
CORPS: Building a Community Of

Reputable PeerS in Distributed Hash

Tables

Erika Rosas1, Olivier Marin1 and Xavier Bonnaire2

1Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie
INRIA-CNRS

4 place Jussieu, 75005 Paris, France
2Departamento de Informática, Universidad Técnica Federico Santa Maŕıa

Avenida España 1680, Valparáıso, Chile

Email: Erika.Rosas@lip6.fr, Olivier.Marin@lip6.fr, Xavier.Bonnaire@inf.utfsm.cl

Building trust is a major concern in Peer-to-Peer networks as several kinds of
applications rely on the presence of trusted services. Traditional techniques do
not scale, produce very high overhead or rely on unrealistic assumptions. In
this paper, we propose a new membership algorithm (CORPS) for Distributed
Hash Tables which builds a community of reputable nodes and thus enables
the implementation of pseudo-trusted services. CORPS uses a reputation-based
approach to decide whether a node can be a member of the group or not. We
demonstrate the benefits of this approach and evaluate how much it improves the

reliability of a trusted routing service.

Keywords: Peer-to-Peer, Trust, Reputation Systems, Secure Routing, Membership Algorithm

Received ; revised

1. INTRODUCTION

The fully distributed nature of Peer-to-Peer (P2P)
networks creates a scalable, fault tolerant and self-
organized system with the potential to involve millions
of nodes. However, the lack of central control, the
considerable number of peers and the high dynamism
of the network make it very hard to build trust among
peers.
To deliver a valuable service in P2P applications, it

is important to trust that the participants will act as
requested. For instance in file sharing applications, a
peer must trust that others will not upload a virus. In
P2P storage applications, a client must trust that the
designated peers will indeed save the information, and
even more importantly that other peers will forward
messages correctly so that communication can be
successful.
Building trust is especially complex since a P2P

network includes untrusted nodes from an open
environment, such as the Internet. Users from all parts
of the world interact and share their resources without
knowing each other. Untrusted nodes may be faulty,
malicious, and act together to attack the network.
Consequently, the quality of service of applications may
be deteriorated due to message overhead or data loss.
There are two categories of P2P networks: structured

and unstructured ones. Our work is oriented on the

former, and especially on Distributed Hash Tables
(DHT), which provide efficient key lookups, high data
availability and persistence.

Among the existing solutions for building trust in
P2P networks, reputation systems [1] and accountabi-
lity [2] have shown to be very good and efficient ap-
proaches.

Accountability detects and exposes faulty nodes by
creating non-repudiable records of every node’s actions.
PeerReview [2], for example, is able to detect even a
single misbehaviour since it is based on deterministic
actions. However, the actions of every node have to be
periodically checked by other nodes, who must replay
the protocol using the input in the log. If the protocol
is computationally complex, this results in a heavy
cpu load. In addition, accountability does not detect
malicious behaviours that are not protocol related or
not verifiable deterministic transactions.

Reputation systems assess the past history of a
peer by gathering feedback from nodes with previous
interactions with this peer. This evaluation is an
estimation of the peer’s future behaviour in a context
related situation [1]. Reputation systems are easily
applicable, since there is no need to know which
protocol the nodes are following. However, this means
that the feedback information does not constitute an
irrefutable proof of misbehaviour; it also makes it nearly

The Computer Journal, Vol. ??, No. ??, ????

2 E. Rosas, O. Marin, X. Bonnaire

impossible to detect a one time attack. If a node fails
once, it can redeem itself and improve its reputation by
carrying out correct transactions.
Reputation systems only provide the ability for a

node to find the reputation of a given node in order
to decide whether or not to do a transaction with it.
The goal of this paper is to propose an efficient and

simple way to build a group of trusted nodes – called
Trusted Ring – within a DHT. This allows to coalesce
reputable nodes in order to provide a pseudo-trusted
service: a service that is almost fully trustworthy, since
the nodes that process requests exhibit a very high
probability of being trustworthy.
CORPS (Community Of Reputable PeerS) builds

the Trusted Ring using a reputation system to decide
whether a node can be a member of the group or not.
The main contributions of our work are:

• A new approach to build trustworthy services in
P2P networks that is based on a reputation system.

• A membership algorithm to build a scalable trusted
ring within a DHT that allows to find reputable
peers efficiently.

• An example of how to build a pseudo-trusted
service by way of the Trusted Ring and an
evaluation of the reliability of the service.

Section 2 explains the properties of the underlying
systems: DHTs and reputation systems. The design
of the CORPS algorithm including the join and leave
procedure, as well as the maintenance techniques are
given in Section 4. A pseudo-trusted routing service is
presented in Section 5 to illustrate the benefits of our
approach.
Section 6 presents a theoretical evaluation, some

simulations results and costs in order to evaluate the
performance of CORPS. As security issues are a major
concern in P2P networks, a discussion in Section 7
shows the ability of CORPS to resist some traditional
attacks like the Sybil attack [3] or collusion of nodes.
We also give some hints about the portability of CORPS
over existing DHTs.
Finally the conclusion presents an overview of the

results and benefits of our approach, and gives some
directions for future research in trusted P2P services.

2. BACKGROUND

We present in this section the underlying systems
of our approach. First, a description of the type
of P2P overlay we are interested in, and then, an
overview of Reputation Systems that are used to
identify trustworthy peers.

2.1. DHT-based P2P overlay networks

P2P networks are autonomous, self-organised and
highly scalable systems that have the potential to
grow up to millions of nodes. P2P nodes share their

resources, collaborate and interact directly. We will
focus on DHTs, which provide efficient key lookups,
high data availability and persistence.
DHT networks are systems that maintain a strong

topology, for example a ring in the case of Chord [4],
Pastry [5] or Tapestry [6]. We assume the use of Pastry
throughout this work as the underlying P2P overlay, but
the use of any other ring-like topology, such as Chord or
Tapestry, is straightforward. Please refer to Section 7.2
for more details about the portability of our proposition
to other DHT networks.
Every node in Pastry is assigned a unique nodeID

in a space of identifiers of 128-bits, generated using
a cryptographic hash [5]. The nodeID determines the
position of the node in the circular namespace, that is
the Pastry ring. In Pastry, a key k is a value in the
same namespace of the nodeIDs.
The neighbours of a node in Pastry are stored in two

sets: (1) the leaf set contains the L numerically closest
nodes in the ring, organised in L/2 clockwise closest
nodes, and L/2 counter-clockwise closest nodes. (2) the
neighbour set contains the K closest nodes in terms of
latency. To maintain these two sets of nodes, a keep
alive message is used every time ∆t to detect node
failures. When a node X realizes that a node in its
leafset has fail, X starts an update procedure to repair
its leafset. A typical value for the leafset size is 16
nodes.
The Pastry routing algorithm is a prefix based

algorithm that routes a message to the numerically
closest node of a given key k in the ring. Figure 1
shows an example of the routing process. The Pastry
routing table stores on the nth row the IP address of
nodes which nodeID share the first n digits with that of
X [5]. The algorithm forwards the messages to a node
from its routing table that shares at least one more digit
with the key k than the current node. If no such a node
can be found and the current node does not know any
other numerically closest to the key k, then the current
node is the closest and the routing ends.
This algorithm allows to route a message to a given

key k in O(log(N)) hops, where N is the network
size [5].

2.2. Reputation Systems

Reputation Systems mitigate the problem of malicious
nodes in P2P networks, trying to build trust among
the nodes. The key idea of a reputation system is to
predict the future behaviour of nodes based on feedback
about their past transactions [1]. A transaction
is application dependent, for example forwarding a
message in the network, buying an item in e-commerce
services, share or store files, etc. After a transaction,
the client node emits a recommendation that evaluates
the behaviour of the other peer. The aggregation of
these recommendations leads to a reputation value.
A reputation system built on top of a DHT has the

The Computer Journal, Vol. ??, No. ??, ????

CORPS: Building a Community Of Reputable PeerS in Distributed Hash Tables 3

1ef40

356af

65fe2
a0fe3

a926d

a970a

a98c0

a98f3
K=a98fe

Route(K)

FIGURE 1. Routing example in Pastry: Route of key
a98fe arrive to the node with the closest nodeID a98f3.

ability to compute a global reputation value for every
node. Indeed all the recommendations about a single
node can be handled consistently at a common location:
either by a specific node or by a set of nodes. Among
existing reputation systems for DHTs, we can cite:
PeerTrust [7], WTR [8], Eigentrust [9], PowerTrust [10].
Reputation systems have to deal with malicious nodes

that: do not participate, collude with other malicious
nodes, and emit false recommendations. There are
techniques to mitigate the impact of these attacks, such
as the ones presented in TrustGuard [11] and WTR [8].
Nevertheless, to our knowledge, none of the existing
solutions to promote trust in P2P can be 100% effective
in detecting and blocking these attacks.

