
Towards Reliable Multi-Agent Systems
An adaptive Replication Mechanism

Zahia GUESSOUM, a,b Jean-Pierre BRIOT, a Nora FACI, b and Olivier MARIN a

a LIP6, University of Paris 6
b CReSTIC, University of Reims

Abstract. Distributed cooperative applications (e.g., e-commerce) are now increas-
ingly being designed as a set of autonomous entities, named agents, which inter-
act and coordinate (thus named a multi-agent system). Such applications are often
very dynamic: new agents can join or leave, they can change roles, strategies, etc.
This high dynamicity creates new challenges to the traditional approaches of fault-
tolerance. In this paper, we will focus on crash failures, with usual preventive ap-
proaches by replication. But, as criticality of agents may evolve during the course
of computation and problem solving, static design (as, e.g., for critical database
servers, well identified at design time) is not appropriate. Thus we need to dynam-
ically and automatically identify the most critical agents and to adapt their repli-
cation strategies (e.g., active or passive, number of replicas), in order to maximize
their reliability and their availability. In this paper, we describe a prototype archi-
tecture, supporting adaptive replication. We also discuss and compare various con-
trol strategies for replication, one using agent roles, and another using inter-agent
dependences as types of information to infer and estimate criticality of agents. Ex-
periments and measurements are also reported.

Keywords. Agent, multi-agent system, reliability, fault-tolerance, monitoring,
control, adaptation, replication, role, dependence, organization.

Introduction

The possibility of partial failures is a fundamental characteristic of distributed applica-
tions. The fault-tolerance research community has developed solutions (algorithms and
architectures), notably based on the concept of replication, which have been successfully
applied e.g. to databases. As implied by [16], software replication in distributed environ-
ments has significant advantages over other fault-tolerance solutions. First and foremost,
it provides the groundwork for the shortest recovery delays. Also, generally it is less
intrusive with respect to execution time. Finally, it scales much better.

But, we note that the replication techniques are in general applied explicitly and
statically, at design time. This means that it is the responsibility of the designer of the
application to identify explicitly which critical components should be made robust and
also to decide upon strategies (active or passive replication) and their parameters (how
many replicas and their placement).

Meanwhile, new cooperative applications, e.g., e-commerce, air traffic control, cri-
sis management systems, ambient intelligence, are much more dynamic. They are in-

creasingly designed as a set of autonomous and interactive entities, named agents, which
interact and coordinate, thus named multi-agent systems (MAS) [11] [27].

In such applications, the roles and relative importance of the agents can greatly vary
during the course of computation, of interaction and of cooperation, the agents being able
to change roles, plans and strategies. Also, new agents may join or leave the application
(as an open system). It is thus very difficult, or even impossible, to identify in advance
the most critical software components of the application. In addition, such applications
may be large scale [20]. And the fact that the underlying distributed system is large
scale makes it unstable by nature, at least in currently deployed technologies. Last, future
collaborative applications may use ad hoc network infrastructures, where possibilities of
disconnection are even greater.

These new challenges reach the limit of a traditionally static approach for introduc-
ing fault tolerance in a system, and motivate the study of adaptive fault tolerance mech-
anisms. One of the key issue is then the identification of the most critical components
(agents) of the application at a certain time. For that purpose, we study the use of distinct
levels of information: the system level (cpu, memory, network loads, and such like), and
the application/agent level (roles or dependences). Note that our objective is somehow
analog to automatic load balancing, yet we focus on fault tolerance.

Outline

This paper is organized as follows. Section 1 introduces the context of this work, no-
tably the type of faults that we consider here. Section 2 introduces a new approach for
dynamic and adaptive replication control. Section 3 describes the DARX framework that
we developed to replicate agents. This framework introduces novel features for dynamic
control of replication. Section 4 describes our approach to compute agent criticality in
order to guide replication. Section 5 describes a first strategy, using agent roles, to infer
and estimate agent criticality. Section 6 describes another strategy based on the inter-
agent dependences. Section 7 describes the implementation of this solution and our pre-
liminary experiments. Section 8 discusses related work before section 9 concludes this
paper.

1. Context of this Work

Any software/hardware component may be subjected to faults resulting in output errors,
which can lead to a deviation of its specified behaviour, ie. a failure. In distributed sys-
tems, and even more so in scalable environments, failures are unavoidable. Reliability is
a vast domain: a considerable amount of techniques allow to account for the existence
of faults, and to guarantee – to a certain extent – the continuation of computations. A
subdomain of reliability, fault-tolerance aims at allowing a system to survive in spite
of faults, ie. after a fault has occurred, by means of redundancy in either hardware or
software architectures.

1.1. Failure Model

The most generally accepted failure classification can be found in [32]:

- A crash failure means a component stops producing output; it is the simplest
failure to contend with.

- An omission failure is a transient crash failure: the faulty component will eventu-
ally resume its output production.

- A timing failure occurs when output is produced outside its specified time frame.
- An arbitrary (or byzantine) failure equates to the production of arbitrary output

values at arbitrary times.

Given this classification, two types of failure models are usually considered in dis-
tributed environments:

- fail-silent, where the considered system allows only crash failures,
- fail-uncontrolled, where any type of failure may occur.

In this work we focus on the fail-silent model. However, in various cases our solution
allows to deal with every other type of failure. Ways to extend the failure model are
currently being investigated, but will not be considered in this paper.

1.2. Replication Techniques

Replication is an effective way of achieving fault-tolerance in a fail-silent environment.
A replicated software component is defined as a software component that possesses a
representation on two or more hosts [15]. There are two main types of replication proto-
cols:

- active replication, in which all replicas process concurrently all input messages,
- passive replication, in which only one of the replicas processes all input messages

and periodically transmits its current state to the other replicas in order to maintain
consistency.

