Z = {v ∈ V (CΣ ) | ∃v′ ∈ Z, t ∈ R≥0 : v = v′+ t}
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This operation is computed symbolically as follows. Let M be a canonical EDBM on n
clocks. If M = M∅, we let

−→
M = M∅. Otherwise, we let

−→
M be s.t.:

−→
M i, j =


(0,≤) if Mi, j /∈ {(⊥,=),(?,=)}, j = 0 and xi ∈ PΣ

(∞,<) if Mi, j /∈ {(⊥,=),(?,=)}, j = 0 and xi ∈HΣ

Mi, j otherwise

Proposition 33 Let M be a canonical EDBM. Then,
−−→
JMK = J

−→
MK.

Proof In the case where M = M∅ the proof is trivial. Otherwise, M is non-empty, since it
is canonical. We assume that M is an EDBM on set of clocks C = {x1, . . . ,xn}, that for all
0≤ i, j ≤ n: Mi, j = (mi, j,≺i, j) and that

−→
M i, j = (m′i, j,≺′i, j). It is easy to see that any v ∈

−−→
JMK

satisfies the constraints of J
−→
MK. Thus,

−−→
JMK⊆ J

−→
MK.

Consider now a valuation v∈ J
−→
MK. We need to find a delay t ∈R≥0 such that there exists

vM ∈ JMK such that vM +t = v. This amounts to solving the following system of inequalities:
−mi0− v(xi)≺i0 t ≺0i m0i− v(xi) for all xi ∈ PΣ ∩C such that m0i /∈ {⊥,?}
v(xi)−mi0 ≺i0 t ≺0i v(xi)+m0i for all xi ∈HΣ ∩C such that m0i /∈ {⊥,?}
0≤ t

with the convention that ∞+c = ∞−c = ∞ and that −∞+c =−∞−c =−∞ for all c ∈N.
We show that the set of solutions is not empty, i.e. that all inequalities are pairwise coherent.

Since for all xi ∈ PΣ ∩C, (m′0i,≺′0i) = (m0i,≺0i), we know that v(xi) ≺0i m0i and since
for all xi ∈ HΣ ∩C (m′0i,≺′0i) = (m0i,≺0i) , we also know that −m0i ≺0i v(xi). Then, none
of the inequalities forces t to be negative.

Let now xi,x j be two prophecy clocks s.t. m0,i 6∈ {⊥,?} and m0, j 6∈ {⊥,?}. For all vM ∈
JMK,−mi0 ≺i0 vM(xi)≺0i m0i, and−m j0 ≺ j0 vM(x j)≺0 j m0 j, then−mi0−m0 j ≺1 vM(xi)−
vM(x j) ≺2 m0i +m j0, where ≺1=≤ iff (≺i0=≤ and ≺0 j=≤), and ≺2=≤ iff (≺0i=≤ and
≺ j0=≤). Since M is canonical, (m ji,≺ ji)≤ (m0i+m j0,≺2) and (mi j,≺i j)≤ (mi0+m0 j,≺1
). Since (m′i j,≺′i j) = (mi j,≺i j) and (m′ji,≺′ji) = (m ji,≺ ji), we deduce that −mi0−m0 j ≺1
v(xi)−v(x j)≺2 m0i +m j0. Hence, −mi0−v(xi)≺1 m0 j−v(x j) and −m j0−v(x j)≺2 m0i−
v(xi). Then the constraints on t deduced from xi and x j are coherent. With the same argu-
ments, we obtain that the constraints on t deduced from xi,x j ∈HΣ ∩C are coherent too.

Consider now xi ∈ PΣ ∩C and x j ∈HΣ ∩C. Then again, since any valuation vM in JMK
satisfies −mi0−m0 j ≺1 vM(xi)+ vM(x j) ≺2 m0i +m j0, so does v, and one can deduce that
−mi0− v(xi) ≺1 v(x j)+m0 j and v(x j)−m j0 ≺2 m0i− v(xi) and hence that the constraints
on t derived from xi ∈ PΣ ∩C and x j ∈HΣ ∩C are coherent.

Then, the set of solutions of the inequalities is not empty. Let t be such a solution and
vM be the valuation s.t. vM(x) = v(x)+ t for any x ∈ PΣ ∩C and vM(x) = v(x)− t for all
x ∈ HΣ ∩C. Such a valuation exists, and is in JMK by construction. Then, since v = vM + t
with vM ∈ JMK and some t ∈ R≥0 we deduce that v ∈

−−→
JMK and J

−→
MK⊆

−−→
JMK. ut

Past For an event-zone Z, we let
←−
Z = {v ∈ V (CΣ ) | ∃t ∈ R≥0 : v+ t ∈ Z}

This operation is symmetrical to the future operation. Let M be a canonical EDBM on n
clocks. If M = M∅, we let

←−
M = M∅. Otherwise, we let

←−
M be s.t. for all i, j:

←−
M i, j =


(∞,<) if Mi, j /∈ {(⊥,=),(?,=)}, i = 0 and x j ∈ PΣ

(0,≤) if Mi, j /∈ {(⊥,=),(?,=)}, i = 0 and x j ∈HΣ

Mi, j otherwise
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Proposition 34 Let M be a canonical EDBM. Then,
←−−
JMK = J

←−
MK.

Proof As prophecy and history clocks evolve in opposite directions, the arguments of the
proof for

−→
M can be adapted. ut

Intersection Let M1 and M2 be two normal form EDBMs on n clocks (remark that, for the
intersection we do not require the EDBMs to be canonical). We consider several cases. If
M1 = M∅ or M2 = M∅, we let M1∩M2 = M∅. If there are 0 ≤ i, j ≤ n s.t. M1

i, j 6≤M2
i, j and

M2
i, j 6≤M1

i, j, we let M1∩M2 = M∅ too. Otherwise, we let M1∩M2 be the EDBM M′ s.t for
all i, j: M′i, j = min(M1

i, j,M
2
i, j).

Proposition 35 Let M1 and M2 be two EDBMs in normal form, and on the same set of
clocks. Then, M1∩M2 is a normal form EDBM s.t. JM1∩M2K = JM1K∩ JM2K.

Proof In the case where M1 = M∅ or M2 = M∅ the proof is trivial. Otherwise, we first
consider the case where there are 0≤ i, j ≤ n s.t. M1

i, j 6≤M2
i, j and M2

i, j 6≤M1
i, j. By definition

of≤, this implies that either M1
i, j or M2

i, j is equal to (⊥,=), and that the other constraint is of
the form (c,≺), with c∈R≥0∪{∞}. Then, clearly JM1K∩JM2K=∅ and thus JM1K∩JM2K=
JM∅K = JM1∩M2K.

Thus, let us assume that for all 0 ≤ i, j ≤ n, min{M1
i, j,M

2
i, j} = M′i, j is defined. We first

show that M′ is a normal form EDBM:

– for 1≤ i≤ n, M′i,0 = (⊥,=) iff M1
i,0 = (⊥,=) or M2

i,0 = (⊥,=) iff, since M1 and M2 are
in normal form, M1

0,i = (⊥,=) or M2
0,i = (⊥,=) iff, since M′0,i is defined, M′0,i = (⊥,=).

– for 1 ≤ i ≤ n, M′i,0 = (?,=) iff M1
i,0 = (?,=) and M2

i,0 = (?,=), iff M1
0,i = (?,=) and

M2
0,i = (?,=) iff M′0,i = (?,=).

– let 1 ≤ i ≤ n such that M′i,0 ∈ {(⊥,=),(?,=)}. Then, M1
i,0,M

2
i,0 ∈ {(⊥,=),(?,=)} and,

since M1 and M2 are in normal form, M1
i, j =M1

j,i =M2
i, j =M2

j,i = (?,=) for all 1≤ j≤ n.
Then M′i, j = M′j,i = (?,=) for all 1≤ j ≤ n.

Let v be a valuation. Observe that, by definition of the ordering≤ on EDBM constraints:(
v |= (m1,≺1) and v |= (m2,≺2)

)
iff v |= min

{
(m1,≺1),(m2,≺2)

}
.

By definition of M1∩M2, we conclude that JM1K∩ JM2K = JM1∩M2K. ut

Release Let Z be an event-zone, and let x be a clock of Z. Then, we let:

relx(Z) = {v[x := d] | v ∈ Z,d ∈ R≥0∪{⊥}}

Let M be a canonical EDBM on n clocks. and let x be one of those event clocks. In the case
where M = M∅, we let relx(M) = M∅. Otherwise, we let relx(M) be the EDBM s.t. for all
i, j:

relx(M)i, j =

{
Mi, j if xi 6= x and x j 6= x
(?,=) otherwise

Proposition 36 Let M be a canonical EDBM on set of clocks C, and let x ∈ C. Then,
relx(JMK) = Jrelx(M)K
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Proof In the case where M = M∅ the proof is trivial. Otherwise, M being canonical, JMK 6=
∅. Let us assume that x is the clock of index k in C. We first examine the case where
Mk,0 = (?,=), then relx(M) = M since M is canonical. Since x is already unconstrained in
M, we have relx(JMK) = JMK. Hence relx(JMK) = JMK = Jrelx(M)K.

Otherwise, let us assume that C = {x1, . . . ,xn}, that for all 0≤ i, j ≤ n: Mi, j = (mi j,≺i j)
and consider some v ∈ relx(JMK). By definition, there is some v′ ∈ JMK, such that v′(y) =
v(y), for all clock y 6= x in C. Since v′ |= Mi, j for all 0≤ i, j≤ n, we deduce that v |= Mi, j for
all i, j 6= k, and, since v |= (?,=), v |= relx(M). Thus, relx(JMK)⊆ Jrelx(M)K.

