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Abstract

This paper presents DARX, our framework for build-
ing applications that provide adaptive fault tolerance. It re-
lies on the fact that multi-agent platforms constitute a very
strong basis for decentralized software that is both flexible
and scalable, and makes the assumption that the relative im-
portance of each agent varies during the course of the com-
putation. DARX regroups solutions which facilitate the cre-
ation of multi-agent applications in a large-scale context.
Its most important feature is adaptive replication: replica-
tion strategies are applied on a per-agent basis with respect
to transient environment characteristics such as the impor-
tance of the agent for the computation, the network load or
the mean time between failures.

Firstly, the interwoven concerns of multi-agent systems
and fault-tolerant solutions are put forward. An overview of
the DARX architecture follows, as well as an evaluation of
its performances. We conclude, after outlining the promis-
ing outcomes, by presenting prospective work.

1. Introduction

Nowadays it barely seems necessary to emphasize the
tremendous potential of decentralized software solutions.
Their main advantage lies in the distributed nature of in-
formation, resources and action. One software engineering
technique for building such software has lately emerged
in the artificial intelligence research field, and appears to
be both promising and elegant: distributed agent systems
[BDC00] [MCM99] [NS00].

Intuitively, multi-agent systems appear to represent a
strong basis for the construction of distributed applications.
The general outline of distributed agent software consists in
autonomous computational entities which interact with one
another towards a common goal that is beyond their indi-
vidual capabilities.

In addition, the multi-agent paradigm bears two attrac-
tive notions: flexibility and scalability. By definition, agents
have the ability to adapt in order to meet new context re-
quirements. A software consisting of multiple agents can
therefore be dynamically modified: objectives of specific
agents may be altered, new agents can be brought in to col-
laborate towards a computation, agents that have become
partly useless for the application can be adapted or set aside,
and so on... Moreover, multi-agent systems are based on
communicating, autonomous entities; it ensues that there is
no theoretical limit to the number of agents involved, nor is
there any bound on the number of hosting machines. Dis-
tributing such systems over large scale networks may there-
fore tremendously increase their efficiency as well as their
capacity.

However, large-scale distribution also brings forward
the crucial necessity of applying dependability protocols.
For instance, the greater the number of agents and hosts,
the higher the probability that one of them will be sub-
jected to failure. Multi-agent applications rely on collabo-
ration amongst agents, hence the failure of one of the in-
volved agents might bring the whole computation to a dead
end. Therefore it appears that fault tolerance is a neces-
sary paradigm for the design of such applications. In par-
ticular, software replication techniques provide for a range
of recovery guarantees and delays [GS97]. However, repli-
cating every agent in systems comprising up to millions of
agents may not be affordable given the important time and
resources consumption implied. Also, several replication
strategies exist and the efficiency of each strategy depends
heavily upon both the application context and the comput-
ing environment. One solution might be to design and im-
plement mechanisms for (1) the analysis of both the con-
text and the environment in order to single out the agents
which are vital for the system, and (2) the application and
the dynamic adaptation of replication schemes with respect
to context and environment variations.

In this paper, we depict DARX, our architecture for fault-



tolerant agent computing [MSBG01]. DARX uses the flexi-
bility of multi-agent systems in order to offer adaptive fault
tolerance by means of dynamic replication mechanisms:
software elements can be replicated and unreplicated on the
spot and it is possible to change the ongoing replication
strategies on the fly. We have developed a solution to inter-
connect this architecture with two existing multi-agent plat-
forms, namely MadKit[GF00] and DIMA [GB99], and in
the long term to other platforms. The originality of our ap-
proach lies in two major orientations. Firstly, the choice of
the fault tolerance protocol – which computational entities
are to be made fault-tolerant, to which degree, and at what
point of the execution – is not entirely incumbent upon the
application developer; DARX offers automated observation
and control functionalities to address these issues. And sec-
ondly, the overall architecture is conceived with a view to
being scalable.

The paper is organized as follows. In section 2, the
main existing approaches towards solving the fault toler-
ance problems in the multi-agent systems context are pre-
sented. Section 3 depicts the general design of our frame-
work dedicated to bringing adaptive fault tolerance to multi-
agent systems through selective replication. Section 4 re-
ports on the issues raised by the implementation of DARX-
compliant applications, and section 5 evaluates the perfor-
mances of the resulting software. Finally, the conclusion
and perspectives are drawn in section 6.