3. PROBLEM FORMULATION

We consider a DHT network in which each node has an
associated reputation. In this section we formalize the
problem, we state assumptions, and desired properties
of the system.

3.1. System Model

Our underlying P2P overlay consists in a Distributed
Hash Table, such as Pastry [5]. Any node may fail or
leave the system at any time.
We assume that a unique nodeID is assigned to a

node which enters the DHT. NodeIDs are uniformly
distributed in a 160-bits nodeID space. We suppose
that each node has a self-generated public/private key
pair. The nodeID is generated by computing the Secure
Hash Function SHA-1 of the node’s public key. When
entering the DHT, the new node must provide its public
key and its nodeID.

3.2. Design Goals

Our aim is to provide trust within the network by
building a group of pseudo-trusted nodes: the Trusted

Ring. The group must be self-organised and scalable.
Any node of the DHT should be able to access a pseudo-
trusted node in the Trusted Ring, but the possibility of
not finding such a node remains.
The target for our proposition are best-effort systems

which tolerate recoverable faults. The goal of the
Trusted Ring is to improve the way these systems
operate by providing an efficient method for finding
nodes that perform correctly.
We intend for our system to achieve the following

properties:

• Availability: After a start-up phase the Trusted
Ring should be as available as possible.

• Robustness: The system must cope with malicious
behaviours of nodes.

• Convergence: After a start-up phase, all the
trustworthy nodes should be part of the Trusted
Ring.

• Performance: The system should generate a low
traffic overhead.

Our system must not introduce more vulnerabilities to
the underlying system. An important design principle is
to avoid bottleneck problems. Limiting the awareness of
nodes to a partial knowledge of the network is important
in order to provide load balance and scalability.

3.3. Trust Model

We consider a probabilistic model of trust based
on reputation. The reputation value R(X) is the
probability that node X will be honest in the future.
This reputation value is computed according to a list of
recommendations emitted by nodes that have already
carried out transactions with X.
After each transaction, a node emits a recommen-

dation about its peer. A node may lie: it may emit
negative recommendations about a peer that behaves
correctly, or positive recommendations about a mali-
cious peer. Several nodes may collude to increase or
decrease the reputation value of another node. These
problems generate a deviation between the computed
reputation of the node and its real behaviour. We con-
sider that this deviation depends on the function used
to compute the reputation value and on the percentage
of malicious nodes within the system.
In the following, we assume there is a reputation

system in the overlay structure with the following
properties:

• Every node X has an associated reputation value
R(X) which represents the probability that X is
an honest node.

• R(X) is computed using the recommendations
emitted by nodes that have completed a trans-
action with X. Bad recommendations have a
stronger effect on R(X) than good ones. It should
be more difficult for a node to increase its reputa-
tion value than to decrease it.

The Computer Journal, Vol. ??, No. ??, ????

4 E. Rosas, O. Marin, X. Bonnaire

• For every node X, R(X) is highly available in the
DHT.

To avoid nodes that lie about a reputation value,
our model will consider a reputation system that
computes the reputation of nodes concurrently on
different nodes. They decide individually if that node
is reputable or not. We use a voting scheme in case of
disagreement. On the whole, assuming that there is a
smaller percentage of malicious nodes in the network,
the result avoids false statements about reputation.

3.4. Formalization

Formally, the goal of this paper is to construct a set of
pseudo-trusted nodes, TS such that:

• TS = {n1, . . . , ni, . . . , nN}, and for each node
ni ∈ TS, R(ni) ≥ ρ where ρ is a threshold with
ρ ∈ [0 . . . 1].

• Let N be the real number of honest nodes in the
overlay, and t the time. Then:

lim
t>T

(Card(TS)) = N (1)

In other words, after a time T , the number of nodes
in TS tends to be N .

• After time T , if honest nodes tend to have the
maximum reputation value, limt>T R(ni) = 1,
then, the sum of their reputation values will be
equal to the number of honest nodes.

lim
t>T

N
∑

i=1

R(ni) = N (2)

In all the following sections, we will call a node
ni ∈ TS a trusted node, even if there still remains a
probability that this node’s actual reputation is smaller
than the threshold ρ. For more details please refer to
Section 6.1.

4. BUILDING THE TRUSTED RING

In this section we describe the CORPS: our membership
algorithm used to build the Trusted Ring. The Trusted
Ring provides an efficient way to contact a trustworthy
node in order to involve it in a pseudo-trusted service.

4.1. Architectural principles

The general view of our system is a double ring: our
Trust Ring nested into the normal DHT. The join,
leave and update operations – explained hereafter –
respectively allow a node to enter the Trusted Ring, to
leave it, and to update its local vision of this ring. A
monitoring procedure allows to check the capacity of a
member of the Trusted Ring to remain into the ring,
and a remove procedure expels a node from the ring.
Figure 2 shows the basic structure of the system.

Some nodes are identified as trusted and some as
normal.

N12

N23

N18

N3

N11

N1 N2

N8

N7

N6

N5

N4

N10

N9

N13
N14

N15

TrustSet of N8

 N4 N11
 N5 N9

N20

 N24 N9
 N1 N5
TrustSet of N4

N24

N22

N21

N17

N16

N25

N19
Normal Nodes

Trusted Nodes

FIGURE 2. Example of trustset structure

Every node in the DHT maintains a trustset. The
trustset is a set of D numerically closest trusted nodes,
with D/2 clockwise nodes, and D/2 counter-clockwise
ones. This concept is similar to the leafset in Pastry,
but instead of collecting the nodeIDs of the numerically
closest nodes it references the numerically closest nodes
among those that are actually trusted. The trusted
nodes which have a node X in their trustset will be
called managers of X. All the normal nodes that will
have X in their trustset will be called the followers of
X.
A node’s ability to be part of the Trusted Ring must

be regularly assessed. In order to decide if a node
can enter the Trusted Ring, we use the underlying
reputation system. We define a threshold ρ, such that
node X should be part of the Trusted Ring if and only
if R(X) > ρ. The value of ρ depends on the level of
security the application requires. The closer ρ is to 1,
the higher the confidence in the node’s trustworthiness.
However, it is essential to reach a compromise between
this confidence and the number of nodes inside the
Trusted Ring in order to provide an efficient service.
The Trusted Ring is managed in a way similar to the

Pastry overlay, explained in Section 2. Every node in
the Trusted Ring has a trustset – an equivalent to the
leafset which references reputable nodes.

4.2. Initializing the TrustSet

The initialization process for a new node that joins
the DHT network consists in building its trustset
from scratch. When the join in the Pastry ring is
terminated, the node gathers trustsets from the nodes
in its leafset. If this process does not return any trusted
node, then there are no available trusted nodes in the
numeric neighbourhood of the node: the Trusted Ring
is temporarily unavailable for this node. We analyse in
Section 6.3.4 the minimum ratio of trusted nodes that
propels the Trusted Ring towards full availability.

The Computer Journal, Vol. ??, No. ??, ????

CORPS: Building a Community Of Reputable PeerS in Distributed Hash Tables 5

4.3. Joining the Trusted Ring

After each transaction, the reputation of a node can
change. Once the reputation of a node X reaches the
threshold ρ, X sends a Join message to all the nodes
in its trustset, which will become its managers. The
managers of X use the reputation system to check if the
reputation of X is effectively greater than the threshold
ρ. If it is, then each manager adds X to its own trustset.
A node that lies about its ability to enter in the Trusted
Ring cannot enter to the trustsets of the others nodes,
and remains alone.
The Join protocol introduces new trusted nodes into

the Trusted Ring, but the changes remain transparent
to normal nodes. For this reason, the joining process
requires an announcement phase. In this phase a new
trusted node sends its trustsets to every node in its
leafset. Malicious nodes can send false announcements,
declaring they are trusted nodes. To avoid this
behaviour when a node receives new announcements
must check the reputation of the new trusted node.
In Figure 2, if N8 is a new trusted node, it sends a

Join message to its trustset : N4, N5, N9, N11. These
nodes check if N8 really has a reputation such that
R(N8) > ρ, and forward this information to the nodes
in their leafset. N7, N10 and the other nodes in the
leafset of the managers will become the followers of N8.
Each manager maintains a list of followers for all the
nodes in its own trustset.
When node A adds a new trusted node X in its

trustset, it contacts X’s managers and subscribes to X’s
follower-list.