Conversely, let v ∈ Jrelx(M)K. Since we have ruled out the case where Mk,0 = (?,=),
either Mk,0 = (⊥,=) or Mk,0 = (m,≺), with m ∈ R≥0 ∪{∞}. In the first case, let v′ be the
valuation s.t. v′(x) =⊥ and for all y 6= x: v′(y) = v(y). Clearly v′ ∈ JMK and thus, v∈ relxJMK.
In the second case, let v′ be a valuation that is a solution of the following set of inequalities
if x is a history clock:

v′(y) = v(y) for all y 6= x
−m0k ≺0k v′(x) ≺k0 mk0

−m jk ≺ jk v′(x)− v′(x j) ≺k j mk j for all x j ∈ (HΣ ∩C)\{x}
−m jk ≺ jk v′(x)+ v′(x j) ≺k j mk j for all x j ∈ (PΣ ∩C)\{x}

or a solution of the following set of inequalities if x is a prophecy clock:

v′(y) = v(y) for all y 6= x
−mk0 ≺k0 v′(x) ≺0k m0k

−mk j ≺k j v′(x)− v′(x j) ≺ jk m jk for all x j ∈ (PΣ ∩C)\{x}
−m jk ≺ jk v′(x)+ v′(x j) ≺k j mk j for all x j ∈ (HΣ ∩C)\{x}

assuming as usual that ⊥+ c = c+⊥=⊥− c = c−⊥=⊥.
Since M is canonical, such a v′ exists (the arguments are similar than the ones used in

the proof of Proposition 33), and it is in JMK by construction. Hence v is in relx(JMK). We
conclude that Jrelx(M)K⊆ relx(JMK). ut

Inclusion Let M1 and M2 be two canonical EDBMs on n clocks. Then, we let M1 ⊆M2 iff
M1

i, j ≤M2
i, j for all 0≤ i, j ≤ n.

Proposition 37 Let M1 and M2 be two canonical EDBMs on the same set of clocks. Then,
JM1K⊆ JM2K iff M1 ⊆M2.

Proof The proof stems from the fact that JM1K ⊆ JM2K iff JM1K∩ JM2K = JM1K iff JM1 ∩
M2K = JM1K iff, min(M1

i, j,M
2
i, j) = Mi, j for all 0≤ i, j ≤ n (by Proposition 35). ut

Emptiness For the sake of completeness, we recall here that Algorithm 1, that turns an
EDBM M into an equivalent canonical EDBM, can be used to test whether M is empty.
Indeed, by Proposition 32, JMK=∅ iff EDBMCanonical(M)=M∅. Moreover, by further
inspecting the execution of EDBMCanonical(M) when M is in normal form, we remark
that JMK = ∅ iff the DBM obtained from M by projecting away the clocks that are not
constrained to be real is empty, as formalized by the next proposition. Then:

Proposition 38 Let M = (mi j,≺i j) be a normal form EDBM on n clocks. Then: JMK = ∅
iff JM[CM(R)]K =∅ iff there is a negative cycle in M, i.e. a sequence i1, i2, . . . , im of indices
s.t.
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1. for all 1≤ k ≤ m: 0≤ ik ≤ n and
2. for all 1≤ k < m: (mik ik+1 ,≺ik ik+1) 6∈ {(?,=),(⊥,=)} and
3. for all 1≤ k < ` < m: ik 6= i` and
4. i1 = im and
5. (mi1i2 ,≺i1i2)+(mi2i3 ,≺i2i3)+ · · ·+(mim−1im ,≺im−1im)< (0,≤).

Proof The proof relies on Proposition 32 establishing the correctness of Algorithm 1. By
Proposition 32, JMK is empty iff EDBMCanonical(M) returns M∅. In Algorithm 1, this
can only happen either (i) because there are i and j s.t. Mi,0 = (⊥,=)∨M0,i = (⊥,=) and
Mi, j 6=(?,=)∨M j,i 6=(?,=), or (ii) because M[CM(R)] is empty. The first case is not possible
when M is in normal form, hence JMK = ∅ iff JM[CM(R)]K = ∅. By classical results on
DBMS [17], the latter holds iff M[CM(R)] contains a negative cycle. As M[CM(R)] is a DBM
(and thus does not contain elements in {(?,=),(⊥,=)}), obtained from M by projecting
away some lines and columns, the cycle in M[CM(R)] respects points 1 through 5 and is
present in M too. Hence the proposition. ut

6.3 Representing regions by EDBM

Since any region is also a zone, by definition, each region r must admit an EDBM represen-
tation Mr. Let us show how Mr can be computed from the definition of r. This definition
of Mr will be useful, in particular in section 7, when we will reason on different widening
operators.

Let Σ be a finite alphabet, cmax be a natural constant, and let r be a region from
Reg (CΣ ,cmax). To each clock x ∈ CΣ , we associate we associate r(x), which is either ⊥
when v(x) = ⊥ for all valuation v in r, or the interval containing all values v(x) s.t. v ∈ r.
Formally:

r(x) =


⊥ if v(x) =⊥ for all v ∈ r
]c;c+1[ if 0≤ c < cmax and v(x) ∈]c,c+1[ for all v ∈ r
[c;c] if 0≤ c≤ cmax and v(x) = c for all v ∈ r
]cmax;∞[ if v(x)> cmax for all v ∈ r

where c ∈ N.
By the definition of regions, r(x) is well-defined for all r and x. Moreover, to alleviate

notations, we rely on the vr ordering that compares the fractional parts of the clocks differ-
ent from ⊥. We recall that given a valuation v, for all x ∈ HΣ , 〈v(x)〉 = dv(x)e− v(x), and
for all x ∈ PΣ , 〈v(x)〉= v(x)−bv(x)c, where bv(x)c and dv(x)e denote respectively the floor
and ceiling of v(x). Formally, for a region r, and for all pairs of clocks xi,x j s.t. r(xi) 6= ⊥
and r(x j) 6= ⊥, we let xi vr x j iff 〈v(xi)〉 ≤ 〈v(x j)〉 for all v ∈ r. Again, by the definition of
regions vr is well-defined. We further let xi @r x j iff xi vr x j but x j 6vr x j, and xi ≡r x j iff
xi vr x j and x j vr xi.

With these notations, we can now define Mr from r. We assume CΣ = {x1, . . . ,xn} and
let Mr = (Mr

i j)0≤i, j≤n. We first define the elements in the first line and column of Mr. For all
1≤ i≤ n:
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1. If xi ∈HΣ , then:

Mr
i0 =


(⊥,=) if r(xi) =⊥
(c+1,<) if r(xi) =]c;c+1[
(c,≤) if r(xi) = [c;c]
(∞,<) if r(xi) =]cmax;∞[

Mr
0i =


(⊥,=) if r(xi) =⊥
(−c,<) if r(xi) =]c;c+1[
(−c,≤) if r(xi) = [c;c]
(−cmax,<) if r(xi) =]cmax;∞[

2. Otherwise, xi ∈ PΣ . Then:

Mr
i0 =


(⊥,=) if r(xi) =⊥
(−c,<) if r(xi) =]c;c+1[
(−c,≤) if r(xi) = [c;c]
(−cmax,<) if r(xi) =]cmax;∞[

Mr
0i =


(⊥,=) if r(xi) =⊥
(c+1,<) if r(xi) =]c;c+1[
(c,≤) if r(xi) = [c;c]
(∞,<) if r(xi) =]cmax;∞[.

Next, we define the elements of the form (mr
i j;≺r

i j) for 1 ≤ i, j ≤ n. We consider several
cases:

1. If r(xi) =⊥ or r(x j) =⊥, then:

Mr
i j = (?,=)

2. If {xi,x j} ⊆HΣ , r(xi) =]c,c+1[ and r(x j) =]d,d +1[, then:

Mr
i j =


(c−d,<) if x j @r xi

(c−d +1,<) if xi @r x j

(c−d,≤) if xi ≡r x j

3. If {xi,x j} ⊆ PΣ , r(xi) =]c,c+1[ and r(x j) =]d,d +1[, then:

Mr
i j =


(d− c,<) if x j @r xi

(d− c+1,<) if xi @r x j

(d− c,≤) if xi ≡r x j

4. If xi ∈HΣ , x j ∈ PΣ , r(xi) =]c,c+1[ and r(x j) =]d,d +1[, then:

Mr
i j =


(c+d +2,<) if xi @r x j

(c+d +1,<) if x j @r xi

(c+d +1,≤) if xi ≡r x j
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5. If xi ∈ PΣ , x j ∈HΣ , r(xi) =]c,c+1[ and r(x j) =]d,d +1[, then:

Mr
i j =


(−c−d,<) if xi @r x j

(−c−d−1,<) if x j @r xi

(−c−d−1,≤) if xi ≡r x j

6. If {xi,x j} ⊆HΣ , then

Mr
i j =


(c−d,<) if r(xi) = [c;c] and r(x j) =]d;d +1[
(c−d +1,<) if r(xi) =]c;c+1[ and r(x j) = [d;d]
(c−d,≤) if r(xi) = [c;c] and r(x j) = [d;d]

7. If {xi,x j} ⊆ PΣ , then

Mr
i j =


(d− c+1,<) if r(xi) = [c;c] and r(x j) =]d;d +1[
(d− c,<) if r(xi) =]c;c+1[ and r(x j) = [d;d]
(c−d,≤) if r(xi) = [c;c] and r(x j) = [d;d]

8. If xi ∈HΣ and x j ∈ PΣ , then

Mr
i j =


(c+d +1,<) if r(xi) = [c;c] and r(x j) =]d;d +1[

or r(xi) =]c;c+1[ and r(x j) = [d;d]
(c+d,≤) if r(xi) = [c;c] and r(x j) = [d;d]

9. If xi,∈ PΣ and x j ∈HΣ , then

Mr
i j =


(−c−d,<) if r(xi) = [c;c] and r(x j) =]d;d +1[

or r(xi) =]c;c+1[ and r(x j) = [d;d]
(−c−d,≤) if r(xi) = [c;c] and r(x j) = [d;d]

10. In all other cases:

Mr
i j = (∞,<)

Let us briefly justify the values given at points 4 and 5. Assume xi ∈HΣ , x j ∈PΣ , r(xi) =
]c;c+1[ and r(x j) =]d;d+1[. From those constraints, we already deduce that, for any v∈ r:
v(xi)+v(x j) ∈]c+d;c+d+2[. Hence, with these only constraints, we would set (mr

i j,≺r
i j)

to (c+ d + 2,<) and (mr
ji,≺r

i j) to (−c− d,<). However, with an additional constraint on
the fractional parts of the clocks, we are able to further strengthen those constraints. For
instance, assume that x j @r xi. This means that for all v ∈ r: 〈v(x j)〉 < 〈v(xi)〉. However,
since xi ∈ HΣ and r(xi) =]c;c+ 1[, for all v ∈ r: 〈v(xi)〉 = c+ 1− v(xi). Similarly, for all
v ∈ r: 〈v(x j)〉= v(x j)−d. Hence:

x j @r xi iff 〈v(x j)〉< 〈v(xi)〉
iff v(x j)−d < c+1− v(xi)

iff v(xi)+ v(x j)< c+d +1

Thus, the fact that x j @r xi allows us to strengthen the upper bound on xi+x j, from c+d+2
to c+ d + 1. Thus, we let mr

i j = (c+ d + 1,<) (and still mr
ji = (−c− d,<), as this has no

influence on the lower bound). The other cases follow similarly. With these observations in
mind, the next proposition follows immediately:
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Proposition 39 For all region r ∈ Reg (CΣ ,cmax): JMrK = r.