2. Related work

Research on fault tolerance in multi-agent systems
mainly focuses on the ability to guarantee the continu-
ity of every agent computation. This approach includes the
resolution of consistency problems amongst agent repli-
cas. Other related solutions address the complex problems
of maintaining agent cooperation [KCL00], providing re-
liable migration for independent mobile agents and ensur-
ing the exactly-once property of mobile agent executions
[PS01].

Several solutions use specific entities to protect the
computational elements of multi-agent systems [H96]
[KIBW99] [KCL00]. The principal contribution of these
approaches is in separating the control of the agents from
the functionalities of the multi-agent system.

In [H96], sentinels represent the control structure of the
multi-agent system. Each sentinel is specific to a function-
ality, handles the different agents which interact to provide
the corresponding service, and monitors communications in
order to react to agent failures. Adding sentinels to a multi-
agent system seems to be a good approach, however the sen-
tinels themselves represent bottle-necks as well as failure
points for the system.

A similar architecture is that of the Chameleon project
[KIBW99]. Chameleon is an adaptive fault tolerance sys-
tem using reliable mobile agents. The methods and tech-
niques are embodied in a set of specialized agents sup-
ported by a fault tolerance manager (FTM) and host dae-
mons for handshaking with the FTM via the agents. Adap-
tive fault tolerance refers to the ability to dynamically adapt
to the evolving fault tolerance requirements of an applica-
tion. This is achieved by making the Chameleon infrastruc-
ture reconfigurable. Static reconfiguration guarantees that
the components can be reused for assembling different fault
tolerance strategies. Dynamic reconfiguration allows com-
ponent functionalities to be extended or modified at runtime
by changing component composition, and components to be
added to or removed from the system without taking down
other active components. Unfortunately, through its central-
ized FTM, this architecture suffers from the same objections
as the previous approach.

[KCL00] presents a fault tolerant multi-agent architec-
ture that regroups agents and brokers. Similarly to [H96],
the agents represent the functionality of the multi-agent
system and the brokers maintain links between the agents.
[KCL00] proposes to organize the brokers in hierarchical
teams and to allow them to exchange information and as-
sist each other in maintaining the communications between
agents. The brokerage layer thus appears to be both fault-
tolerant and scalable. However, the implied overhead is
tremendous and increases with the size of the system. Be-
sides, this approach does not address the recovery of basic
agent failures.

In order to solve the overhead problem, [FD02] proposes
to use proxies. This approach tries to make transparent the
use of agent replication; that is, computational entities are
all represented in the same way, disregarding whether they
are a single application agent or a group of replicas. The
role of a proxy is to act as an interface between the repli-
cas in a replicate group and the rest of the multi-agent sys-
tem. It handles the control of the execution and manages the
state of the replicas. To do so, all the external and internal
communications of the group are redirected to the proxy.
A proxy failure isn’t crippling for the application as long
as the replicas are still present: a new proxy can be gener-
ated. However, if the problem of the single point of failure
is solved, this solution still positions the proxy as a bottle-
neck in case replication is used with a view to increasing
the availability of agents. To address this problem, the au-
thors propose to build a hierarchy of proxies for each group
of replicas. They also point out the specific problems which
remain to be addressed: read/write consistency and resource
locking, which are discussed in [SBS00] as well.



3. The architecture of the DARX framework

This section presents DARX, our Dynamic Agent Repli-
cation eXtension, and depicts its features.

3.1. System model and failure model

A distributed system is assumed, in which pro-
cesses/agents communicate through messages. Communi-
cation channels are considered to be quasi-reliable. Our
model follows that of partial synchrony, proposed by Chan-
dra and Toueg in their generalization of failure detectors
[CT96]. This model stipulates that, for every execu-
tion, there are bounds on process speeds and on mes-
sage transmission times. However, these bounds are not
known and in our model they hold only after some un-
known time: the global stabilization time.

Processes are assumed to be fail/silent. Once a specific
process is considered as having crashed, it cannot partic-
ipate to the global computation anymore. Byzantine be-
haviours might be resolved with DARX, but are not yet in-
tegrated in the failure model.

Finally, for scalability issues, a hierarchic structure is im-
posed for the logical network topology. Sets of hosts are
organized in groups. Broadly connected machines are re-
grouped in clusters of workstations (COWs), and a higher
inter-COW level is constructed. Within each COW, a sin-
gle host is elected so as to participate to the higher level.

3.2. Overview

Figure 1 gives an overview of the logical architecture of
DARX.