4.4. Monitoring scheme and Remove proce-

dure

The nodes in a P2P network can change their behaviour
as they carry out new transactions. Some nodes may
exhibit oscillating behaviours, which can generate a
significant yo-yo effect with respect to the reputation
value. Applying a Join procedure to these nodes
would cause a useless overhead. The reputation of
X is checked by its managers periodically, every ∆t.
The value of ∆t is a parameter of the system; in our
experiments we used the same value as that used by
Pastry to update the leafset. While the reputation of
X is within [ρ−α, 1] then the node is still considered as
trusted. α is a tolerance parameter of the monitoring
process. If ρ − α is too small, the Trusted Ring may
endure a high level of churn. If ρ − α is too big, then
nodes with a reputation value slightly lower than the
threshold should be able to remain as trusted nodes.
A good value for α should be chosen according to the
effect of bad recommendations at the reputation system
level. If bad recommendations have an important effect
on the reputation decrease, and it is much more difficult
for a node to increase its reputation, then a small value
can be chosen for α.
When a manager detects that R(X) < ρ−α, it alerts

all the followers of X that X can not be considered as
trusted any more, and removes X from its trustset. If
the size of the trustset is D with D = 3k + 1, then
when a node A receives at least 2k + 1 remove alerts
from 2k + 1 distinct trusted nodes, it removes X and
updates its trustset.
When a node in the DHT fails and becomes

unavailable, this is detected by the normal leafset
maintenance algorithm of Pastry. When node Z detects
that a node X has gone, it alerts all the nodes in its
trustset. If X was a member of the trustset, then the
nodes of the trustset will alert all the followers of X
(Failed message) that X has failed.

4.5. Leaving the Trusted Ring

When a trusted node X wants to leave the DHT,
it sends a Leave message to all the nodes in its
trustset. The managers of X forward the message to
all the followers of X and each follower runs an Update
procedure.

4.6. Trustset update

When a node leaves the Trusted Ring, because
of a normal departure, or because of a remove
procedure (Leave message, Remove message, and
Failed message), the followers of X must update their
trustsets. The update procedure is similar to the leafset
maintenance in Pastry. Every follower contacts the
last available node in its trustset, clockwise or counter-
clockwise according to the position of the leaving node,
and asks for its trustset. Then each follower replaces
the missing node with the numerically closest node from
this trustset.

4.7. Start-up phase

If the newly trusted node has an empty trustset it will
start a new Trusted Ring by itself. The outcome of this
process is that several ring structures can coexist in the
same P2P network unbeknownst to one another.
Self-organisation and convergence come into play

when two Trusted Ring structures find each other and
merge. When a node Z discovers a nodeX from another
ring, then X (and the nodes in its trustset) can be
inserted into the trustset of Z, and X can replace a
node in Z’s trustset if it is numerically closer to Z.
Both rings merge by way of node Z.

4.8. Finding a trusted node

With the information in their trustset, each node knows
the location of their D numerically closest trusted
nodes. Finding a trusted node for node X simply
consists in looking into its trustset. If its trustset is
empty, then there is no trusted node available for X.
Node X will try to initialize its trustset again to search
for new information as described in Section 4.2.

The Computer Journal, Vol. ??, No. ??, ????

6 E. Rosas, O. Marin, X. Bonnaire

Considering that nodes are randomly distributed in
the nodeID space (honest and malicious ones), it is
highly unlikely for any node to have an empty trustset
during the stable phase of the Trusted Ring. For
more details about the stabilization phase, please see
Section 6.3.4.

4.9. Incentive mechanism

Our Trusted Ring is composed of the “elite” of the P2P
network. Any node can access it, including malicious
nodes and freeriders that do not participate actively
to the system. If any node can use the system and if
there aren’t enough nodes in the Trusted Ring, then the
latter becomes a bottleneck and the load will increase
and discourage nodes from participating.
We introduce a way of encouraging nodes to

participate in the Trusted Ring by giving priority to
those nodes when using the pseudo-trusted service.
Requests from nodes inside the Trusted Ring will be
answered faster. We apply weighted fair queuing [12]
on the routing of request at every node, with higher
weight for requests from trusted nodes.
A further incentive to improve the reputation value of

the nodes is introduced. We allow access to the Trusted
Ring only to nodes that have at least done some work
in the network. When a trusted node is contacted by
a peer X, it first verifies the reputation of that peer.
If all nodes start with an initial reputation value of
R(X) = β, node that can access the Trusted Ring have
to prove a R(X) > β – meaning that in the worst case
X has made some good work in the network.

5. EXAMPLE OF A TRUSTED ROUTING

In this section, we give an example of how to use the
Trusted Ring for a trusted routing service. Section 6
will cover a theoretical evaluation of the Trusted Ring,
as well as the benefits in the case of trusted routing.
We do not use the traditional routing algorithm at the

Pastry level, but the one proposed in [13] called Tracer
Routing. The goal of the Tracer Routing algorithm is
to route a message M to the numerically closest node of
a given key k, similarly to Pastry. However, the Tracer
Routing algorithm uses a public/private key scheme to
identify the first malicious node that was encountered in
case of routing failure. The key idea of Tracer Routing
relies on the following:

• Each node of the routing path informs the initiator
of the routing about the next hop, and signs the
message with its private key.

• When a node receives a routing message, it
acknowledges the message to the initiator and
forwards a signed message to the next hop.

• The message content is encrypted by the initiator
private key.

The initiator is able to verify the next hop of
the routing, if the message does arrive to the next

hop and if the message has been altered. Moreover,
if no acknowledgement is received, the initiator can
determine which node in the path is faulty. For more
details on the Tracer Routing, please refer to the work
of Xiang and Jin [13]. Note that Tracer Routing has a
higher cost than traditional Pastry routing in terms of
the number of hops, but it is still in O(log(N)) where
N is the size of the DHT.
Trust is specific to a domain: to achieve pseudo-

trusted routing the reputation system has to compute
the reputation based on how a node behaves while
forwarding messages. The nodes will achieve a high
reputation by correctly routing messages for other
nodes. In this context, the initiator will emit a good
recommendation value of 1 for each node that routes the
message correctly, and a bad recommendation value of 0
for the first faulty node in the routing path. Thus nodes
that behave correctly will increase their reputation in
the context of routing, and malicious nodes will decrease
theirs.
After the start-up phase, the Trusted Ring will

contain almost all the nodes that behave correctly
while routing. We can then easily implement a trusted
routing service within the Trusted Ring, by using the
same routing algorithm as Pastry
Since the Trusted Ring is also a DHT, we suppose

that every trusted node manages two routing tables.
The first one is the normal routing table of the
Tracer Routing, and the second one corresponds to a
routing table that contains only trusted nodes. The
maintenance of the trusted routing table is similar to
Pastry, and the replacement of a node is optimistic.
The next section gives an evaluation about the

benefits of using our Trusted Ring for trusted routing,
including an analysis regarding the probability of
routing failures compared to the normal routing service.

6. EVALUATION

In this section we present a theoretical evaluation of
CORPS, as well as a set of simulations and performance
results.

6.1. Theoretical evaluation

We suppose in the following that the underlying
reputation system makes an error ε when classifying a
node X with a reputation R(x) ≥ ρ, where ρ ∈ [0 · · · 1],
and ε = f(ρ). In other words, classifying a node X as
honest because its reputation is greater than ρ has a
probability of error ε.
Let n be the size of the Trusted Ring. The probability

to have k misclassified nodes in the Trusted Ring, that
is k malicious nodes is:

Pkmalicious
=

(

n
k

)

εn−k(1− ε)k (3)

Then, the probability to have at most k malicious
nodes in a Trusted Ring of size n is:

The Computer Journal, Vol. ??, No. ??, ????