Proof By straightforward inspection of the definition of Mr.

Remark that, by definition, Mr is a normal form EDBM, but it might not be canonical. In
particular, when one of the clock is greater than cmax in the region r, any related element of
Mr is set to (∞,<). However, Algorithm 1 can be used to turn Mr into a canonical EDBM.

7 Forward and backward zone-based analysis

Now that we have at our disposal the event-zone data structure, which has the potential to
compactly represent large sets of valuations, let us introduce two basic algorithms that rely
on event-zones. Those algorithms are meant to decide the language emptiness problem, and
can easily be adapted to other instances of the reachability problem.

The two basic solutions to solve this problem are known as the forward and backward
algorithms. The forward algorithm consists in computing iteratively all the configurations
that are reachable in a given ECA A from its set of initial configurations. Then, L(A) 6=∅ iff
the computed set contains an accepting configuration. Symmetrically, the backward algo-
rithm computes iteratively all the configurations that can reach an accepting configuration.
Then, L(A) 6= ∅ iff the computed set contains an initial configuration. Since those sets are
potentially infinite, both algorithms use the event-zone data structure to store and manipulate
the computed states.

When applied to timed automata, it is well-known that the backward algorithm always
terminates, but that the forward algorithm might not terminate on certain instances. To en-
sure termination of the forward algorithm, a widening operator [15], often denoted Approxk,
and working directly on zones, has been proposed (and later implemented in tools such
as UppAal or Kronos [5,12]). The correctness of Approxk has been established later by
Bouyer, only for TA that do not contain diagonal constraints [9,10]. In the setting of ECA,
however, we show hereunder that neither algorithm terminates in general. Intuitively, the
non-termination of the backward algorithm stems from the fact that prophecy clocks act
somehow like regular TA clocks that count backwards. Hence, the phenomena preventing
termination of the forward algorithm can be recreated in an execution of the backward algo-
rithm, using prophecy clocks.

To overcome this difficulty, we consider the application of Approxk to the ECA case,
and observe that it does not preserve, as is, the correctness of the forward and backward
algorithms. We propose a variant of this operator, and show its correctness, using a proof
that follows the lines of Bouyer’s original proof technique [10].

7.1 Foward and backward algorithms

Let us first introduce the forward and backward algorithms. From now on, we consider an
ECA A = 〈Q,qi,Σ ,C,δ ,α〉. We also let

Post((q,v)) = {(q′,v′) | ∃t,a : (q,v)
t,a−→ (q′,v′)}

and

Pre((q,v)) = {(q′,v′) | ∃t,a : (q′,v′)
t,a−→ (q,v)}
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and we extend those operators to sets of states in the natural way. Moreover, given a set of
valuations Z and a location q, we abuse notations and denote by (q,Z) the set {(q,v) | v ∈
Z}. Also, we let Post∗ ((q,Z)) =

⋃
n∈NPostn ((q,Z)) and Pre∗ ((q,Z)) =

⋃
n∈NPren ((q,Z)),

where Post0 ((q,Z)) = (q,Z) and Postn ((q,Z)) = Post
(
Postn−1 ((q,Z))

)
, and similarly for

Pren ((q,Z)). The Post and Pre operators are sufficient to solve language emptiness for ECA:
from the definitions, we immediately deduce:

Lemma 40 (adapted from [4], Lemma 1) Let A = 〈Q,qi,Σ ,C,δ ,α〉 be an ECA, let I =
{(qi,v) | v is initial}, and let α = {(q,v) | q ∈ α and v is final}. Then:

Post∗ (I)∩α 6=∅ iff Pre∗ (α)∩ I 6=∅ iff L(A) 6=∅.

Let us show how to compute the Poste () and Pree () operators by means of the symbolic
operations on event-zones that we have introduced in Section 6.2. First, for all zones Z and
clock x, we let (Z) [x := 0] be the zone obtained by resetting x, i.e.: (Z) [x := 0] = relx(Z)∩
(x = 0). Then, given a location q, an event-zone Z on CΣ , and an edge e = (q,a,ψ,q′) ∈ δ ,
we let:

Poste ((q1,Z)) =

{(
q′,
(
rel−→xa

(
−→
Z ∩ (−→xa = 0))∩ψ

)
[←−xa := 0]

)
if q1 = q

∅ otherwise

Pree ((q1,Z)) =

{(
q,
←−−−−−−−−−−−−−−−−−−−−−−−−(
rel←−xa

(Z∩ (←−xa = 0))∩ψ
)
[−→xa := 0]

)
if q1 = q′

∅ otherwise

Then, it is easy to check that:

Post((q,Z)) = ∪e∈δPoste ((q,Z))

Pre((q,Z)) = ∪e∈δPree ((q,Z))

With the algorithms on EDBMs presented above, these definitions can be used to compute
the Pre and Post of zones using their EDBM encoding. Remark that Pre and Post return
sets of event-zones as these are not closed under union (like the classical zones for TA).

Let us now consider the ForwExact and BackExact algorithms to test for language
emptiness of ECA, shown in Algorithm 2. In these two algorithms Z0 denotes the zone∧

x∈HΣ
x =⊥ containing all the possible initial valuations and Z f denotes the zone

∧
x∈PΣ

x =
⊥ representing all the possible final valuations. By Lemma 40, it is clear that ForwExact
and BackExact are correct when they terminate. Unfortunately, Fig. 8 shows an ECA on
which the backward algorithm does not terminate. Since history and prophecy clocks are
symmetrical, this example can be adapted to define an ECA on which the forward algorithm
does not terminate either. Remark that in the case of TA, when the forward analysis is not
guaranteed to terminate, the backward analysis always terminates (the proof relies on a
bisimulation argument) [11].

Proposition 41 Neither ForwExact nor BackExact terminate in general.

Proof We give the proof for BackExact, a similar proof for ForwExact can then be de-
duced by symmetry. Consider the ECA in Fig. 8, and observe that q2 is not reachable from
the initial state because of the−→xb =⊥ constraint on the edge e1, and the fact that q2 is reach-
able only through e3, which is labeled by a b. Running the the backward analysis algorithm
from (q3,Z f ) yields the following sequence of computed pairs (q,Z):
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Input: An ECA A = 〈Q,qi,Σ ,C,δ ,α〉.
Output: ‘Yes’ iff L(A) 6=∅, ‘No’ otherwise.

1 ForwExact begin
2 Let Visited = ∅ ;
3 Let Wait = {(qi,Z0)} ;
4 while Wait 6=∅ do
5 Get and remove (q,Z) from Wait ;
6 if q ∈ α and Z ⊆ Z f then return Yes ;
7 if there is no (q,Z′) ∈ Visited s.t. Z ⊆ Z′ then
8 Visited := Visited∪{(q,Z)} ;
9 Wait := Wait∪

{
(q′,Z′) ∈ Post((q,Z)) | Z′ 6=∅

}
;

10 return No ;

Input: An ECA A = 〈Q,qi,Σ ,C,δ ,α〉.
Output: ‘Yes’ iff L(A) 6=∅, ‘No’ otherwise.

11 BackExact begin
12 Let Visited = ∅ ;
13 Let Wait = {(q,Z f ) | q ∈ α} ;
14 while Wait 6=∅ do
15 Get and remove (q,Z) from Wait ;
16 if q = qi and Z ⊆ Z0 then return Yes ;
17 if there is no (q,Z′) ∈ Visited s.t. Z ⊆ Z′ then
18 Visited := Visited∪{(q,Z)} ;
19 Wait := Wait∪

{
(q′,Z′) ∈ Pre((q,Z)) | Z′ 6=∅

}
;

20 return No ;

Algorithm 2: The forward and backward (semi-)algorithms

q0 q1 q2 q3

a
−→xb =⊥

e1

b
−→xb = 1∧←−xa = 1

e3

a
←−xa = 1

e2

b
e4

Fig. 8 An ECA for which backward analysis does not terminate (e1,. . . , e4 are edge names).

1. At the end of the first iteration, Visited = {(q3,Z f )}. Moreover, Pree4

(
(q3,Z f )

)
=

{(q2,Z1)} with:

Z1 =
(−→xa =⊥∧−→xb ≥ 0

)
Hence, Wait= {(q2,Z1)} at the end of the first iteration.

2. At the end of the second iteration, Visited = {(q3,Z f ),(q2,Z1)}, and (q2,Z1) has
been picked from Wait. Moreover, Pree3 ((q2,Z1)) = {(q1,Z2)}, with:

Z2 =
(−→xa =⊥∧0≤−→xb ≤ 1∧0≤←−xa ≤ 1∧←−xa +

−→xb = 1
)

Hence, Wait= {(q1,Z2)} at the end of the second iteration.
3. During the third iteration, (q1,Z2) is picked from Wait. Then, at the end of the third iter-

ation, Visited= {(q3,Z f ),(q2,Z1),(q1,Z2)}. Moreover, Pree2 ((q1,Z2)) = {(q1,Z3)}
with:

Z3 =
(
0≤−→xa ≤ 1∧1≤−→xb ≤ 2∧0≤←−xa ≤ 1∧←−xa +

−→xb = 2∧←−xa +
−→xa = 1∧−→xb −−→xa = 1

)



On regions and zones for event-clock automata 35

Input: An ECA A = 〈Q,qi,Σ ,C,δ ,α〉, and a widening operator f .
Output: ‘Yes’ iff L(A) 6=∅, ‘No’ otherwise.