The fault tolerance features are brought to agents from
various platforms through their corresponding adaptor by an
instance of a DARX server running on every location1. Each
DARX server implements the required replication services,
backed by a common global naming/location service en-
hanced with failure detection (see 3.3). Concurrently, a scal-
able observation service (see 3.4) is in charge of monitoring
the system behaviour at each level – local, intra-COW, inter-
COW. The information gathered through both means is used
thereafter to adapt the fault tolerance schemes on the fly: an
event-driven decision module combines system-level infor-
mation and application-level information to determine the

1 A location is an abstraction of a physical location. It hosts resources
and processes, and possesses its own unique identifier. DARX uses a
URL and a port number to identify each location that hosts a DARX
server.

criticity2 of each agent, and to apply the most suitable repli-
cation scheme.

DARX includes transparent replication manage-
ment. While the supported application deals with agents,
DARX handles replication groups. Each of these groups
consists of software entities – replicas – which rep-
resent the same agent. Thus in the event of failures,
if at least one replica is still up, then the correspond-
ing agent isn’t lost to the application. A more detailed
explanation of a replication group, of its internal de-
sign and of its utilization in DARX can be found in
3.5.

For portability and compatibility issues, DARX is Java-
based. Indeed, the Java language and more specifically the
JVM provide – relative – hardware independence, an invalu-
able feature for large-scale distributed systems. Moreover, a
great number of the existing multi-agent platforms are im-
plemented in Java. In addition to all this, the remote method
invocation (RMI) facility offers many useful high-level ab-
stractions for the elaboration of distributed solutions.

3.3. Failure detection and naming service

As part of the means to supply adequate support for
large-scale agent applications, the DARX platform in-
cludes a hierarchical, fault-tolerant naming service. This
distributed service is deployed over a failure detection ser-
vice based on an adaptable implementation of the unreli-
able failure detector [BMS02][BMS03].

The failure detection and naming layer serves a major
goal: to maintain dynamic lists of the valid sites and of
the valid agents, as well as their casual replicas, participat-
ing to the application. Specific agents can thus be localized
through this service. Failure detectors exchange heartbeats
and maintain a list of the processes which are suspected of
having crashed. Therefore, in an asynchronous context, fail-
ures can be recovered more efficiently. For instance, the fail-
ure of a process can be detected before the impossibility to
establish contact arises within the course of the supported
computation.

The service aims at detecting both hardware and soft-
ware failures. Each DARX server integrates an independent
thread which acts as failure detector/name server. Software
failure is detected by monitoring the running processes on
each server. Hardware failures are suspected by exchang-
ing heartbeats among groups of servers. For large-scale in-
tegration purposes, this structure comprises two levels: a

2 Thecriticity of a process defines its importance with respect to the rest
of the application. Obviously, its value is subjective and evolves over
time. For example, towards the end of a distributed computation, a sin-
gle agent in charge of federating the results should have a very high
criticity; whereas at the application launch, thecriticity of that same
agent may have a much lower value.
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Figure 1. DARX application architecture

local and a global one. As much as possible, every local
group of servers is mapped onto a highly-connected COW,
or constituted inside it. Local groups are bound together by
a global group; every local group elects exactly one repre-
sentative which will participate to the global group. At the
global level, each representative name server maintains a
list of the known agents within the application – the repli-
cation group leaders (see 3.5) in the DARX context. This
information is shared and kept up-to-date through a consen-
sus algorithm implying all the representative name servers.
When a new agent is created, it is registered locally as well
as by the representative name server; likewise in the case of
an unregistration. At the local level, the name servers main-
tain the list of all the replicas supported in their local group,
disregarding whether these are leaders or not.

In this architecture, the ability to provide different quali-
ties of service to the local and the global detectors is a major
asset of our implementation. Thus on the global level, fail-
ure suspicion can be loosened with respect to the local level.
This distinction is important, since a failure does not have
the same interpretation in the local context as in the global
one. A local failure corresponds to the crash of an agent or
of a host, whereas in the global context a failure represents
the crash of an entire COW.

The naming service makes use of the failure detection to
convey its communications. The information is exchanged
between name servers via piggybacking on the failure de-
tection heartbeats. The local lists of replicas which are sus-
pected to be faulty are directly reused to maintain the global
view of the application. With respect to DARX, this means

that the list of running agents is systematically updated.
When a DARX server is considered as having crashed, all
the agents it hosted are removed from the list and replaced
by replicas located on other hosts. The election of a new
leader within an agent replication group is initiated by a fail-
ure notification from the naming service.