CORPS: Building a Community Of Reputable PeerS in Distributed Hash Tables 7

P≤k =

k
∑

i=1

(

n
k

)

εn−i(1− ε)i (4)

6.1.1. Trusted Routing Failure
A trusted routing fails when the message cannot be
delivered to the closest trusted node of a given key k.
This may happen when at least a node on the routing
path fails. Let h be the number of hops to route a
message in the Trusted Ring. As the trusted routing
algorithm uses the same prefix based routing as Pastry,
h is such that h = O(log(n)) where n is the Trusted Ring
size. Then the probability for a routing to succeed –
that is all nodes on the path behave correctly – is given
by:

Pr−succeed = (1− ε)h (5)

Given this result, the probability to have to make one
more routing knowing that r − 1 have already failed is
given by the following geometric law:

Pr = Pr−succeed × (1− Pr−succeed)
r−1 (6)

with

lim
r→∞

∑

Pr = 1 (7)

Then the probability to succeed after at most r
routings is:

Patmost−r =

r
∑

i=1

Pr−succeed × (1− Pr−succeed)
i−1 (8)

and the probability to require more than r routings
to succeed is then:

Pmore−r = 1− Patmost−r (9)

E(r) =
1

Pr−succeed

(10)

Table 1 compares the expected number of tries
required to reach a key k successfully with Pastry and
with pseudo-trusted routing. We suppose that we are
in a context where 30% of the nodes will reach the ρ
threshold. The first column represents the percentage
of malicious nodes in the network. The rest of the nodes
are regular nodes that are not really malicious, but they
won’t reach the ρ threshold. We also suppose that
only malicious nodes do not correctly route messages
in traditional Pastry.
Without any malicious node, the traditional Pastry

Ring and the Trusted Ring are obviously equivalent as
there is no node against which to discriminate.
Figure 3 compares the number of attempts require to

achieve a successful routing with Pastry and with our
Trusted Ring assuming 30% of malicious nodes. E(r)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

E
x
p
ec

te
d
 n

u
m

b
er

 o
f

ro
u
ti

n
g
 t

ri
es

Number of hops

Trusted Ring
Pastry

FIGURE 3. Number of expected routing attempts with
respect to the number of hops

is always smaller for the Trusted Ring than for Pastry
alone, but the difference between both exponentially
increases when the percentage of malicious nodes
increases. The greater the number of malicious nodes,
the greater the benefit of the Trusted Ring as it allows
to discriminate against malicious nodes.
To our knowledge, none of the existing reputation

systems that compute a global reputation value, can
handle more than 30% of malicious nodes in the
network. They will become unstable and then collapse,
unable to distinguish malicious nodes from normal ones.
In such a case, the Trusted Ring will also collapse.

6.1.2. Trusted Set Evaluation
Every node’s trustset contains D numerically closest
trusted nodes, with D/2 clockwise and D/2 counter-
clockwise nodes. We suppose that after a start-up
phase, the Trusted Ring reaches a stable state in
which it comprises almost all the trusted nodes of the
network. During the stable phase, each node has a high
probability of owning a trustset that is full.
The worst case for our solution is when the number

of malicious nodes is just lower or equal to 30%. In
a 5 millions nodes network, with 1.5 millions of real
trusted nodes, according to equation 8, the probability
to have to make at most 9 tries for a successful routing
is 6.42× 10−6. At the same time, the expected number
of tries is 1.5. If we consider a typical size of 16
nodes for the trustset, then according to equation 4, the
probability to have at most 16− 9 = 7 malicious nodes
of 16 is 1.6× 10−8, which is a very low probability.
Thus, using a trustset of 16 nodes as starting points is

more than sufficient to ensure successful routing almost
all the time.
Note that the probability for all the nodes of

the trustset to be malicious, assuming a maximum
classification error for the underlying reputation system
of 5%, is 1.52×10−21. Hence the probability for having
a fully erroneous trustset is theoretically possible, but
practically infeasible.

The Computer Journal, Vol. ??, No. ??, ????

8 E. Rosas, O. Marin, X. Bonnaire

Pastry Trusted Ring

M% Size ⌈O(log
2b
N)⌉ E(r) Size ⌈O(log

2b
N)⌉ ε E(r)

105 5 1.29 30× 103 4 0.01 1.04

5% 5× 106 6 1.36 1.5× 106 6 0.01 1.06

500× 106 8 1.50 150× 106 7 0.01 1.08

105 5 2.25 30× 103 4 0.03 1.13

15% 5× 106 6 2.65 1.5× 106 6 0.03 1.20

500× 106 8 3.66 150× 106 7 0.03 1.28

105 5 5.95 30× 103 4 0.05 1.22

30% 5× 106 6 8.50 1.5× 106 6 0.05 1.36

500× 106 8 17.35 150× 106 7 0.05 1.5

TABLE 1. The number of expected tries to succeed a routing

6.1.3. Discussion about the reputation system error
ratio

Nearly all existing reputations systems make errors
when computing and classifying honest nodes in the
network. This is mainly due to the following reasons:

• The reputation of a node can be computed with
a low amount of recommendations, and does not
necessarily represent the real behaviour of the
node. Reputation systems with some kind of risk
management like WTR [8] and TrustGuard [11] can
mitigate this effect. Using an initial reputation
value of 0.5 as in WTR can also help to reduce
this problem, requiring a minimum number of
recommendations to be able to reach the ρ
threshold in order to join the Trusted Ring.

• A node can be affected by typical attacks like
the collusion of malicious nodes, and this can
affect a node’s reputation such that the node
appears with a better reputation than expected
– associated recommendations can be rumours
or false recommendations. Existing reputation
systems can mitigate this kind of malicious
behaviour by weighting the recommendations with
the emitter’s reputation.

Considering a maximum error rate of 5% is a typical
value for a reputation system. In some cases it may be
over-estimated (for more details, please refer the results
obtained for the WTR reputation system [8]). This
error hardly depends on the total number of malicious
nodes in the network, and decreases when the ratio
of malicious node decreases. The less malicious nodes
there are in the system, the easier it is to discriminate
against them.

6.2. Performance

Our system does not depend on the size of the P2P
network and is built on top of a structured overlay. For
these reasons it inherits its scalability, self organisation
and locality properties.
In the following, we will call direct message a message

sent knowing the IP of the peer. We will call reputation
messages the messages sent to the reputation system

in order to acquire the reputation value of a node.
Our evaluation is based on WTR [8] and PeerTrust [7],
where one reputation message implies approximately
log(N) messages, with N the number of nodes in the
network.

The total number of messages sent during a join
process is (D+L)∗ (1+ log(N)), with D the number of
nodes in the trustset, L the number of nodes in the
leafset and N the number of nodes in the network.
This total accounts for (D + L) direct messages to
the nodes in the leafset of the new trusted node and
(D+L)∗log(N) messages from the reputation messages.
Experimentally, the value of L is typically configured
as 16 in Pastry. With the goal of achieving the same
properties of robustness we set D equal to 16. If we
consider a network of one million of nodes, the total
number of messages during the join process will be 224.

The number of messages exchanged during the
removal of a node is D ∗ F , with D the number of
managers that send messages to the follower list of size
F . Our simulation experiments show that the size of
the follower list remains approximately the same as D.
Given a follower list size of 16, the number of messages
during a removal process will be 256. If nodes do not
subscribe to all the follower lists of the managers, but
randomly choose D/2 + 1 of them, then this number
can be reduced to 144.

It is important to note that this number is small in
the P2P context, as it is distributed among the nodes
of the trustset. In addition, after the start-up phase
the number of Join messages should significantly
decrease, and the number of Leave and Remove

messages will likely be small.

The number of maintenance messages for each
trusted node is D ∗∆t, since you have to monitor every
child node, every time. We do not need to use log(N),
since after the first time, we can contact the same node
to do the reputation request. For some reputation
systems, for instance WTR [8] and PeerTrust [7], the
maintenance messages can be eliminated by monitoring
the reputation information from the source. WTR uses
reputation managers to save the recommendation of
nodes. We think a good improvement to the original
solution, will be to use this reputation manager to

The Computer Journal, Vol. ??, No. ??, ????

CORPS: Building a Community Of Reputable PeerS in Distributed Hash Tables 9

detect suspicious behaviours.
The parameters that define the level of security of the

Trusted Ring are:

• ρ: The boundary of the reputation value. The
higher this value, the harder it is to be part of the
Trusted Ring.

• α: the tolerance factor. The higher this value, the
higher the possibility to have untrusted nodes in
the Trusted Ring.

• D: Defines the amount of knowledge about the rest
of the network: how many trusted parties a node
knows. This parameter makes the system more
robust against malicious attacks.