1 ForwApprox f begin
2 Let Visited = ∅ ; Let Wait = f ((qi,Z0)) ;
3 while Wait 6=∅ do
4 Get and remove (q,Z) from Wait ;
5 if q ∈ α and Z ⊆ Z f then return Yes ;
6 if there is no (q,Z′) ∈ Visited s.t. Z ⊆ Z′ then
7 Visited := Visited∪{(q,Z)} ;
8 Wait := Wait∪

{
(q′,Z′) ∈ f (Post((q,Z))) | Z′ 6=∅

}
;

9 return No ;

Input: An ECA A = 〈Q,qi,Σ ,C,δ ,α〉, and a widening operator f .
Output: ‘Yes’ iff L(A) 6=∅, ‘No’ otherwise.

10 BackApprox f begin
11 Let Visited = ∅ ; Let Wait =

⋃
q∈α f ((q,Z f )) ;

12 while Wait 6=∅ do
13 Get and remove (q,Z) from Wait ;
14 if q = qi and Z ⊆ Z0 then return Yes ;
15 if there is no (q,Z′) ∈ Visited s.t. Z ⊆ Z′ then
16 Visited := Visited∪{(q,Z)} ;
17 Wait := Wait∪

{
(q′,Z′) ∈ f (Pre((q,Z))) | Z′ 6=∅

}
;

18 return No ;

Algorithm 3: Approximation algorithms for forward and backward analysis

and Pree1 ((q1,Z2)) = {(q0,∅)}, because−→xb is different from⊥ in Z1. Hence, at the end
of the third iteration, Wait= {(q1,Z3)}.

4. During the fourth iteration, (q1,Z3) is picked from Wait. Then, at the end of the fourth
iteration, Visited= {(q3,Z f ),(q2,Z1),(q1,Z2),(q1,Z3)}. Moreover, Pree2 ((q1,Z3))=
{(q1,Z4)} with:

Z4 =
(
0≤−→xa ≤ 1∧2≤−→xb ≤ 3∧0≤←−xa ≤ 1∧←−xa +

−→xb = 3∧←−xa +
−→xa = 1∧−→xb −−→xa = 2

)
The arguments given for iteration 4 can be continued inductively. In general, at iteration
2 + n (for n ≥ 1), the element (q1,Z1+n) is picked from Wait, and the computation of
Pree2 ((q1,Z1+n)) yields the element (q1,Z2+n), which is inserted into Wait and where:

Z(2+n) =

 0≤−→xa ≤ 1∧n≤−→xb ≤ n+1∧0≤←−xa ≤ 1
∧

←−xa +
−→xb = n+1∧←−xa +

−→xa = 1∧−→xb −−→xa = n


The sequence Z3,Z4, . . . ,Z2+n, . . . contains zones that are all pairwise incomparable, and that
are inserted into, then taken from Wait one after the other. Moreover, no elements of the
form (q0,Z) is ever produced by the algorithm. Thus, the condition of the if in line 17 is
always fulfilled, the algorithm keeps adding new zones to Wait, and loops forever. ut

7.2 Widening operators

Nevertheless, we close this paper by adapting widening operators from the literature [8,9]
and prove that they guarantee the termination of the forward algorithm (the arguments can
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Z

ClosureR(Z) −−−−−−−−→
ClosureR(Z)

−→
Z

ClosureR(
−→
Z )

−→xb

−→xa

1

1

(a)

r

−→xb

−→xa

1

1

(b)

r

−→xb

−→xa

1

1

(c)

r

−→xb

−→xa

1

1

(d)

r

−→xb

−→xa

1

1

(e)

r

Fig. 9 The ‘closure by region’ operator and the elapsing of time.

be easily adapted to the backward case, since these cases are symmetric in the setting of
ECA).

Closure by regions We first define a forward algorithm that terminates, and prove its cor-
rectness. This algorithm relies on the closure by region of event-zones, a notion adapted
from [9]. Let Z be an event-zone, and R be a set of regions, both on the set of clocks
C. Then, the closure by regions from R of Z is ClosureR(Z) = {r ∈ R | Z ∩ r 6= ∅}. Re-
mark that, for the region equivalences we have defined above, ClosureR(Z) is a set of zones
since each region is a zone. We extend ClosureR to sets S of pairs (q,Z): ClosureR(S) =
{(q,r) | r ∈ ClosureR(Z),(q,Z) ∈ S}. We define now a new algorithm, parametrised by R,
ForwRegionR = ForwApproxClosureR

, as described in Algorithm 3. Assuming that R is finite,
it is clear that ForwRegionR terminates. Let us now address its correctness. First, we recall
that in the setting of timed automata, we have Post((q,ClosureR(Z)))⊆ClosureR(Post((q,Z)))
for all (q,Z) [9], and this property is relied upon to establish the soundness of ForwRegionR .
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Unfortunately this is not the case in general with ECA. Indeed, consider the zone Z and the
region r in Fig. 9 (a). Clearly, r is included in

−−−−−−−−→
ClosureR(Z), see (b) and (c); but r is not

included in ClosureR(
−→
Z ), see (d) and (e). Nevertheless, we can prove the soundness of

ClosureR by relying on Theorem 23.

Theorem 42 For all ECA A with alphabet Σ and maximal constant cmax, ForwRegionR

answers Yes if and only if L(A) 6=∅, where R = Reg (CΣ ,cmax).

Proof The proof relies on the correctness of the region automaton RegAut∃ (A).
By construction, any pair (q,Z) visited during the algorithm is such that Z ∈ R is a

region. Let ReachClosure ⊆ Q×R be the set of pairs reachable by ForwRegionR and
Reach ⊆ Q×R be the set of states reachable from an initial state in RegAut∃ (A). Ob-
serve that ReachClosure ⊆ Reach. Indeed, let (qi,r) ∈ ClosureR(qi,Z0). The region r is
necessarily initial, and (qi,r) is an initial state of RegAut∃ (A) thus (qi,r) ∈ Reach. Con-
sider now a pair (q,Z) in ReachClosure visited after having taken the while instruction
i times. There exists then a pair (q′,Z′) ∈ ReachClosure visited at a preceding step and
such that (q,Z) ∈ ClosureR(Post((q′,Z′))). By induction hypothesis, (q′,Z′) ∈ Reach. By
definition of RegAut∃ (A), (q

′′,Z′′) is a successor state of (q′,Z′) in RegAut∃ (A), for all
(q′′,Z′′) ∈ ClosureR(Post((q′,Z′))). Hence (q,Z) is a reachable state in RegAut∃ (A). Since
the algorithm terminates, ReachClosure⊆ Reach.

If ForwRegionR answers Yes, there is a pair (q,Z) ∈ Wait such that q ∈ α and Z ⊆ Z f .
Then, (q,Z) is a reachable state in RegAut∃ (A) and Z is a final region. We conclude that
L(RegAut∃ (A)) 6=∅ and, as a consequence of Theorem 23, that L(A) 6=∅.

Assume now that L(A) 6= ∅. Then again, by Theorem 23, L(RegAut∃ (A)) 6= ∅, and
there is a run (q0,r0) · · ·(qn,rn) of RegAut∃ (A) such that (q0,r0) is an initial state and
(qn,rn) is a final state of RegAut∃ (A). Obviously, qn ∈ α and rn ⊆ Z f and it remains
then to show that (qn,rn) can eventually be visited by ForwRegionR . Observe first that
any initial region r is included in Z0. Then, any initial state (qi,r) of RegAut∃ (A) belongs
to ClosureR(qi,Z0) and initially (q0,r0) ∈ Wait. Assume now that (qi,ri) is in Wait at
some point, for some i < n. If (qi,ri) is not removed from Wait, it means that the algo-
rithm has ended and answered Yes. Assume now that is is removed from Wait. Since ri
is not final, ClosureR(Post((qi,ri)) is added to Wait. Again, it is clear that (qi+1,ri+1) ∈
ClosureR(Post((qi,ri)), hence (qi+1,ri+1) will be added to Wait. Then, either (qn,rn) will
be removed from Wait and, since the run exhibited is accepting, qn ∈ α and rn ⊆ Z f and
ForwRegionR answers Yes, or (qn,rn) is never removed from Wait, and again, it means
that the algorithm has ended and returned Yes. ut

k-approximation The ClosureR widening operator is mainly of theoretical interest, as it is
not easily implementable. Let us now adapt the classical k-approximation defined for DBMs
[9].

Definition 43 (k-bounded event-zone) Let k ∈N be a constant and Z be an event-zone. We
say that Z is k-bounded if Z is a conjunction of constraints of the form

x =⊥; x1− x2 ∼ c with −4 · k ≤ c≤ 4 · k;

x∼ c with c≤ k; x1 + x2 ∼ c with c≤ 4 · k

where ∼∈ {<,≤,>,≥,=}.
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Remark that our definition of k-bounded event-zone does not imply that all the constants
appearing in the constraints are ≤ k. Indeed, for constraints of the form xi + x j ∼ c or
xi− x j ∼ c, we tolerate values up to 4 · k for c. Here again, we deviate from the definitions
used in the setting of TA, and this point will be of utmost importance to prove the correctness
of the algorithm we are about to present.

Since k is finite, the set of k-bounded event-zones containing a given event-zone Z is
finite (and non empty).

Definition 44 (k-approximation) Let k ∈ N be a constant and Z be an event-zone. The k-
approximation of Z is the intersection of the k-bounded event-zones containing Z and is
denoted Approxk(Z).

We first remark that Approxk(Z) can be computed directly on the EDBM representing
Z. For that purpose, we extend the Approxk operator to EDBMs as follows:

Approxk(M)i, j =


Mi, j if (−k,≤)≤Mi, j ≤ (k,≤) or if Mi, j ∈ {(⊥,=),(?,=)}
(∞,<) if Mi, j > (k,≤)
(−k,<) if Mi, j < (−k,≤)

if i = 0 or j = 0.

Otherwise,

Approxk(M)i, j =


Mi, j if (−4 · k,≤)≤Mi, j ≤ (4 · k,≤), or if Mi, j ∈ {(⊥,=),(?,=)}
(∞,<) if Mi, j > (4 · k,≤)
(−4 · k,<) if Mi, j < (−4 · k,≤)

The correctness of this construction is established in the following proposition:

Proposition 45 Let k ∈ N, and M a non-empty canonical EDBM. Then Approxk(JMK) =
JApproxk(M)K.