3.4. Observation service

DARX aims at providing decision-making support so as
to fine-tune the fault tolerance for each agent with respect
to its evolution and that of its context. Decisions of this type
may only be reached through a fairly good knowledge of the
dynamic characteristics of the application and of the envi-
ronment. In order to obtain such knowledge, a scalable ob-
servation service has been designed and implemented, yet
remains to be integrated in DARX.

Similarly to the naming service, the observation service
piggybacks its communications on the existing flow created
by the regular heartbeat emissions of the failure detection
service. Moreover, it is also hierarchic; it distinguishes lo-
cal and global levels.

The data collected at the local level consists in transient
information such as the current memory load of a host, the
overall execution time of an agent since it was created,
the number of messages exchanged between two agents,
. . . This type of data is shared within local groups; broad-
casting it or enabling subscription to it on a large scale does
not appear worthwhile. Indeed, the validity of such infor-
mation over a long period of time is highly questionable.



Besides, its diffusion on a great number of distant locations
bears a heavy cost, even though it would be diluted in the
failure detection flow. Nonetheless, it may be needed to gain
instantaneous information on a specific machine outside the
local COW. For example, it may be necessary to determine
the feasibility of creating a new replica in a remote COW.
The observation service therefore allows for point-to-point
subscription to data collection on distant hosts.

Statistical information, however, possesses a longer
lifespan in the DARX context. Such material encom-
passes all the data derived by processing the local informa-
tion: the average CPU load of a host over a long period of
time, the failure rate of a host or of a local group, their aver-
age network load, their meantime between failures, . . . It is
shared at the global level. Every local group elects a mem-
ber responsible for the aggregation of the statistical in-
formation, as well as for its diffusion at the global level.
Statistical information about other groups can thus be re-
trieved at the elected local workstation.

Each local DARX server integrates an observation mod-
ule. It comprises three elements: a data collection module
(DCM), a data processing module (DPM) and a data ex-
change module (DEM). The DCM extracts the informa-
tion available from the operating system, such as the CPU
load or the swap activity, therefore it is chosen to be host-
compliant. The DPM is Java-based and gathers application-
level information; the state of an agent, for example. The
DPM also interfaces with the DCM to recover system-level
data, and renders it into a directly usable format for the
DARX platform. On a periodic basis, the DEM broadcasts
the accumulated instantaneous information to the DPMs of
its local group, and contributes to the diffusion of the statis-
tical information at the global level if it belongs to a leading
observation module.

3.5. Replication management

DARX provides fault tolerance through software repli-
cation. It is designed in order to adapt the applied replica-
tion strategy on a per-agent basis. This derives from the fun-
damental assumption that thecriticity of an agent evolves
over time; therefore, at any given moment of the computa-
tion, all agents do not have the same requirements in terms
of fault tolerance. On every server, some agents need to
be replicated with pessimistic strategies, others with opti-
mistic ones, while some others do not necessitate any repli-
cation at all. The benefit of this scheme is double. Firstly the
global cost of deploying fault tolerance mechanisms is re-
duced since they are only applied to a subset of the elements
which constitute the distributed application. Secondly the
chosen replication strategies ought to be consistent with the
computation requirements and the environment characteris-
tics, as the choice of every strategy depends on the execu-

tion context of the agent to which it is applied. If the sub-
set of agents which are to be replicated is small enough then
the overhead implied by the strategy selection and switch-
ing process may be of low significance.

In DARX, agent-dependent fault tolerance is enabled by
the notion of replication group (RG): the set of all the repli-
cas which correspond to a same agent. At its creation every
replica is given a unique identifier provided by the nam-
ing service and built from the original name of the cor-
responding agent in the application context. An RG con-
tains at least one active replica so as to ensure that mes-
sages destined to a specific agent will indeed be processed.
Starting from this point, any replication strategy can be en-
forced within the RG. To allow for this, several replication
strategies are made available by the DARX framework. The
strategies offered can be classified in two main types: (1)
active, where all replicas process the input messages con-
currently, and (2)passive, in which only one replica – a
primary – is in charge of the computation while periodi-
cally transmitting its state to the other replicas – its stand-
bies. A practical example of a DARX off-the-shelf imple-
mentation is the semi-active strategy where a single leading
replica forwards the received messages to its followers.

One of the noticeable aspects of DARX is that several
strategies may coexist inside the same RG. As long as one
of the replicas is active, meaning that it executes the associ-
ated agent code and participates in the application commu-
nications, there is no restriction on the activity of the other
replicas. These replicas may either be standbies or follow-
ers of an active replica, or even equally active replicas. Fur-
thermore, it is possible to switch from a strategy to another
with respect to a replica: a follower may become a standby,
a new leader with its followers may be selected amongst ac-
tive replicas, and so on . . .