6.3. Simulations

This section presents a set of simulation experiments
designed to evaluate the performance of our Trusted
Ring. For this purpose, we built an experimentation
platform which allows to simulate the execution of our
solution in a P2P network composed of up to 100, 000
nodes. The platform was written in C and all the tests
were performed on an Intel Core 2 Duo processor, 2.66
GHz, 4GB RAM, with Linux 2.6.28.
The simulation consists in a P2P network in which

each node has a unique identifier computed with the
SHA-1 function. As in Pastry, every node knows a
leafset of nodes and takes part into a ring structure.
Nodes use WTR [8] as the underlying reputation
system.
The reputation information is generated by simula-

ting random transactions among nodes, and emitting
the resulting recommendations. Every transaction out
of 10 requires a node to contact its trustset.

6.3.1. Behaviour Model
The nodes in the simulation have a fixed personality.
To define the behaviour of each node, we use the
recommendation values defined in WTR: a value of 1
characterises a very good transaction, a value of 0.75 a
good transaction, a value of 0.5 a neutral result, 0.25 an
incomplete transaction, and 0 a malicious transaction.

• Honest nodes obtain a recommendation value of 1
in 80% of the cases and a 0.75 recommendation
value in 20% of the cases.

• Regular nodes obtain a recommendation value of 1
in 20% of the cases, 0.75 in 50% of the cases and
0.5 in 30% of the cases.

• Malicious nodes obtain a recommendation value of
0.5 in 20% of the cases, 0.25 in 30% of the cases and
a recommendation value of 0 in 50% of the cases.

These values are based on typical probabilistic
behaviours found in the literature about reputation
systems, and make the simulation more realistic.

Parameter Value

Default number of nodes 100,000
Size of the trustset 16
Size of the history 3
Trusted Nodes 30 %
Regular Nodes 50 %
Malicious Nodes 20 %

Reputation value boundary (ρ) 0.8
Churn Y :1% - X: 10%

TABLE 2. Nodes and Network configuration

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
n

u
m

b
er

 o
f

n
o

d
es

(*10
4
) Transactions

10% Trusted Nodes
20% Trusted Nodes
30% Trusted Nodes

FIGURE 4. Size of the trustset on trusted nodes

6.3.2. Simulation Setup
We simulate a dynamic P2P network of N nodes under
churn conditions. Every Y transactions (by default
1%), X random nodes (by default 10%) will leave
the network and X others will initiate a join process,
thus maintaining a constant number N of nodes in the
system.
As in a real network a node can join the network

at any time, and the same node can leave and join
repeatedly.
With respect to Pastry, every simulation uses a value

of 16 for the size of the leafset.
The default configuration is shown in table 6.3.2.
A snapshot of the system is taken every 1% of the

total number of transactions. Each experiment is run 5
times and an average of the results is presented.

6.3.3. Convergence
We consider that our system converges when the
trustworthy nodes are part of the Trusted Ring and the
ring is consolidated: in other words, when the start-up
process ends. To probe this characteristic, we measure
in every snapshot the average size of the trustset of the
honest nodes in the network. In every experiment, we
change the percentage of honest nodes present in the
network at the same time. Figure 4 shows the results.
The curves start at value 0 because at the beginning

the nodes do not know any trusted node. Their upper
bound is 16, the maximum size of the trustset. The

The Computer Journal, Vol. ??, No. ??, ????

10 E. Rosas, O. Marin, X. Bonnaire

results show that the convergence is similar even when
there are a small number of trusted nodes. Trusted
nodes can easily find each other in this configuration.
We can appreciate that the size of the trustset grows
very quickly. After approximately 20×104 transactions
the trustset of all the honest nodes is full. This is
the number of transactions necessary for the reputation
system to build a reputation value for each node, and
in practice it means that every node has carried out at
least 2 transactions.

6.3.4. Availability
The Trusted Ring is fully available when any node in the
P2P network manages to query it successfully. In this
experiment, if a node has a full trustset, it considers
the Trusted Ring as 100% available. The availability
depends on the number of honest nodes in the network,
the number of malicious nodes and on the level of churn.
We conducted three experiments to analyse the

behaviour of our system. First, we measured the
average size of the trustset of the nodes that cannot
belong to the Trusted Ring with different percentages
of honest nodes. Figure 5 shows how fast common nodes
build their trustset. Compared to the results of Figure 4
we can see that the construction of the trustset is much
slower. The percentage of honest nodes has a significant
impact on the acquisition of trusted nodes. As the
nodes continue to make transactions, the information
about trusted nodes starts spreading faster.
The system stabilises after approximately 50 × 104

transactions, which is approximately 5 transactions per
node.
Experiments with several degrees of churn are

presented in Figure 6. Every 104 transactions, a random
selection of 10%, 20% or 30% of the nodes will leave
the network while others will initiate a join process
to maintain a constant number (100, 000) of nodes in
the system. In this second experiment, we measure the
same values as in the first one.
Up to a churn ratio of 20%, the system maintains

its behaviour. With a 30% ratio the system becomes
unstable: the size of the trustsets varies significantly
and the traffic due to join and search messages increases
considerably. Moreover, trusted nodes are not easy to
find when they don’t stay long enough to be part of
the system. We can conclude that there is a limit with
respect to the level of churn beyond which the Trusted
Ring cannot maintain the information available to the
nodes.
When a node requires a trusted node it searches

in its trustset. Our third experiment measures the
percentage of queries that the Trusted Ring can handle.
We use the default configuration for this experiment.
Figure 7 presents the results. In every snapshot the
nodes send 1000 queries to the Trusted Ring. When the
trustsets are not built yet, the Trusted Ring is unable to
handle any of the queries. The service starts behaving

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
n

u
m

b
er

 o
f

n
o

d
es

(*10
4
) Transactions

10% Trusted Nodes
20% Trusted Nodes
30% Trusted Nodes

FIGURE 5. Size of the trustset on non trusted nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

A
v
er

ag
e

n
u
m

b
er

 o
f

n
o
d
es

(*10
4
) Transactions

10% Unstable Nodes
20% Unstable Nodes
30% Unstable Nodes

FIGURE 6. Size of the trustset on common nodes with
respect to the churn ratio

satisfactorily when the information is distributed and
the trusted nodes are detected.
The system stabilises after 50×104 transactions: the

same results as in Figure 5.

6.3.5. Threshold ρ
The selection of ρ not only impacts the number of
honest nodes allowed into the Trusted Ring, but also
the number of malicious nodes that can enter it.
After the start-up phase, the reputation of the

trusted nodes should be close to 1, as stated in the
equation 2. However, malicious nodes emitting false
recommendations about the honest ones make this
result close but not equal to the number of honest nodes.
Figure 8 shows how the sum of the reputation values

of the trusted nodes varies with respect to the selected
value ρ for the threshold. The percentage of honest
nodes in the network is 30% and the percentage of
malicious nodes emitting false recommendations is 20%.
When choosing a low value of ρ as 0.6, the result of
the equation 2 shows that there are trusted nodes in
the Trusted Ring that are not honest. The opposite

The Computer Journal, Vol. ??, No. ??, ????

CORPS: Building a Community Of Reputable PeerS in Distributed Hash Tables 11

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n

ta
g

e
o

f
q

u
er

ie
s

(*10
4
)Transactions

With answer

FIGURE 7. Hit ratio of the Trusted Ring

 0

 10000

 20000

 30000

 40000

 50000

 10 20 30 40 50 60 70 80 90 100

S
u
m

 o
f

R
ep

u
ta

ti
o
n
 i

n
 T

ru
st

ed
 R

in
g

(*10
5
)Transactions

START-UP STABLE

ρ=0.7
ρ=0.8
ρ=0.9

Total Honest Nodes

FIGURE 8. Convergence of the Trusted Ring size

happens when choosing a high value of ρ as 0.9, not
all the honest nodes are allowed into the Trusted Ring,
since the threshold is too high for the number of
malicious nodes emitting false recommendations. For
our configuration, a better option is ρ = 0.8, since the
limit of the reputation of the nodes in the Trusted Ring
is closer to the number of honest nodes in the DHT.

7. DISCUSSION

In this section we will discuss some security issues,
the portability of our solution and give some example
applications of pseudo-trusted services.