Proof By construction, JApproxk(M)K is k-bounded and includes JMK. Hence, Approxk(JMK)⊆
JApproxk(M)K. Let us now show that JApproxk(M)K⊆ Approxk(JMK). Let Mk be a canon-
ical EDBM such that JMkK is k-bounded and JMK ⊆ JMkK, and let Mk

approx be the canonical
EDBM such that JMk

approxK = Approxk(JMK). By Proposition 37, we know that Mi, j ≤Mk
i, j

for all 0≤ i, j ≤ n. Let M′ = Approxk(M), and let 0 < i, j ≤ n such that M′i, j 6= Mi, j.

1. If Mi, j > (4 ·k,≤) then M′i, j = (∞,<). Moreover, (4 ·k,≤)<Mi, j implies that (4 ·k,≤)<
Mk

i, j. Since Mk is canonical and k-bounded, it cannot be that Mk
i, j = (c,≺) with c > 4 ·k.

Hence, either Mk
i, j = (?,=) or Mk

i, j = (∞,<). In both cases, M′i, j ≤Mk
i, j.

2. If Mi, j < (−4 · k,≤) then M′i, j = (−4 · k,<), and Mi, j < M′i, j < (−4 · k,≤)≤Mk
i, j.

If there is i = 0 or j = 0 such that M′i, j 6= Mi, j, then again, either Mi, j > (k,≤) or Mi, j <

(−k,≤) and, as above, M′i, j ≤Mk
i, j.

Then, for all 0 ≤ i, j ≤ n, M′i, j ≤ Mk
i, j and JM′K ⊆ JMkK. Since this is true for any k-

bounded canonical EDBM including M, it is true for the smallest one, i.e., Mk
approx. Hence,

Approxk(JMK) = JApproxk(M)K. ut

Then, we let ForwKAppk be the algorithm (parametrised by k) obtained by letting f =
Approxk in Algorithm 3. Since there are finitely many k-bounded regions, ForwKAppk al-
ways terminates. Our proof of correctness of ForwKAppk follows the lines of [9], and relies
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Z

r

−→xa

←−xa0

1

1

2

2

Fig. 10 A zone Z s.t. Approxk(Z) = Z.

on Proposition 48 hereunder, which state that, for all event-zone Z on set of clocks CΣ , we
have:

Z ⊆ Approxcmax(Z)⊆
⋃

ClosureR(Z)

where R = Reg (CΣ ,cmax), and
⋃

ClosureR(Z) denotes ∪r∈ClosureR (Z)r.
Remark that this property does not hold when using the k-approximation defined for

TA, which consists in replacing all constants > k by ∞ in the constraints of the zone. In-
deed, consider the event-zone Z defined by←−xa +

−→xa ≤ 2 in Fig. 10, together with the set of
regions R = Reg

(
C{a},1

)
. Clearly, with our definition, Approxk(Z) = Z, and neither Z nor

Approxk(Z) intersect with the region r such that r(−→xa ) = r(←−xa ) =]1;∞[. However, had we
replaced the constraint ←−xa +

−→xa ≤ 2 by ←−xa +
−→xa < ∞, we would have obtained an approxi-

mation Z′ that intersects with r, and would not have been contained in ClosureR(Z). This
explains why we tolerate constraints of the form xi + x j ∼ c with c greater than k, even in
the k-approximation of an event-zone.

Before giving the actual proof of Proposition 48, we provide two ancillary lemmata.
They provide properties of the EDBM Mr (defined in Section 6.3) that characterizes a region
r. The first lemma states that, although Mr might not be canonical (as already discussed
before), some of its constraints are tight. More precisely, these are the constraints Mr

i j where
the clocks xi and x j take values ≤ cmax in r (possibly with i = 0 or j = 0):

Lemma 46 Let r be a region on set of clocks C = {x1, . . . ,xn} and let C′ be the extended
set of clocks {x0} ∪C, where, as usual, v(x0) denotes the value 0. Let xi and x j be two
clocks from C′ s.t. for all v ∈ r: v(xi) ≤ cmax and v(x j) ≤ cmax. Let Mr be the EDBM
associated to r, and let i1, i2, . . . ik be a sequence of indices s.t. for all 1 ≤ ` ≤ k: i` ∈ [1,n],
and Mr

i j 6∈ {(?,=),(⊥,=)}. Then:

Mr
i j ≤Mr

ii1 +Mr
i1i2 + · · ·+Mr

ik j

Proof By a way of contradiction, assume that

Mr
ii1 +Mr

i1i2 + · · ·+Mr
ik j = (c,≺)< Mr

i j

In this case, we can safely replace Mr
i j by (c,≺) and obtain a new EDBM M′ s.t. JM′K= JMrK

(as this replacement would be done by the canonisation algorithm, which does not modify
the semantics of the EDBM). However, by inspecting the definition of Mr (when both xi and
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x j are ≤ cmax), it is easy to see that tightening Mr
i j yields an EDBM M′ s.t. JM′K 6= r. Since

JMrK = r, we conclude that JM′K 6= JMrK, which is a contradiction. ut
The next lemma characterizes the possible values that a clock can take in a given region

r. Intuitively, the lemma says that, in a region, for two clocks xi and x j that are below cmax,
all the possible values of v(xi)

±−v(x j)
± are in an interval of size 1 at most, and with bound

between −2 · cmax and 2 · cmax. In the case where either xi or x j is x0, the bounds of the
interval are even tighter: they must be between −cmax and cmax. For instance, assume
that, in a given region r, xi is a history clock in ]c;c+ 1[ and x j is a prophecy clock in
]d;d+1[, with xi @r x j (with c < cmax and d < cmax). Then, for all v∈ r: v(xi)

±−v(x j)
± ∈

]c+d +1;c+d +2[ (as can be checked with the definition of Mr).

Lemma 47 Let r be a region in Reg (CΣ ,cmax). Assume that CΣ = {x1, . . . ,xn} and let C
be the extended set of clocks CΣ ∪{x0}, where, as usual, v(x0) denotes the value 0, and r(x0)
denotes the interval [0;0]. Let xi and x j be two clocks from C s.t. for all v ∈ r: v(xi)≤ cmax
and v(x j)≤ cmax. Then, the two following points hold:

1. There exists −2 ·cmax≤ k ≤ 2 ·cmax s.t. either for all v ∈ r: v(xi)
±−v(x j)

± ∈]k,k+1[
or for all v ∈ r: v(xi)

±− v(x j)
± = k

2. If i = 0 or j = 0, then there exists −cmax≤ k ≤ cmax s.t. either for all v ∈ r: v(xi)
±−

v(x j)
± ∈]k,k+1[ or for all v ∈ r: v(xi)

±− v(x j)
± = k

Proof Immediate by the definition of Mr. ut
We are now ready to prove that Approxcmax is a correct widening operator. The proof is

adapted from the arguments found in [9].

Proposition 48 Let Z be an event-zone on set of clocks CΣ and let R = Reg (CΣ ,cmax).
Then: Z ⊆ Approxcmax(Z)⊆

⋃
ClosureR(Z).

Proof First observe that, by Definition 44, Z ⊆ Approxcmax(Z) holds trivially. Let us show
that Approxcmax(Z) ⊆

⋃
ClosureR(Z). By definition,

⋃
ClosureR(Z) is a union of regions,

i.e.
⋃

ClosureR(Z) = ∪{r | r∩Z 6= ∅}. Hence, to prove Approxcmax(Z) ⊆
⋃

ClosureR(Z),
it suffices to show that, for any r ∈R: Z∩ r =∅ implies Approxcmax(Z)∩ r =∅.

Thus, let r be a region in R s.t.

Z∩ r =∅ (2)

and let us show that Approxcmax(Z)∩ r = ∅ too. We first rule out the case where Z = ∅.
In this case, Approxcmax(Z) =∅ too hence, Approxcmax(Z)∩ r =∅ for any region r. From
now on, we will thus assume that:

Z 6=∅ (3)

Let MZ be the canonical EDBM s.t. JMZK = Z, let MApp be the canonical EDBM s.t.
JMAppK = Approxcmax(Z) and let Mr = (mr

i j,≺r
i j)0≤i, j≤n be the EDBM discussed in sec-

tion 6.3. By Proposition 39, JMrK= r. Remember also that Mr is in normal form but might be
non-canonical. Since we have assumed that MZ is canonical, the intersection M∩ = Mr∩MZ

is well-defined and JM∩K = JMrK∩ JMZK = Z∩ r =∅ (by Proposition 35 and by hypothesis
that Z∩ r =∅).

Using the fact that JM∩K = ∅, we will now show that JMApp ∩MrK = ∅ too. First,
assume that there are 0 ≤ i < j ≤ n s.t. neither MZ

i j ≤ Mr
i j nor Mr

i j ≤ MZ
i j. By definition

of ≤, this can happen only if MZ
i j = (⊥,=) and Mr

i j /∈ {(⊥,=),(?,=)}, or the converse:
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Mr
i j = (⊥,=) and MZ

i j /∈ {(⊥,=),(?,=)}. In both cases, we conclude that MApp
i j =MZ

i j, hence

neither MApp
i j ≤Mr

i j nor Mr
i j ≤MApp

i j . Thus, by definition of the intersection of two EDBMs,
Mr ∩MApp = M∅, and thus Approxcmax(Z)∩ r = ∅. Thus, for the rest of the proof, we
assume that:

For all 0≤ i < j ≤ n : MZ
i j ≤Mr

i j or Mr
i j ≤MZ

i j (4)

Hence, for all 0≤ i < j≤ n: M∩i j = min(Mi j,Mr
i j). Moreover, since M∩ is in normal form (by

Proposition 35), there exists a negative cycle in M∩, by Proposition 38. Thus, let us assume
that there exists a sequence i1, i2, . . . , im of indices that form such a negative cycle, i.e. they
respect all the hypothesis of Proposition 38, and, in particular:

M∩i1i2 +M∩i2i3 + · · ·+M∩im−1im < (0,≤) (5)

Let us show that we can assume, wlog, that two consecutive elements in the cycle do not
come from MZ . Indeed, if there is k s.t. M∩kk+1 = MZ

kk+1 and M∩k+1k+2 = MZ
k+1k+2, then, we

can replace M∩kk+1M∩k+1k+2 by MZ
kk+2 in the cycle (which yields a shorter cycle). This new

cycle is negative too because MZ
kk+2 ≤MZ

kk+1 +MZ
k+1k+2, as MZ is canonical. By iteratively

applying this construction, we obtain a negative cycle in M∩ that does not contain two con-
secutive elements from MZ . Let us denote by S the set of all elements from the cycle that
come from MZ (and not from Mr), i.e.:

S = {MZ
i j | ∃0≤ k < m : M∩ik ik+1

= MZ
i j and MZ

i j < Mr
i j} (6)

Observe that S 6= ∅. Indeed, if S = ∅, then the negative cycle is present in Mr too, and
r =∅, which is not possible as each region is non-empty, by definition. Thus, the cycle must
contain at least one element from MZ (in S ).