Throughout the computation, a particular variable is
evaluated continuously for every replica: its degree of con-
sistency (DOC). The strategy applied in order to keep a
replica consistent is the main parameter in the calculation
of this variable; the more pessimistic the strategy, the higher
the DOC of the corresponding replica. The other parame-
ters emanate from the observation service; they include the
load of the host, the date of creation of the replica, the la-
tency in the communications with the other replicas of the
group, . . . The DOC has a deep impact on failure recovery;
among the remaining replicas after a failure has occured,
the one with the highest DOC is the most likely to be able
of taking over the abandoned tasks of the crashed replicas.

The following information is necessary to describe a
replication group:

• thecriticity of its associated agent,

• its replication degree – the number of replicas it con-
tains –,



• the list of these replicas, ordered by DOC,

• the list of the replication strategies applied inside the
group,

• the mapping between replicas and strategies.

The sum of these pieces of information constitutes the repli-
cation policy of an RG. A replication policy must be reeval-
uated in three cases:

1. when a failure inside the RG occurs,

2. when the criticity value of the associated agent
changes,

3. and when the environment characteristics vary consid-
erably, for example when CPU and network overloads
induce a prohibitive cost for consistency maintenance
inside the RG.

Since the replication policy may be reassessed frequently,
it appears reasonable to centralize this decision process. A
leader is elected among the replicas of the RG for this pur-
pose. Its objective is to adapt the replication policy to the
criticity of the associated agent as a function of the charac-
teristics of its context – the information obtained through
the observation service. As mentioned earlier, DARX al-
lows for dynamic modifications of the replication policy.
Replicas and strategies can be added to or removed from a
group during the course of the computation, and it is possi-
ble to switch from a strategy to another on the fly. For ex-
ample if a standby crashes, a new replica can be added to
maintain the level of reliability within the group; or if the
criticity of the associated agent decreases, it is possible ei-
ther to suppress a replica or to switch the strategy attached
to a replica from an active form to a passive one. The pol-
icy is known to all the replicas inside the RG. When pol-
icy modifications occur, the leader diffuses them within its
RG. Except when the modification results from the failure
of the leader: a new election is then initiated by the nam-
ing service through a failure notification to the remaining
replicas.

Figure 2 depicts the composition of a replica. In order to
benefit from fault tolerance abilities, each agent gets to in-
herit the functionalities of aDarxTask object, enabling
DARX to control the agent execution. Each task is itself
wrapped into aTaskShell , which handles the agent in-
puts/outputs. Hence DARX can act as an intermediary for
the agent, committed to deciding when an agent replica
should really be started, stopped, suspended or resumed,
and exactly when and which message receptions should take
effect. Leaders are wrapped in enhanced shells, comprising
an additionalReplicationManager . This manager ex-
changes information with the observation module (see 3.4)
and performs the periodical reassessment of the replication
policy. It also maintains the group consistency by sending
the relevant information to the other replicas, following the

policy requirements. Implementation-wise, there is an inde-
pendent thread for everyDarxTask as well as for every
ReplicationManager .

Communication between agents passes through proxies
implemented by theRemoteTask interface. These prox-
ies reference replication groups; it is the naming service
which keeps track of every replica to be referenced, and pro-
vides the correspondingRemoteTask .The latter contains
the addresses of all the replicas inside the associated RG,
with a specific tag for the currently active replicas. ARe-
moteTask is obtained by a lookup request on the naming
service using the application-relevant agent identifier as pa-
rameter.

semi−active
strategy

passive
strategy

A

A’’

A’
RTAB Replication Group A

Replication Group B

Figure 3. A simple agent application example

Figure 3 shows a tiny agent application as seen in the
DARX context. An emitter, agent B, sends messages to be
processed by a receiver, agent A. At the moment of the rep-
resented snapshot, the value of thecriticity of agent B is
minimal; therefore the RG which represents it contains a
single active replica only. The momentary value of thecrit-
icity of agent A, however, is higher. The corresponding RG
comprises three replicas: (1) an active replica A elected as
the leader, (2) a follower A’ to which incoming messages
are forwarded, and (3) a standby A” which receives period-
ical state updates from A.

In order to transmit messages to A, B requested the rel-
evantRemoteTask RTA from the naming service. Since
replication group A contains only one active replica, RTA
references replica A and no other.