7.1. Security Issues

As explained in Section 6.1, the Sybil attack and
Collusion attack are important threats to any P2P
system and can degrade the reputation system.
Malicious nodes can lie about the behaviour of
others, or initiate fake transactions to improve their
own reputation value. This section discusses the
implications and possible solutions to mitigate them.

7.1.1. Sybil attacks

The Sybil attack [3] is a major concern if obtaining
network identities is cheap. Such an attack allows to
tamper the ratio of malicious nodes in the system as a
single node acts under multiple identities: the ratio can
then rise above the 30% upper threshold.

A common practise of the Sybil attack has a single
malicious user create several identities with numerically
close nodeIDs to be able to control a substantial part
of the DHT. We assume that the generation of the
nodeIDs can be verified by any node in the network, for
instance the bootstrapping node or the node with the
closest nodeID. Our proposition assumes that nodeIDs
are computed from a public key, generated with a well-
known public/private key algorithm. We also suppose
that the number of bits of these keys is sufficient to
avoid a brute force attack to reverse the SHA-1 function.
During the Join procedure to the DHT, a node Z must
provide several pieces of information to the verifier node
X: its public key keyPub, and the associated nodeID
computed using nodeID = SHA1(keyPub). X can
easily verify the correctness of the nodeID with the
public key. If they do not match, then X prevents Z
from joining the ring.

Due to the mathematical properties of the SHA-
1 hash function, it is practically impossible for a
node to find two keys keyPub1 and keyPub2 such that
SHA1(keyPub1) = SHA1(keyPub2). Therefore, it is
also practically impossible for a node to find several
public keys that give numerically close nodeIDs in the
ring. Thus it is practically infeasible for a node to
control a substantial sector of the ring.

However, a single node can still generate several
nodeIDs distributed over the ring. This kind of Sybil
attack does not allow to control a sector of the ring, but
will increase failures in the DHT (Routing failures, etc.).
Reputations systems like PeerTrust [7] or WTR [8] can
efficiently mitigate the Sybil attack, but will collapse
if the ratio of malicious nodes is too high. To our
knowledge, no existing reputation system can control a
large number of Sybil attacks in a DHT, and this is still
a difficult topic within the P2P research community.

Other solutions to mitigate the presence of sybils are
the cryptopuzzle [14]. The main idea of the crypto
puzzles is to make obtaining nodeIDs exponentially
difficult when a node needs a new one. Existing
solutions usually rely on a set of servers to provide the
nodeIDs, and are therefore not very scalable.

The impact of a Sybil attack over the Trusted Ring
would mainly be at the level of the trustsets. The
main idea is to be able to control various nodeIDs in
a trustset. This is not an easy task: as shown above,
it is practically infeasible to obtain numerically close
nodeIDs that belong to the same trustset. Moreover,
controlling a very large number of trustsets is practically
impossible, as it will require to control a very large
number of nodeIDs. This is infeasible due to the number

The Computer Journal, Vol. ??, No. ??, ????

12 E. Rosas, O. Marin, X. Bonnaire

of transactions required from an attacker in order to
establish a good reputation for all of its nodeIDs, and
then insert them into the Trusted Ring.

7.1.2. Collusion of nodes
A collusion of nodes consists in an agreement made
among various nodes to make a combined attack, or to
artificially increase or decrease the reputation of a set of
nodes. Increasing or decreasing the reputation of a node
can be done using rumours or false recommendations.
Some existing reputations systems like WTR can
efficiently mitigate the effect of this kind of attack.
Moreover, colluded nodes should be able to sustain
the attack permanently in order to maintain a good
reputation and remain in the Trusted Ring. This will
have significant cost for the attackers, and being able
to manage a great number of attackers is very unlikely.

7.2. Portability

Basically, any type of DHT can support the CORPS
membership algorithm, as long as it provides some type
of key lookup service. For example Chord [4] has a
structure equivalent to the Pastry leafset called the
successors list. Each node in Chord also maintains an
equivalent of the routing table called the finger table.
An underlying reputation system with the same

properties explained in Section 3.3 is also required.
WTR [8] and PeerTrust [7] are two examples of this
kind of reputation systems.

7.3. Target Applications

The aim of our Trusted Ring is to provide an efficient
and easy way to build large scale trusted services. We
have shown the benefits of our Trusted Ring for a
trusted routing service in a DHT, and this approach
can be used for a wide range of P2P applications. Here
are some examples:

• Past [15] is a storage management and caching
system that offers persistence over a P2P network.
Each data in Past is stored in the DHT node whose
nodeID is closest to the data identifier. Past can
use the Trusted Ring by saving data only on trusted
nodes in order to decrease the failure rate in the
lookup process. In each lookup a node can contact
a trusted node and ask to route to the trusted node
that is closest to a key k.

• Applications that handle complex queries, like
Prefix Hash Tree (PHT) [16] can exploit the
CORPS. PHT is an indexing data structure which
builds a logical binary tree of the data set over the
DHT. This structure is distributed among the peers
in the network. In order to look for data over the
tree with a linear search, a node must send several
requests to nodes within the tree, from the root
node to the node where the data is saved. Each
request routes a message in the DHT, and may fail

due to malicious nodes that drop the messages. In
addition, malicious nodes into the PHT structure
can disturb the search process by cheating about
its location on the binary tree. A PHT comprising
only CORPS nodes can counter malicious nodes
and improve the search process.

• Scribe [17] is a publish/subscribe system where
nodes create topics that are saved in the DHT
in the node with the closest nodeID to the topic
identifier, called the rendez-vous node. Subscribers
create a multicast tree by joining the DHT
routing path to the rendez-vous node. The
dissemination then covers the tree from the rendez-
vous node. Scribe offers best-effort dissemination
of events [17]. Scribe can use the CORPS nodes to
save the topics and to manage subscriptions. When
a node subscribes to a topic, it contacts a trusted
node to route to the rendez-vous node. The path
will only comprise reputable peers. In this way,
Scribe can improve the reliability of the message
dissemination and avoid malicious nodes that drop
messages.

By changing the trust model we can build other
trusted services, besides the pseudo-trusted routing
presented here. For instance, if the reputation
system decides whether a node is honest in an online
marketplace, then the Trusted Ring can be composed
of honest sellers, instead of honest forwarders of
messages. We envision different ring structures for
different trusted services.

7.4. Comparison with reputation systems

The proposed solution goes further than a reputation
system. A reputation system only allows to check the
reputation of a given node: it provides an opportunity
for an application to decide whether or not to carry out
a transaction with this node.
CORPS goes much further as it allows an application

(i.e. any node) to quickly and directly find trusted
nodes to carry out a transaction, with a very low
probability for the transaction to fail. In fact, the
probability for all the trusted nodes in a set returned
by CORPS to fail is so low that, although all of them
can still theoretically be malicious, it is practically
impossible.
The maintenance of a trusted set on every node of

the DHT allows to access several trusted nodes directly,
without the cost of looking for such nodes. Hence, every
node of the DHT has a local view of several trusted
nodes from the nested Trusted Ring.
CORPS is a framework to build complex trusted

applications over a DHT, as demonstrated with our
example of trusted routing. In this sense, compared
to existing solutions, CORPS is a step further towards
building trusted applications over DHTs. It relies on a
reputation system, but it is not one.

The Computer Journal, Vol. ??, No. ??, ????

CORPS: Building a Community Of Reputable PeerS in Distributed Hash Tables 13

8. RELATED WORK

We aim to build trust in a P2P environment, using a
membership algorithm to create a group of reputable
peers. We use this solution to implement a pseudo-
trusted routing algorithm in a DHT. In the following
section we detail the related work.