Thus, so far, we have shown – under hypothesis (2), (3) and (4) – that M∩ = MZ ∩Mr

contains a negative cycle (5), (i) without two consecutive elements from MZ and (ii) with
at least one element MZ

i j from MZ s.t. MZ
i j < Mr

i j. The end of the proof consists in examining
all the possible cases for this cycle, and concluding, each time, that Approxcmax(Z)∩ r =∅.

We first assume that the cycle contains one element MZ
i j from MZ s.t. both clocks xi and

x j are smaller than or equal to cmax in r. Formally, we assume that there is MZ
i j ∈S s.t.

for all v ∈ r: v(xi)≤ cmax and v(x j)≤ cmax.
By corollary 47, we have to consider four cases. In all these cases, the proof technique

we apply is always the same: we exhibit a zone Z′ s.t. (i) Z′ is cmax-bounded; (ii) Z⊆ Z′ and
(iii) Z′∩ r. By (i) and (ii), we deduce that Approxcmax(Z)⊆ Z′, as Approxcmax is defined as
the intersection of all cmax-bounded zones that contain Z. Together with (iii), we conclude
that Approxcmax(Z)∩ r =∅ too.
1. Either i, j 6= 0, and there is c s.t. −2 · cmax ≤ c ≤ 2 · cmax and for all v ∈ r: v±(xi)−

v±(x j) ∈]c;c+ 1[. In this case, Mr
i, j ≤ (c+ 1,<), since JMrK = r. Since MZ

i j < Mr
i j, we

obtain: MZ
i j < (c+1,<), and thus, MZ

i j ≤ (c,≤). As a consequence6:

Z ⊆ Z′ = (x±i − x±j ≤ c)

Remark that, for all v∈ Z′: v±(xi)−v±(x j)≤ c. On the other hand, by hypothesis, v∈ r:
v±(xi)− v±(x j)> c. Hence, r∩Z′ =∅. Since −2 · cmax≤ c≤ 2 · cmax, by hypothesis,
Z′ is cmax-bounded7. Thus Approxcmax(Z)⊆ Z′. Hence Approxcmax(Z)∩ r =∅ too.

6 Recall that x± denotes x if x ∈HΣ , and −x if x ∈ PΣ .
7 Remark that Z′ would not have been cmax-bounded, had we relied on the widening operator as defined

for TA.



42 Gilles Geeraerts et al.

2. Or i, j 6= 0, and there is c s.t.−2 ·cmax≤ c≤ 2 ·cmax and for all v∈ r: v±(xi)−v±(x j) =
c. This case follows the same arguments as case (1). Here, Mr

i, j = (c,≤). Thus MZ
i j <

(c,≤), hence MZ
i j ≤ (c,<) and:

Z ⊆ Z′ = (x±i − x±j < c)

Here again, we observe that Z′ has no intersection with r, since for all v ∈ Z′: v±(xi)−
v±(x j)< c, and for all v∈ r: v±(xi)−v±(x j) = c. Moreover, Z′ is cmax-bounded, hence,
Approxcmax(Z)⊆ Z′. We conclude that, r∩Approxcmax(Z) =∅ too.

3. Or 0 ∈ {i, j}, and there is c s.t. −cmax ≤ c≤ cmax and for all v ∈ r: v±(xi)− v±(x j) ∈
]c;c+1[. This case is treated as case (1). Remark that the zone Z′ obtained here is also
cmax-bounded, as 0 ∈ {i, j} but now c is in [−cmax;cmax], instead of [−2cmax;2cmax]
in point (1).

4. Or 0 ∈ {i, j}, and there is c s.t. cmax≤ c≤ cmax and for all v ∈ r: v±(xi)− v±(x j) = c.
This case is treated as case (2).

Otherwise, for all elements MZ
i j of the cycle that come from MZ , one of the clocks is

larger than cmax in the region. Formally, for all MZ
i j ∈S , for all v ∈ r: v(xi) > cmax or

v(x j)> cmax.
Let us first show that, in this case, there are at most two elements in the cycle (5) that

come from MZ , i.e. that |S | ∈ {1,2} (recall that S is non-empty, as argued above, otherwise
r would be empty, which is not possible by definition of regions). To establish this, we
consider an element of the cycle M∩i j = MZ

i j ∈ S . Remember that we have assumed that
there are never two consecutive elements from MZ in the cycle. Hence, the element that
precedes MZ

i j in the cycle is of the form Mr
ki for some 0 ≤ k ≤ n, and the one that follows

MZ
i j in the cycle is of the form Mr

j` for some 0≤ `≤ n. By hypothesis, we know that for all
v ∈ r: v(xi)> cmax or v(x j)> cmax (remark that both could hold at the same time). Let us
consider these two possibilities separately.

1. Assume that for all v∈ r: v(xi)> cmax. By way of contradiction, assume that the element
that precedes MZ

i j in the cycle is not Mr
0i, i.e. that k 6= 0. In this case, by definition of Mr,

we have Mr
ki = (∞,<), because v(xi) > cmax for all v ∈ r. However, in this case the

cycle cannot be negative. We conclude that k = 0, and thus, by definition of Mr, that
Mr

ki = Mr
0i = (−cmax,<), and that xi is a history clock.

2. Assume next that for all v ∈ r: v(x j) > cmax. By the same reasoning per absurdum,
we deduce that Mr

j` = Mr
j0, i.e. that the element that follows MZ

i j in the cycle is Mr
j0 =

(−cmax,<), with x j ∈ PΣ .

Thus, every time an element of the form MZ
i j ∈S appears in the cycle, it is either preceded by

Mr
0i, or followed by Mr

j0 (or both). As we have assumed that all the indices appearing in the
cycle are different, we conclude that at most two elements from MZ can appear in the cycle,
i.e. that |S | ∈ {1,2}. Let us consider separately these two possibilities. Again, the proof
technique we use in all the cases consists in finding a cmax-bounded Z′ s.t. Z ⊆ Z′ and r∩Z′,
which allows to deduce that Approxcmax(Z)⊆ Z′, and thus that Approxcmax(Z)∩ r =∅.

1. The first case is when |S | = 1, i.e., there is exactly one element MZ
i j from MZ in the

cycle. By hypothesis, v(xi) > cmax for all v ∈ r; or v(x j) > cmax for all v ∈ r; or both
hold. Let us consider those three cases:
(a) Either v(xi)> cmax and v(x j)≤ cmax for all v ∈ r, then, as shown above, xi ∈HΣ ,

and the element that precedes MZ
i j in the cycle is Mr

0i = (−cmax,<). We further
consider two cases:
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i. Either j = 0, then the cycle is of the form Mr
0iM

Z
i0. Since the cycle is negative,

and since Mr
0i = (−cmax,<): MZ

i0 ≤ (cmax,≤). Hence,

Z ⊆ Z′ = xi ≤ cmax

As Z′ is cmax-bounded, Approxcmax(Z)⊆ Z′ too. However, since v(xi)> cmax
for all v ∈ r, Z′∩ r =∅. We conclude that Approxcmax(Z)∩ r =∅ too.

ii. Or j 6= 0. In this case, the cycle is of the form:

Mr
0iM

Z
i jM

r
jk1

Mr
k1k2
· · ·Mr

kn jM
r
j0

However, by Lemma 46, and since v(x j)< cmax for all v ∈ r, we can consider
instead the cycle

Mr
0iM

Z
i jM

r
j0

We consider two further cases depending on the type of x j:
A. If x j ∈HΣ , then, since v(x j)≤ cmax for all v ∈ r, we conclude that Mr

j0 is
either (c+ 1,<) or (c,≤) for some 0 ≤ c ≤ cmax, by definition of Mr. In
both cases, Mr

j0 ≤ (c,≤). Thus:

(0,≤)> Mr
0i +MZ

i j +Mr
j0

≥ (−cmax,<)+MZ
i j +(c,≤)

and thus, MZ
i j ≤ (cmax− c,≤), which implies that:

Z ⊆ Z′ = xi− x j ≤ cmax− c

Since 0 ≤ c ≤ cmax, the zone Z′ is cmax-bounded, and Approxcmax(Z) ⊆
Z′. On the other hand, since, Mr

0i = (−cmax,<) and Mr
j0 ≤ (c,≤), we de-

duce, that, for all v ∈ r: v(x j)− v(xi) < c− cmax, hence, for all v ∈ r:
v(xi)−v(x j)> c−cmax. Thus, r∩Z′ =∅. Hence Approxcmax(Z)∩ r =∅.

B. If x j ∈ PΣ , then, since v(x j) ≤ cmax for all v ∈ r, we conclude that Mr
j0 is

either (−c,<) or (−c,≤) for some 0 ≤ c ≤ cmax, by definition of Mr. In
both cases, Mr

j0 ≤ (−c,<). Thus:

(0,≤)> Mr
0i +MZ

i j +Mr
j0

≥ (−cmax,<)+MZ
i j +(−c,<)

and thus, MZ
i j ≤ (cmax+ c,≤), which implies that:

Z ⊆ Z′ = xi + x j ≤ cmax+ c

Since 0 ≤ c ≤ cmax, we have cmax ≤ cmax+ c ≤ 2 · cmax, and the zone
Z′ is cmax-bounded8. Thus, Approxcmax(Z)⊆ Z′ On the other hand, since,
Mr

0i =(−cmax,<) and Mr
j0≤ (−c,<), we deduce, that, for all v∈ r:−v(x j)−

v(xi) < −c− cmax, hence, for all v ∈ r: v(xi)+ v(x j) > cmax+ c. Thus,
r∩Z′ =∅ and Approxcmax∩ r =∅ too.