If A happens to fail, the failure detection service will ul-
timately monitor this event and notify A’ and A” by means
of the localization service. Both replicas will then modify
their replication policies accordingly. The replica associated
to the highest potential of leadership will become the new
group leader – most probably A’ in this case as semi-active
replication provides stronger consistency than passive repli-
cation –, hence ending the recovery process.

4. Application building with DARX

This section describes how a multi-agent application
may be built over DARX, and hence benefit from its fault
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tolerance features.
Analysis of the original agent source code might pro-

vide the required information to enable DARX sup-
port without further modifications of the original pro-
gram [BGCAMS02]. However, at this point of our re-
search, the application developer must respect a few
guidelines and constraints which are given in this sec-
tion. As a Java framework, DARX includes several
generic classes which assist the developer through the pro-
cess of implementing a reliable multi-agent applica-
tion. The choice of those generic classes comes from
the study of the OMG MASIF [MASIF98] specifica-
tions, as well as that of the most recurrent aspects of var-
ious multi-agent systems, therefore DARX-compliant
application building is very close to most agent develop-
ing environments.

Every agent class must extend aDarxTask for several
reasons.

Firstly because, although it is not the only factor, the
role of an agent [BGCAMS02] is essential in determining
its criticity. For every agent, the roles it may assume must
be explicitly listed by the developer. Any number of roles
can be defined for an agent; each of these roles ought to
be mapped to a correspondingstatic criticity in the code of
the ReplicationManager . A static criticity is the im-
portance of an agent taken out of its computation context.
At runtime, adynamic criticitywill be evaluated in con-
junction with the characteristics of the environment. Conse-
quently, the role of the agent is part of the variables present
in theDarxTask .

Secondly, theDarxTask provides a boolean for dif-
ferentiating whether the agent is deterministic or not. This
arises from the fundamental definition of agentry: it com-

prises the notion of proactivity, which is closely related to
non-determinism. It follows that some agents may present
non-deterministic behaviours such as unpredictable internal
state changes. This complicates consistency maintenance
inside RGs: for example it becomes indispensable to prop-
agate the state changes of a leader to its followers if they
do not depend entirely on the incoming messages. The pro-
vided boolean enables developers to specify the behaviour
of a non-deterministic replica with respect to its role in-
side the RG. In the continuity of the semi-active strategy
example, a leader may take stochastically funded decisions
whereas its followers cannot.

Finally, theDarxTask is the point where DARX han-
dles the execution of an agent: application-specific control
methods to start, stop, suspend and resume the agent have
to be defined for this purpose. Such methods would be very
hard to implement in a general context, where the applica-
tion developer would not have to intervene, without modi-
fying the JVM: the resulting efficiency loss would be con-
siderable. It ought to be pointed that, technically, it is the
serializedDarxTask of the RG leader which is sent to
theTaskShell of the passive replicas in order to perform
state updates.

Since DARX overrides the localization and naming ser-
vices of the agent platforms it supports, communications be-
tween agents must be taken care of. Communicating agents
must instantiate aDarxCommunicationInterface ;
messages to other agents are emitted through this interface,
built around theRemoteTask reference of the destina-
tions. Messages sent to a group by means of aRemote-
Task are thus rerouted to the group leaders, where dupli-
cates are discarded and ordering is guaranteed. Addition-
ally, this scheme allows tracking of the message flows by



the observation service.
Also, fault tolerance protocols that are specific to the

application can be developed. DARX provides a generic
ReplicationStrategy class which may be extended
to fulfill the needs of the programmer. Basic methods allow
to define the consistency information within the group, as
well as the way this information ought to be propagated in
different cases, such as synchronous or asynchronous mes-
sages for example. A few common strategies, such as the
passive and the semi-active one, are already built in DARX;
others are undergoing research, like quorum-based strate-
gies for instance.

5. Performances

This section presents performance evaluations estab-
lished with DARX. Measures were obtained using JRE
1.4.1 on the Distributed ASCI Supercomputer 2 (DAS-2).
DAS-2 is a wide-area distributed computer of 200 Dual
Pentium-III nodes. The machine is built out of clus-
ters of workstations, which are interconnected by SurfNet,
the Dutch university Internet backbone for wide-area com-
munication, whereas Myrinet, a popular multi-Gigabit
LAN, is used for local communication.