8.1. Building Trust in P2P

The idea of building trust in large scale networks has
already been proposed for different purposes [18, 19, 20].
Dent and Price present SCB [19], a system for the
deployment of a trusted third party (TTP) service on
clients. Their work assumes the existence of a highly
resilient secure execution environment, with a hardware
protection mechanism. This approach presents two
main advantages: the placement of the TTP on local
nodes, and reduced communication overheads. Dinh
et al. use Trusted Platform Module (TPM) devices
to provide trust in marketplaces [18], so that any
attempt of misbehaviour will be discovered by checking
monotonic counters.
The common factor among the cited solutions is that

trust is built over trusted computing hardware [21],
with physical and logical protection features. However,
the existence of a secure hardware environment is a
very strong assumption, especially in open large scale
networks where nodes are heterogeneous. Our approach
may not achieve as good a level of trust, but we believe
the level obtained with a reputation system can be
sufficient for best-effort systems, and that avoiding the
use of specific hardware on every node is more realistic
at present.
Traditional solutions to build trust use a centralized

set of trusted servers, but these solutions do not scale
up to a large number of nodes. Decentralized ways to
identify malicious nodes and build trust are approaches
based on accountability [2] and reputation systems [1].
These are very interesting solutions and our work can
integrate any of these two approaches. Despite the fact
that reputation systems can not decide with complete
certainty if a node is malicious, we chose reputation
systems since they are protocol independent and allow
to categorize nodes easily.
CORPS focuses on finding trustworthy nodes,

mitigating the impact of malicious nodes by giving a
service with the most reputable ones. Other approaches
focuses on finding the malicious nodes which can
be ignored, isolated, or excluded from the network.
Examples of this last approach are watchdogs [22] and
anomaly detection [23]. We believe that approaches
which aim at identifying malicious nodes do not apply
convincingly for our model, since obtaining identities is
cheap in most large scale P2P networks [24]: blacklisted
nodes can easily rejoin the network.
Similarly to our approach, PowerTrust [10] selects

the most reputable nodes to build trust in a P2P
network. PowerTrust uses Chord [4] to build a

distributed ranking mechanism to select the m most
reputable nodes dynamically [10]. Their approach
applies locality-preserving hashing to sort all nodes with
respect to their global reputation value. Every node has
reputation managers which store the current value into
the underlying DHT. PowerTrust can find all the most
reputable nodes by hashing the maximum reputation
value. However, their approach has a major limitation:
the top-m most reputable nodes are stored on the same
node. This produces significant security and bottleneck
issues.
In the absence of any infrastructure some approaches

assume pre-trusted peers [9], or trusted relationships
between peers such as those one can find in social
networks [25]. These approaches clearly are better at
solving the trust problem in these kinds of networks but
pre-trusted peers or trusted relationships are not always
available in open P2P networks, where connections do
not imply trust. We aim for a general solution based
on the assumption that there are always honest peers in
a large network and we implement a way to find them
and use them to build trustworthy applications.
Finally, from a probability point of view, if there are

X% of malicious nodes in the network and if they are
uniformly distributed in the identifier space, a random
selection of r nodes will comprise X% of malicious
nodes. Using redundancy, at least some of the r nodes
will correctly perform the service. However, this implies
an overhead that grows linearly with the number of
malicious nodes. We describe some examples of this
approach below.

8.2. Secure Routing

Securing the routing algorithm in a DHT has been
addressed through redundancy. Redundancy sends
multiple copies of the same message in order to improve
the probability of success. However, it produces high
message overhead. Diversity routing [26], multiple
redundant router algorithm [27] and multiple path
routing [28] are some examples of this type of approach.
Diversity routing sends copies of the message along
diverse routes to the destination nodes, using different
neighbours of the source node [26]. Wallash approach
[27] also send multiple copies to all neighbours of the
source nodes. To avoid attacks based on locality, it uses
a constrained routing table, allowing only the logically
closest nodes to be inserted in the tables. The Cyclone
multipath routing approach [28] increases the number
of disjoint paths among the peers in the overlay. Our
solution directly improves the normal routing so that
the probability of success is higher.
Building a solution over a reputation system to

improve the routing process is not new. Fetodova
and Veltri [29] integrate a reputation system with the
process of routing and data lookup for a DHT structure.
The idea is to ignore the nodes with bad reputation
during the routing and look-up process. CORPS does

The Computer Journal, Vol. ??, No. ??, ????

14 E. Rosas, O. Marin, X. Bonnaire

the opposite: it searches for honest nodes to improve the
service. Dewan et al. [30] use reputations based on the
history of nodes relaying packets to ensure a packet will
be successfully delivered in a mobile ad-hoc network. In
this case the next hop is sent to the choice with highest
reputation value. However, the highest reputation value
may not be good enough. Our approach builds a ring
structure so that all honest node are linked together,
and can contact each other to deliver a trusted service.
Huang et al. present RouteGuard [31], a scheme that

distinguishes between cooperative and uncooperative
nodes in the routing process. Using a reputation
system, the nodes fill their routing tables with
cooperative nodes, thus isolating the uncooperative
ones. Unlike our scheme, this approach does not allow
to find new cooperative nodes. Moreover, this approach
does not consider the dynamism of peer behaviour,
which can cause fluctuations of the reputation values.

8.3. Membership Management

Several approaches [17, 32, 33] aim for membership
management in P2P networks. Most of them target
applications such as multicast and publish/subscribe,
where a set of topics can be mapped onto different
groups and a set of users subscribes to various topics.
The most common solution is to build a tree for each
group over the DHT network. This type of solution
is not suitable for our problem since it relies heavily
on a root node, which produces a unique point of
failure/attack. Other solutions, such as meshes of
connections among nodes in the group, or a gossip
treatment of the membership as in Scamp [34], do not
scale with respect to the number of nodes in the group
and produce huge traffic overheads.
The construction of the Trusted Ring over a

DHT overlay takes its inspiration from a Multi-Ring
topology [35]. This work uses a multi-ring topology
to build an overlay network for every group in a
decentralised and scalable way. Nodes in the inner rings
keep participating to the outer rings. DR-Chord [36]
is another solution that uses a double ring where the
Chord [4] ring is divided into two rings in order to
improve the lookup operation and reduce the expected
path length.

9. CONCLUSION

In this paper, we proposed a new approach towards
providing trustworthy applications building over P2P
systems: it consists in establishing a Community Of
Reputable PeerS (CORPS) among the nodes. We
present a probabilistic evaluation both of our solution
and an example application built on top of it: the
CORPS exhibits a very low probability of failure in the
presence of malicious nodes. Simulations demonstrate
the convergence of our membership algorithm, as well
as its good availability after a stabilization phase.

Building trust in P2P networks is still a major
concern, both in the industry and in the research
community. A major effort is required in order to
achieve efficient control traditional over traditional
attacks such as the Sybil attack or the collusion of
nodes.
From the application point of view, we are working

on the feasibility of a pseudo-trusted certification
authority. Its aim would be to certify, with a very high
probability of success, whether a given transaction did
or did not occur.

ACKNOWLEDGEMENTS

We would like to thanks Ph.D. Maŕıa Cristina Riff
for her help in the evaluation section of this paper.
This research was supported by a doctoral scholarship
CONICYT/INRIA.

REFERENCES

[1] Resnick, P., Kuwabara, K., Zeckhauser, R., and Fried-
man, E. (2000) Reputation systems. Communications
of the ACM, 43, 45–48.

[2] Haeberlen, A., Kouznetsov, P., and Druschel, P.
(2007) PeerReview: practical accountability for
distributed systems. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles,
Stevenson, Washington, USA, 14-17 October, pp. 175–
188. ACM, New York, NY, USA.

[3] Douceur, J. (2002) The Sybil Attack. In Proceedings
of the First International Workshop on Peer-to-Peer
Systems (IPTPS), Cambridge, MA, USA, 7-8 March,
pp. 251–260. Springer-Verlag, London, UK.

[4] Stoica, I., Morris, R., Karger, D., Kaashoek, M., and
Balakrishnan, H. (2001) Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of ACM SIGCOMM 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, San Diego, CA, USA, 27-31 August,
pp. 149–160. ACM Press, New York, NY, USA.

[5] Rowstron, A. and Druschel, P. (2001) Pastry: Scalable,
Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. In Proceedings of Mid-
dleware 2001, IFIP/ACM International Conference on
Distributed Systems Platforms, Heidelberg, Germany,
12-16 November, pp. 329–350. Springer-Verlag London,
UK.

[6] Zhao, B., Kubiatowicz, J., and Joseph, A. (2002)
Tapestry: An Infrastructure for Fault-tolerant Wide-
area Location and Routing. Computer Communication
Review, 32, 81.

[7] Xiong, L. and Liu, L. (2004) PeerTrust: supporting
reputation-based trust for peer to peer electronic
communities. IEEE Transactions on Knowledge and
Data Engineering, 16, 843–857.

[8] Bonnaire, X. and Rosas, E. (2009) WTR: A Reputation
Metric for Distributed Hash Tables Based on a Risk and
Credibility Factor. Journal of Computer Science and
Technology, 24, 844–854.

[9] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina,
H. (2003) The Eigentrust algorithm for reputation

The Computer Journal, Vol. ??, No. ??, ????