(b) Or v(xi)≤ cmax and v(x j)> cmax for all v ∈ r, then x j ∈ PΣ , and the element that
follows MZ

i j in the cycle is Mr
j0. Again, we have to consider two further cases:

8 Ibid.



44 Gilles Geeraerts et al.

i. Either i = 0, then the cycle is of the form MZ
0 jM

r
j0. This case is symmetrical to

the case 1(a)i above.
ii. Or i 6= 0, and, v(xi)≤ cmax for all v ∈ r. Again, by Lemma 46, we can consider

a cycle of the form Mr
0iM

Z
i jM

r
j0, and we treat the present case as case 1(a)ii

above.
(c) Or both v(xi)> cmax and v(x j)> cmax for all v∈ r. Then, xi ∈HΣ , x j ∈ PΣ , and the

cycle is of the form Mr
0iM

Z
i jM

r
j0. Thus, by definition of Mr, Mr

0i =Mr
j0 = (−cmax,<).

Hence:

(0,≤)> Mr
0i +MZ

i j +Mr
j0

= (−cmax,<)+MZ
i j +(−cmax,<)

and we deduce that MZ
i j ≤ (2 · cmax,≤). Thus:

Z ⊆ Z′ = xi + x j ≤ 2 · cmax

However, since v(xi) > cmax and v(x j) > cmax for all v ∈ r, then: v(xi)+ v(x j) >
cmax for all v ∈ r. Thus, r∩Z′ =∅. Moreover, Z′ is cmax-bounded9. We conclude
that Approxcmax(Z)⊆ Z′, and thus that Approxcmax∩ r =∅ too.

2. The latter case is when |S | = 2, i.e. there are exactly two elements MZ
i j and MZ

k` from
MZ in the cycle. By the arguments above, we can assume that xi is a history clock s.t.
v(xi)> cmax for all v ∈ r, and that x` is a prophecy clock s.t. v(x`)> cmax for all v ∈ r.
Thus the cycle is of the form:

Mr
0i MZ

i j Mr
jx · · ·Mr

yk︸ ︷︷ ︸
from Mr

MZ
k` Mr

`0

Moreover, still by the discussion above, we know that v(x j) ≤ cmax and that v(xk) ≤
cmax for all v ∈ r. Hence, by Lemma 46, we can consider the cycle

Mr
0i MZ

i j Mr
jk MZ

k` Mr
`0 (7)

instead, which is still negative. Let us consider the elements appearing in this cycle.
We already know that Mr

0i = Mr
`0 = (−cmax,<). Moreover, since v(x j) ≤ cmax and

v(xk)≤ cmax for all v ∈ r, we have (−2 · cmax,≤)≤Mr
jk ≤ (2 · cmax,≤), by definition

of Mr. Hence:

(0,≤)> Mr
0i +MZ

i j +Mr
jk +MZ

k`+Mr
`0 (8)

≥ (−cmax,<)+MZ
i j +(−2 · cmax,≤)+MZ

k`+(−cmax,<) (9)

= (−4 · cmax,<)+MZ
i j +MZ

k` (10)

For the rest of the proof, let us assume that MZ
i j = (ci,≺i) and that MZ

k` = (c`,≺`). Thus,
from the above inequalities, we have:

(−4 · cmax,<)+(ci,≺i)+(c`,≺`)< (0,≤) (11)

We finish the proof by considering three cases:

9 Ibid.



On regions and zones for event-clock automata 45

(a) If ci ≥ 0 and c` ≥ 0, then, by (11), both ci and c` are≤ 4 ·cmax, and thus10 (since i, j,
k and ` are all different from 0): Approxcmax(M

Z)i j = Mz
i j and Approxcmax(M

Z)k` =
Mz

k`. Hence, by (8) we have:

Mr
0i +Approxcmax(M

Z)i j +Mr
jk +Approxcmax(M)Z

k`+Mr
`0 < (0,≤) (12)

Moreover, we know that MZ
0i ≥ Mr

0i, that MZ
jk ≥ Mr

jk and that MZ
`0 ≥ Mr

`0, as Mr
0i,

Mr
jk and Mr

`0 appear in the negative cycle (7). However Approxcmax(M)i, j ≥ MZ
i, j

for all 0 ≤ i, j ≤ n, by construction. Thus, we conclude, that Approxcmax(M
Z)0i ≥

Mr
0i, Approxcmax(M

Z) jk ≥Mr
jk and Approxcmax(M

Z)k` ≥Mr
k`. Hence, (12) describes

a negative cycle that appears in Approxcmax(M
z)∩Mr. As both Approxcmax(M

Z)
and Mr are normal form EDBMs, we conclude that Approxcmax(Z)∩ r = ∅, by
Proposition 38.

(b) If ci < 0, then, by definition of Mr, this can be achieved only when x j ∈HΣ . More-
over, ci < 0 implies that MZ

i j ≤ (0,<). Hence:

Z ⊆ Z′ = xi− x j < 0

Observe that Z′ is cmax-bounded, hence Approxcmax(Z)⊆ Z′ too. However, v(xi)>
cmax and v(x j) ≤ cmax for all v ∈ r by hypothesis. Hence, for all v ∈ r: v(xi)−
v(x j)≥ 0. Thus, Z′∩ r =∅, hence Approxcmax(Z)∩ r =∅ too.

(c) If c` < 0, we treat this case symmetrically to the former one. By definition of Mr,
this can be achieved only when xk ∈ PΣ . Moreover, c` < 0 implies that MZ

k` ≤ (0,<).
Hence:

Z ⊆ Z′ =−xk + x` < 0

Observe that Z′ is cmax-bounded, hence Approxcmax(Z)⊆ Z′ too. However, v(x`)>
cmax and v(xk) ≤ cmax for all v ∈ r by hypothesis. Hence, for all v ∈ r: v(x`)−
v(xk)≥ 0. Thus, Z′∩ r =∅, hence Approxcmax(Z)∩ r =∅ too. ut

Thanks to Proposition 48 and Theorem 42, we can now conclude:

Theorem 49 For all ECA A with maximal constant cmax, ForwKAppcmax terminates and
answers Yes iff L(A) 6=∅.

Indeed, ForwRegioncmax and ForwKAppcmax are compute over-approximations of the set
of valuations reachable by the exact algorithm. Since k-approximation is finer than the
closure by regions, correctness of ForwRegioncmax allows to conclude to correctness of
ForwKAppcmax.

8 Conclusion

Event-clock automata have been introduced [4] as an alternative model to timed automata.
The original paper on ECA, as well as a series of subsequent works, have relied on the
classical region construction [3] when defining algorithms to analyse them, assuming that
the region equivalence is a time-abstract bisimulation for event-clock valuations.

10 Again, this would not have been the case, had we relied on the approximation as defined for timed
automaton. This case shows why we cannot approximate values up to 4 · cmax.
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In the present work, we have shown that there is, in general, no finite time-abstract lan-
guage equivalence for ECA, which implies, in particular, that the region equivalence is not
a time-abstract bisimulation for event-clock valuations. Furthermore, we have shown that,
for two classical definitions of regions [3,9], the region automaton of an ECA A sometimes
recognise a strict subset of A’s untimed language only.

To overcome this difficulty, we have proposed an alternative semantics for ECA, that we
have called the weak semantics, for which regions are a finite time-abstract bisimulation.
Thanks to this new semantics, we have managed to show that a slight modification of the
definition of the region automaton, namely the existential region automaton, recognises the
untimed language of the original ECA. Then, in order to obtain efficient algorithms, we have
adapted the notions of zones and DBMs [17] to ECA. Unfortunately, neither the forward,
nor the backward zone-based analysis of ECA terminate in general. We have thus adapted
the classical widening operator [15] and provided an in-depth soundness proof, following
the lines of [10].

To sum up, we believe that the present work covers the basic theory which is needed for
the analysis of linear-time properties of ECA (such as reachability or safety). However, as far
as we know, the decidability of branching time properties of ECA remains an open question.
In the case of timed automata, many questions related to branching, such as bisimulation,
or the model-checking of CTL or TCTL, can be decided thanks to the region automaton [13,
2], which is bisimilar to the timed automaton it was built from. However, this is not the
case anymore for ECA: neither the existential region automaton extracted from the classical
semantics, nor the region automata built on top of the weak semantics are bisimilar to the
ECA. Nevertheless, the absence of a finite bisimulation quotient for ECA does not necessar-
ily entail that branching logics or games are undecidable. We leave these questions open for
future works.
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A Event-clock automata and timed automata

As stated in the introduction, ECA have been introduced as an alternative to timed automata, for the specifica-
tion of timed languages. The original work on ECA [4] contains a thorough comparisons of the expressiveness
of these two models. For the sake of completeness, we recall here the most salient result: each ECA can be
transformed into a non-deterministic timed automaton that has the same language.

Timed automata We first recall briefly the definition of timed automaton, then present the construction.

Definition 50 ([3]) A timed automaton (TA for short) is a tuple B = 〈Q,qi,Σ ,X ,δ ,α〉, where:

1. Q is a finite set of locations,
2. Qi ⊆ Q is a set of initial locations,
3. Σ is a finite alphabet,
4. X is a finite set of nonnegative real-valued variables called clocks11

5. δ ⊆ Q×Σ ×Constr (X)×2X ×Q of edges,
6. α ⊆ Q is the set of accepting locations.

We also require that, for each q ∈ Q, σ ∈ Σ , δ is defined for a finite number of ψ ∈ Constr (X).

11 In TA, clocks are not event-clocks.
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A valuation of a set of clocks X is a function v : X → R≥0. We denote by V (X) the set of valuations of X .
For a valuation v, and a time delay t ∈ R≥0, we denote by v+ t the valuation s.t. (v+ t)(x) = v(x)+ t for all
x. An extended state (or simply a state) of a TA with set of locations Q and set of clocks X is a pair (q,v)
s.t. q ∈ Q and v is a valuation of the clocks in X . As for ECA, we define the semantics of timed automata
by means of a transition system. We associate to a TA B = 〈Q,Qi,Σ ,X ,δ ,α〉 the infinite transition system
TSB =

〈
QB,QB

i ,→,αB〉, where:

1. QB = Q×V (X) is the set of extended states of B,
2. QB

i = Qi×{v | v(x) = 0 for all x ∈ X},
3. αB = {(q,v) | q ∈ α}, and
4. the transition relation→⊆

(
QB×R≥0×QB)∪ (QB×Σ ×QB) is s.t.:

(a)
(
(q,v), t,(q,v′)

)
∈→ iff v′ = v+ t, and

(b)
(
(q,v),a,(q′,v′)

)
∈→ iff there is (q,a,ψ,r,q′) ∈ δ s.t. v |= ψ , and v′ = v[r := 0]

Intuitively, this means that, on all edges (q,a,ψ,r,q′), ψ is a guard that must be satisfied by the current
valuation of the variables, in order to fire the edge; and that r is a set of clock that must be reset when firing
the edge. We adapt to TA the notions of run and language previously defined for ECA, as expected.