5.1. Agent-oriented dining philosophers example

A first experiment aims at checking that there is indeed
something to be gained out of adaptive fault tolerance. For
this purpose, an agent-oriented version of the classic din-
ing philosophers problem [H85] has been implemented over
DARX.

cannot eatcan eat

can eat

cannot eat

Hungry

Thinking

Eating

Figure 4. Dining philosophers over DARX:
state diagram

In this application, the table as well as the philosophers
are agents; the corresponding classes inherit fromDarx-
Task . The table agent is unique and runs on a specific ma-
chine, whereas the philosopher agents are launched on sev-
eral distinct hosts. Figure 4 represents the different states
in which philosopher agents can be found. The agent states

in this implementation aim at representing typical situations
which occur in distributed agent systems:

• Thinking : the agent processes data which isn’t rele-
vant to the rest of the application,

• Hungry : the agent has notified the rest of the applica-
tion that it requires resources, and is waiting for their
availability in order to resume its computation,

• Eating: data which will be useful for the application
is being treated and the agent monopolizes global re-
sources – the chop-sticks.

In order to switch states, a philosopher sends a request to
the table. The table, in charge of the global resources, pro-
cesses the requests concurrently in order to send a reply. De-
pending on the reply it receives, a philosopher may or may
not switch states; the content of the reply as well as the cur-
rent state determine which state will be next. It is arguable
that this architecture may be problematic in a distributed
context. For a great number of philosophers, the table will
become a bottleneck and the application performances will
degrade consequently. Nevertheless, the goal of this experi-
mentation is to compare the benefits of adaptive fault toler-
ance with respect to fixed strategies. It seems unlikely that
this comparison would suffer from such a design. Besides,
the experimentation protocol was built with these consider-
ations in mind.

Agent state RD3 Replication policy

Thinking 1 Single active leader
Hungry 2 Active leader replicated passively
Eating 2 Active leader replicated semi-actively

Table 1. Dining philosophers over DARX:
replication policies

Since the table is the most important element of the ap-
plication, the associated RG policy is pessimistic – a leader
and a semi-active follower – and remains constant through-
out the computation. The RGs corresponding to philoso-
phers, however, have adaptive policies which depend on
their states. Table 1 shows the mapping between the state of
a philosopher agent and the replication policy in use within
the corresponding RG. RD is used as an abbreviation for
replication degree: the total number of RG members, leader
included. The choices for the replication policies in this ex-
ample are arbitrary. They correspond to the minimal fault
tolerance scheme required in order to bring the computation
to its end should scarce failures occur. Athinkingphiloso-
pher may be restarted from scratch without any loss for the
application, whereas a the disappearance of either ahungry



philosopher or aneatingphilosopher might interfere with or
even block the execution of the application.

5.2. Results analysis

The experimentation protocol is the following. Eight
of the DAS-2 nodes have been reserved, with one DARX
server hosted on every node. The leading table replica
and its follower each run on their own server. In order to
determine where each philosopher leader is launched, a
round robin strategy is used on the six remaining servers.
The measure can start once all the philosophers have been
launched and registered at the table.

Two values are being measured. The first is the total exe-
cution time: the time it takes to consume a fixed number of
meals (100) over all the application. The second is the to-
tal processing time: the time spent processing data by all
the active replicas of the application. Although the number
of meals is fixed, the number of philosophers isn’t: it varies
from two to fifty. Also, the adaptive – “switch” – fault tol-
erance protocol is compared to two others. In the first one
the philosophers are not replicated at all, whereas in the sec-
ond one the philosophers are replicated semi-actively with
a replication degree of two – one leader and one follower in
every RG.

Every experiment with the same parameter values is run
six times in a row. Executions where failures have occurred
are discarded since the application will not necessarily ter-
minate in the case where philosophers are not replicated.
The results shown here are the averages of the measures ob-
tained.

Figure 5 shows the total execution times obtained. At
first glance it demonstrates that adaptive fault tolerance may
be of benefit to distributed agent applications in terms of
performance. Indeed the results are quite close to those ob-
tained with no fault tolerance involved, and are globally
much better than those of the semi-active version. In the
experiments with two philosophers only, the cost of adapt-
ing the replication policy is prohibitive indeed. But this ex-
pense becomes minor when the number of philosophers –
and hence the distribution of the application – increases.
Distribution may also justify the notch in the plot for the ex-
periments with the unreplicated version of the application:
with six philosophers there is exactly one replica per server,
so each processor is dedicated to its execution. In the case
of the semi-active replication protocol, the cost of the com-
munications within every RG, as well as the increasing pro-
cessor loads, explain the poor performances.

It is important to note that, in the case where the strate-
gies inside RGs are switched, failures will not forbid the
termination of the application. As long as there is at least
one philosopher to keep consuming meals, the application
will finish without deadlock. Besides it is possible to simply
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Figure 5. Comparison of the total execution
times with various fault tolerance protocols

restart philosophers which weren’t replicated, since these
replicas had no impact on the rest of the application: no
chop-sticks in use, no request for chop-sticks recorded. This
is not true in the unreplicated version of the application as
failures that occur while chop-sticks are in use will have an
impact on the rest of the computation.