CORPS: Building a Community Of Reputable PeerS in Distributed Hash Tables 15

management in P2P networks. In Proceedings of the
12th International Conference on World Wide Web,
Budapest, Hungary, 20-24 May, pp. 640–651. ACM
Press, New York, NY, USA.

[10] Zhou, R. and Hwang, F.-K. (2007) PowerTrust: A
Robust and Scalable Reputation System for Trusted
Peer-to-Peer Computing. IEEE Transactions on
Parallel and Distributed Systems, 18, 460–473.

[11] Srivatsa, M., Xiong, L., and Liu, L. (2005) TrustGuard:
countering vulnerabilities in reputation management
for decentralized overlay networks. In Proceedings of
the 14th International Conference on World Wide Web,
Chiba, Japan, 10-14 May, pp. 422–431. ACM, New
York, NY, USA.

[12] Demers, A., Keshav, S., and Shenker, S. (1989) Anal-
ysis and Simulation of a Fair Queueing Algorithm. In
Proceedings of the ACM Symposium on Communica-
tions Architectures and Protocols, Austin, TX, USA,
19-22 September, pp. 1–12. ACM, New York, NY, USA.

[13] Xiang, X. and Jin, T. (2009) Efficient Secure Message
Routing for Structured Peer-to-Peer Systems. In
Proceedings of the 2009 International Conference
on Networks Security, Wireless Communications and
Trusted Computing, Wuhan, China, 25-26 April, pp.
354–357. IEEE Computer Society, Washington, DC,
USA.

[14] Borisov, N. (2006) Computational Puzzles as Sybil
Defenses. In Proceedings of the Sixth IEEE
International Conference on Peer-to-Peer Computing,
Cambridge, UK, 2-4 October, pp. 171–176. IEEE
Computer Society, Washington, DC, USA.

[15] Rowstron, A. and Druschel, P. (2001) Storage
management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems
Principles, Banff, Alberta, Canada, 21-24 October, pp.
188–201. ACM, New York, NY, USA.

[16] Ramabhadran, S., Ratnasamy, S., Hellerstein, J. M.,
and Shenker, S. (2004) Brief announcement: Prefix
Hash Tree. PODC: In Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Distributed
Computing, ST. John’s Newfoundland, Canada, 25-28
July 368. ACM, New York, NY, USA.

[17] Castro, M., Druschel, P., Kermarrec, A., and Rowstron,
A. (2002) Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE
Journal on Selected Areas in communications (JSAC),
20, 1489–1499.

[18] Dinh, T. T. A., Chothia, T., and Ryan, M. (2009)
A Trusted Infrastructure for P2P-based Marketplaces.
In Proceedings of the Ninth Internation Conference on
Peer-to-Peer Computing, Seattle, Washington, USA, 9-
11 September, pp. 151–154. IEEE, Washington, DC,
USA.

[19] Dent, A. W. and Price, G. (2005) Certificate
management using distributed trusted third parties. In
Mitchell, C. J. (ed.), Trusted Computing, pp. 251–270.
IEE Press, London.

[20] Levin, D., Douceur, J. R., Lorch, J. R., and
Moscibroda, T. (2009) TrInc: small trusted hardware
for large distributed systems. NSDI’09: In Proceedings
of the 6th USENIX Symposium on Networked Systems

Design and Implementation, Boston, Massachusetts,
22-24 April, pp. 1–14. USENIX Association, Berkeley,
CA, USA.

[21] Trusted Computing Group. Trusted plat-
form module specifications. online at
https://www.trustedcomputinggroup.org/.

[22] Marti, S., Giuli, T. J., Lai, K., and Baker, M.
(2000) Mitigating routing misbehavior in mobile ad
hoc networks. In Proceedings of the 6th Annual
International Conference on Mobile Computing and
Networking, Boston, Massachusetts, USA, 6-11 August,
pp. 255–265. ACM, New York, NY, USA.

[23] Wang, W., Man, H., and He, F. (2009) Collaborative
anomaly detection for structured p2p networks. In
Proceedings of the Global Communications Conference,
Honolulu, Hawaii, USA, 30 November - 4 December,
pp. 1–6. IEEE, Washington, DC, USA.

[24] Friedman, E. J. and Resnick, P. (2000) The Social
Cost of Cheap Pseudonyms. Journal of Economics and
Management Strategy, 10, 173–199.

[25] Cutillo, L. A., Molva, R., and Strufe, T. (2009) Pri-
vacy preserving social networking through decentral-
ization. In Proceedings of the 2009 Sixth International
Conference on Wireless On-Demand Network Systems
and Services, Snowbird, UT, USA, 2-4 February, pp.
145–152. IEEE, Washington, DC, USA.

[26] Castro, M., Druschel, P., Ganesh, A., Rowstron, A.,
and Wallach, D. S. (2002) Secure routing for structured
peer-to-peer overlay networks. OSDI ’02: In Proceed-
ings of the 5th Symposium on Operating Systems Design
and Implementation, Boston, Massachusetts, 9-11 De-
cember, pp. 299–314. USENIX Association, Berkeley,
CA, USA.

[27] Wallach, D. (2003) A Survey of Peer-to-Peer Security
Issues. In Proceedings of the 2002 Mext-NSF-
JSPS International Conference on Software Security:
Theories and Systems, Tokyo, Japan, 4-6 November,
pp. 42–57. Springer-Verlag Berlin, Heidelberg.

[28] Artigas, M. S., Lopez, P. G., and Skarmeta, A. F. G.
(2005) A Novel Methodology for Constructing Secure
Multipath Overlays. IEEE Internet Computing, 9, 50–
57.

[29] Fedotova, N. and Veltri, L. (2009) Reputation
management algorithms for DHT-base peer-to-peer
environment. Computer Communications, 32, 1400–
1409.

[30] Dewan, P., Dasgupta, P., and Bhattacharya, A. (2004)
On Using Reputations in Ad hoc Networks to Counter
Malicious Nodes. ICPADS ’04: In Proceedings of
the Tenth International Conference on Parallel and
Distributed Systems, Newport Beach, CA, USA, 7-9
July, pp. 665–. IEEE Computer Society, Washington,
DC, USA.

[31] Guowei Huang, J. C. and Wei, L. (2010) RouteGuard:
A Trust-Based Scheme for Guarding Routing in
Structured Peer-to-Peer Overlays. In Proceedings of
the International Conference on Communications and
Mobile Computing, Washington, DC, USA, 12-14 April,
pp. 330–334. IEEE Computer Society.

[32] Liang, J. and Nahrstedt, K. (2006) RandPeer:
Membership Management for QoS Sensitive Peer-to-
Peer Applications. INFOCOM 2006: In Proceedings of

The Computer Journal, Vol. ??, No. ??, ????

16 E. Rosas, O. Marin, X. Bonnaire

the 25th IEEE International Conference on Computer
Communications, Barcelona, Catalunya, Spain, 23-29
April, pp. 1–10. IEEE Computer Society, Washington,
DC, USA.

[33] Ostrowski, K. and Birman, K. P. (2006) Scalable group
communication system for scalable trust. STC ’06: In
Proceedings of the First ACM Workshop on Scalable
Trusted Computing, Alexandria, Virginia, USA, 3
November, pp. 3–6. ACM, New York, NY, USA.

[34] Ganesh, A. J., Kermarrec, A.-M., and Massoulie, L.
(2001) SCAMP: Peer-to-Peer Lightweight Membership
Service for Large-Scale Group Communication. In
Proceedings of the Third Internation Workshop on
Networked Group Communication, London, UK, 7-9
November, pp. 44–55. Springer-Verlag, London, UK.

[35] Junginger, M. and Lee, Y. (2002) The Multi-Ring
Topology - High-Performance Group Communication
in Peer-to-Peer Networks. P2P 2002: In Proceeding
of the 2nd International Conference on Peer-to-Peer
Computing, Linköping, Sweden, 5-7 September, pp. 49–
56. IEEE Computer Society, Washington, DC, USA.

[36] Shao-Shan, Y., Jiong, Y., Kamil, K., and Qi-
Gang, S. (2007) DR-Chord-FAn Efficient Double-
Ring Chord Protocol. In Proceedings of the Sixth
International Conference on Grid and Cooperative
Computing, Washington, DC, USA, 16-18 August, pp.
197–202. IEEE Computer Society.

The Computer Journal, Vol. ??, No. ??, ????