From ECA to TA Let us now recall the construction of [4] to translate an ECA A into a TA B that has the
same accepted language12. In order to apply the construction, we need to slightly modify the syntax of the
guards in the ECA. A non-punctual event-clock constraint is an event-clock constraint where the only atomic
event-clock constraints containing an equality are of the form x =⊥ (thus constraints of the form x = c with
c ∈N are disallowed). Remark that each event-clock constraint can be turned into an equivalent non-punctual
one by substituting x≥ c∧x≤ c to each x = c, and x > c∨x < c to each x 6= c. For any event-clock constraint
ψ , we denote by PConstr (ψ) (resp. HConstr (ψ)) the set of all atomic event clock constraints that (i) occur
in ψ and (ii) range over a prophecy (resp. history) clock. Let A =

〈
QA,qA

i ,Σ ,C,δ A,αA〉 be an ECA. By abuse
of notation, we let:

PConstr (A) =
{−→xa =⊥ | a ∈ Σ

}
∪

⋃
ψ s.t.

(q,a,ψ,q′) ∈ δ A

PConstr (ψ) (13)

That is, PConstr (A) is the set of all atomic event clock constraints that appear on the edges of A and that
constrain prophecy clocks, plus all the constraints of the form −→xa =⊥. It is easy to see that:

Lemma 51 For all ECA A without punctual guards, |PConstr (A) | ≤ (4× cmax+5)×|Σ |.

Proof We follow the definition of PConstr (A), given by (13). Obviously, |{−→xa =⊥ | a ∈ Σ}|= |PΣ |= |Σ |.
Moreover, each non-punctual atomic clock constraint on a prophecy clock, and different from −→xa = ⊥ (for
some a ∈ Σ ) is of the form −→xa ' c, with c ∈ {0,1, . . . ,cmax} and '∈ {<,≤,≥,>}. Hence, we conclude that:

|PConstr (A) | ≤ |Σ |+ |Σ |× (cmax+1)×4

= (4× cmax+5)×|Σ |

ut

We are now ready to give the construction of the TA that accepts the same language as the ECA A.
The prophecy clocks will be encoded using non-determinism: in the TA, a guess is made on the values of
the prophecy clocks, that will be checked when the corresponding event occurs. We assume that all guards
in A are non-punctual, and contain neither disjunctions nor negations13. As a result, all atomic event-clock
constraints occurring in A are of one of the following forms: x ≤ c, x < c, x ≥ c, x > c or x = ⊥. Then, the
corresponding TA is B =

〈
QB,QB

i ,Σ ,XB,δ B,αB〉 where:

12 Remark that in [4], the construction is given for EPA only. Adapting it to the full class of ECA is straight-
forward as history clocks are easily encoded in regular timed automata clocks. For the sake of completeness,
we give here the construction in the general case of ECA.

13 This is without loss of generality as one can always push the negation inwards, replace each atomic
constraint of the form ¬(x < c) (resp. ¬(x > c), ¬(x =⊥), ¬true) by the equivalent atomic constraint x ≥ c
(x≤ c, x≥ 0, x < 0), write a guard in disjunctive normal form and introduce an edge for each disjunct.
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1. QB = QA×2PConstr(A)×F (Σ), where F (Σ) is the set of all Boolean functions f : Σ 7→ {true, false}.
That is, each location of B is a triple (q,Φ ,bot), where q is a location of A, Φ is a set of atomic event-
clock constraints on the prophecy clocks of A that need to be fulfilled and, for all letters a ∈ Σ , bot(a)
indicates whether←−xa equals ⊥ in the original ECA.

2. QB
i = {(qi,Φ , f⊥) |Φ contains only constraints of the form −→xa =⊥} where for all a ∈ Σ : f⊥(a) = true.

3. XB = {zϕ | ϕ ∈ PConstr (a)}∪{xa | ←−xa ∈C}, i.e., B contains one clock zϕ per atomic clock constraint
ϕ on a prophecy clock of A, and one clock xa per letter of the alphabet (as we will see, xa will be used to
track the value of the corresponding history clock←−xa in A).

4. δ B contains an edge
(
(q,Φ ,bot),a,ψ,r,(q′,Φ ′,bot′)

)
iff there is an edge (q,a,χ,q′) in δ A, and:

(a) (−→xa =⊥) 6∈Φ ,
(b) The function bot is s.t. for all b ∈ Σ , (←−xb ∼ c) ∈ HConstr (χ) implies ¬bot(b), and (←−xb = ⊥) ∈

HConstr (χ) implies bot(b),
(c) The guard ψ is:

ψ =
∧

(−→xa∼c)∈Φ

(
z(−→xa∼c) ∼ c

)
∧

∧
(←−xb∼c)∈

HConstr(χ)
with b∈Σ

(
xb ∼ c

)

with ∼∈ {≤,<,>,≥} and c ∈ N.
(d) The reset r is:

r = {xa}∪
⋃

(−→xb�c)∈PConstr(χ)
with b∈Σ

{
z(−→xb�c)

}
∪

⋃
(−→xb�c)∈PConstr(χ)

s.t. b=a ∨ (−→xb�c)6∈Φ

{
z(−→xb�c)

}

with �∈ {>,≥}, �∈ {<,≤} and c ∈ N.
(e) The set Φ ′ is s.t.: {

(−→xb ' d) ∈Φ
∣∣ b 6= a}∪PConstr (χ)⊆Φ

′

with '∈ {≤,<,=,>,≥} and d ∈ N∪{⊥}.
(f) Finally, the function bot′ is s.t. for all b ∈ Σ :

bot′(b) =

{
false if b = a
bot(b) otherwise

5. αB = αA×{Φ⊥} where Φ⊥ = {−→xa =⊥ | a ∈ Σ}.
To illustrate this rather technical construction, we consider the example given in Fig. 11. The ECA A (top

of the figure) accepts all timed words of the form (b, t1),(a, t2) s.t. t2− t1 ∈ [2,3]. The TA B (bottom of the
figure) has been obtained from A by applying the above construction. In the figure, each B state (q,Φ ,bot)
is drawn with q at the top, the set Φ in the middle and the pair of values bot(a) ,bot(b) at the bottom.
On the edges, an expression of the form x := 0 means that x is reset by the edge. As can be seen in this
example, in each B state (q,Φ ,bot), the set Φ contains guesses on constraints on the prophecy clocks of A
that should be fulfilled—this explains the⊆ symbol in the definition of item (4e). B can move from (q,Φ ,bot)
to (q′,Φ ′,bot′), iff there is, in A, a corresponding edge from q to q′, s.t. the set of constraints Φ ′ is updated so
that it contains all constraints ranging on prophecy clocks that appear in the guard χ of the edge. For instance,
all successors of q′2 are of the form (q2,Φ ,bot) with (−→xa ≤ 3)∈Φ , as all these successors are obtained thanks
to the edge from q1 to q2, whose guard is (−→xa ≤ 3). Remark however, that q′2 has several successors, as the
TA B guesses a set of constraints on the prophecy clocks that should be fulfilled. For instance, when moving
from q′2 to q′8, the TA guesses that−→xb =⊥, i.e., that no more b’s will be read, but when going from q′2 to q′6, it
guesses otherwise. In order to be able to check that the constraints in Φ hold, a clock zϕ is reset every time an
edge is crossed whose guard implies that the constraint ϕ should hold. For instance, the clock z−→xa≤3 is reset
on every outgoing edge of q′2. Then, the values of those clocks are checked when the corresponding letter is
read. For instance, when going from q′8 to q′14, one has to check that z−→xa≤3 ≤ 3, as the edge is labelled by a,
and the constraint−→xa ≤ 3 occurs in q′8. To sum up, prophecies in the ECA A are replaced by non-determinism
in the TA B, while remembering the constraints that have to be fulfilled in each state, and using one clock per
constraint to check that it holds. History clocks are handled straightforwardly by resetting a clock xa every
time an a-labeled edge is crossed (and relying on the value of bot(a) that is stored in each state to remember
whether the corresponding history clock←−xa is equal to ⊥ or not).
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q1 q2 q3A:
b,−→xa ≤ 3 a,←−xb ≥ 2

q3

{}
false, false

q′9

q3

{−→xa ≤ 3}
false, false

q′10

q3

{−→xa = ⊥}
false, false

q′11

q3{ −→xa ≤ 3
−→xa =⊥

}
false, false

q′12

q3

{−→xb = ⊥}
false, false

q′13

q3{−→xa =⊥
−→xb =⊥

}
false, false

q′14

q3{ −→xa ≤ 3
−→xb =⊥

}
false, false

q′15

q3
−→xa ≤ 3
−→xa =⊥
−→xb =⊥


false, false

q′16

q2

{−→xa ≤ 3}
true, false

q′6

q2{ −→xa ≤ 3
−→xb =⊥

}
true, false

q′8

q2{ −→xa ≤ 3
−→xa =⊥

}
true, false

q′5

q2
−→xa ≤ 3
−→xa =⊥
−→xb =⊥


true, false

q′7

q1

{}
true, true

q′2

q1

{−→xb = ⊥}
true, true

q′4

q1{−→xa =⊥
−→xb =⊥

}
true, true

q′1

q1

{−→xa = ⊥}
true, true

q′3

B:

=

=

b,z−→xa≤3 := 0,xb := 0

a,xb ≥ 2∧ z−→xa≤3 ≤ 3,xa := 0

Fig. 11 An ECA A (top) and its corresponding TA B (bottom), with L(A) = L(B). In B, only the states that
are reachable from the initial state are shown.