Figure 6 accounts for the measured values of the total
processing time in each situation. Those results also concur
to show that adaptive fault tolerance is a valuable protocol.
Of course, the measured times are not as good as in the un-
replicated version. But in comparison, the semi-active ver-
sion induces a lot more processor activity. It ought to be re-
membered that in this particular application, the switch ver-
sion is as reliable as the semi-active version in terms of raw
fault tolerance: the computation will end correctly. How-
ever, the semi-active version obviously implies that the av-
erage recovery delays will be much shorter in the event of
failures. In such situations, the follower can directly take
over. Whereas with the adaptive protocol, the recovery de-
lay depends on the strategy in use: unreplicated philoso-
phers will have to be restarted from scratch and passive
standbies will have to be activated before taking over.

6. Conclusion and Perspectives

The framework presented in this paper enables the build-
ing of fault-tolerant distributed multi-agent systems. The re-
sulting software is flexible: it possesses the ability to decide
which parts of the computation are more critical than the
others, and hence should be made to bypass failures through
replication. DARX offers control over the way the applica-
tion safeguards its components, enabling the fault tolerance
of the computation to be automatically fine-tuned on the fly.
This feature proves to be quite powerful: it allows adap-
tive fault tolerance whilst preserving software efficiency,
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as demonstrated by the performances shown in this paper.
Moreover, the architecture of the middleware is designed to
be scalable.

However, there are still some issues left unsolved: for
instance, the observation service mentioned in section 3.4
remains to be integrated in the framework. It works as a
stand-alone application, and the API for exchanging com-
mands and data with DARX is set. But the modifications
of the DARX classes which shall make use of the observa-
tion service are being coded, and the dynamic usage of the
observation data is still research material. Hence the cur-
rent field of investigation is the analysis of the dynamiccrit-
icity of agents and the adaptation of the replication policy.
The heuristics used up to now are mainly driven by the user,
due to the lack of a functional observation system. Once it
is fully integrated in DARX, that is once the real charac-
teristics of the hosts and of the network are acquired, those
heuristics will be enhanced for further efficiency and ade-
quateness.

In order to validate the work achieved up until now, ap-
plications are currently being developed. Those include a
basic crisis management system destined to test the viabil-
ity and the utility of our architecture in terms of such soft-
ware.
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[H96] Hägg S., “A Sentinel Approach to Fault Handling in
Multi-Agent Systems”, inProceedings of the 2nd Aus-
tralian Workshop on Distributed AI, 4th Pacific Rim Int’al
Conf. on A.I. (PRICAI’96), Cairns, Australia, August 27,
1996.

[H85] C. A. R. Hoare, “Communicating Sequential Processes”,
Prentice Hall, 1985.

[KCL00] Kumar S., Cohen P. R., Levesque H. J., The Adaptive
AgentArchitecture: Achieving Fault-Tolerance Using Per-
sistent Broker Teams”,4th International Conference on
Multi-Agent Systems (ICMAS 2000), Boston MA, USA,
July 2000.

[KIBW99] Z. Kalbarczyk, R. K. Iyer, S. Bagchi, K. Whis-
nant, “Chameleon: A Software Infrastructure for Adap-
tive Fault Tolerance”,IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no.6, June 1999, pp. 560-579

[MASIF98] D. Milojicic et al, “MASIF: The OMG Mobile Agent
System Interoperability Facility” InProc. of the 2nd Int.
Workshop on Mobile Agents, LNCS 1477, 1998, pp. 50-
67.

[MCM99] D. Martin, A. Cheyer and D. Moran “The Open Agent
Architecture: A Framework for Building Distributed Soft-
ware Systems” InApplied Artificial Intelligence, 13(1-
2):91-128, January-March 1999.

[MSBG01] O. Marin, P. Sens, J.-P. Briot and Z. Gues-
soum “Towards Adaptive Fault-Tolerance for Distributed
Multi-Agent Systems” InProceedings of ERSADS’2001,
pp.195-201, Bertinoro, Italy, May 2001.

[NS00] Niranjan Suri et al.,, “An Overview of the NOMADS
Mobile Agent System” InProceedings of ECOOP’2000,
Nice, France, 2000.



[PS01] Stefan Pleisch and André Schiper, “Fatomas - a fault-
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