Active replication strategies provide fast recovery but lead to a high overhead. If
the degree of replication is n, the n replicas are activated simultaneously to produce one
result.

Passive replication minimizes processor utilization by activating redundant replicas
only in case of failures. That is: if the active replica is found to be faulty, a new replica is
elected among the set of passive ones and the execution is restarted from the last saved
state. This technique requires less CPU resources than the active approach but it requires
a checkpoint management which remains expensive in processing time and space.

1.3. Limitations of Current Replication Techniques

Many toolkits (e.g., [15] and [41], and see Section 8) include replication facilities to
build reliable applications. However, most of them are not quite suitable for implement-
ing large-scale MAS and adaptive replication mechanisms. For example, although the
strategy can be modified in the course of the computation, no indication is given as to
which new strategy ought to be applied. Moreover, such a change must have been devised
by the application developer before runtime. Besides, as each group structure is left to be
designed by the user, the task of conceiving a large-scale software appears tremendously
complex.

2. Principles of our Approach for Dynamic Replication

To overcome the limitations of standard way of replication where decision is fixed by
the configuration at design time, we propose an approach with automatic and dynamic
control of replication.

2.1. Dynamic Replication

First, we need a replication architecture which allows dynamic replication and dynamic
adaptation of the replication policy (e.g., changing the number of replicas. . .). As dis-
cussed in Section 1.3, current replication architectures rarely support such dynamicity.
Therefore we designed a novel replication architecture, named DARX, with such dy-
namic features. It will be introduced in Section 3.

2.2. Adaptive Control

Then, we need a control mechanism for deciding which agent should be replicated and
with what strategy (active or passive, how many replicas, where to create the replicas. . .).
For dynamic applications,1 a manual control is not realistic, as the application designer
cannot monitor the evolution of a distributed cooperative application of a significant
scale. Therefore, the control mechanism should be automatic, although it may use some
information as provided by the designer of the application.

2.3. Criticality of an Agent

The control mechanism will try to estimate which agents are the most critical within
the application and this information will be regularly updated. Here we may define the
criticality of an agent, informally as follows: the criticality of an agent, regarding an
organization of agents it belongs to, is the measure of the potential impact of the failure
of that individual agent on the behavior of the whole organization.

We are experimenting with several strategies in order to estimate the criticality of
an agent. The issues are: What kind of information will be pertinent ? And how can
we obtain it ? (statically or dynamically, explicitly stated by the application designer,
inferred by external observation, e.g., amount of messages exchanged, or by internal
observation, e.g., plans of an agent, etc.).

This will be further discussed in Section 4.3, and two strategies will be described in
Sections 5 and 6.

1For multi-agent applications which are very static (fixed organization, fixed behaviors, etc., and with a small

number of agents), the most critical agents may be identified by the application designer at design time. Thus

replication may be decided at configuration time as for traditional replication techniques.

3. DARX: A Framework for Dynamic Replication

DARX is a framework for designing reliable distributed applications based on adaptive
replication. Each agent can be replicated an unlimited number of times and with different
replication strategies (passive and active). Note that we are working on the integration of
other replication strategies in DARX, including quorum-based strategies [2]. However,
this paper does not address the design of particular strategies, but describes the infrastruc-
ture that will enable to switch to the most suitable dependability protocol. The number
of replicas may be adapted dynamically. Also, and this is a novel feature, the replication
strategy is reified so that the replication strategy may be dynamically changed.

Moreover, DARX has been designed to easily integrate various agent architectures,
and the mechanisms that ensure dependability are kept as transparent as possible to the
application.

DARX also includes an original failure detection service, based on a hierarchy of
adaptive failure detectors [3]. Every failure detector is composed of two layers: a basic
layer which adapts the detection to the behaviour of the underlying network, and a service
layer which allows client applications to specify their required quality of the detection.
For instance in our case, the latter allows to distinguish between the detection regarding
a single host and that regarding a whole cluster. That work will not be further detailed
here.

We consider a distributed system consisting of a finite set of n processes (or agents)
that are spread throughout a network. These processes communicate only by sending and
receiving messages.

3.1. DARX Architecture

RemoteTask

RemoteTask

Agent

Agent

Agent

Agent

Agent

Agent

group 1

group 2

TaskShell

Task Supervision

Figure 1. DARX application architecture

DARX includes group membership management to dynamically add or remove
replicas. It also provides atomic and ordered multi-cast for the replication groups’ in-
ternal communication. Messages between agents, that is communication external to the
group, are also logged by each replica, and sequences of messages can be re-emitted for
recovery purposes. For portability and compatibility issues, DARX is implemented in
Java.

3.2. Agent Replication

A replication group is an opaque entity underlying every application agent. The number
of replicas and the internal strategy of a specific agent are totally hidden to the other ap-
plication agents. Every replication group has exactly one representative, named a leader
which communicates with the other agents. All other replicas within the replication group
are called subjects, and the point is to keep these consistent with respect to their leader.
The leader acts both on the composition and the consistency maintenance of its replica-
tion group, and is responsible for reliable broadcasting within the group. In case of failure
of a leader, a new one is automatically elected among the set of remaining replicas.

DARX provides global naming. Each agent has a global name which is indepen-
dent of the current location of its replicas. The underlying system allows to handle the
agent’s execution and communication. Each agent is itself wrapped into a TaskShell
(see Figure 1), which acts as a replication group manager and is responsible for deliv-
ering received messages to all the members of the replication group, thus preserving
the transparency for the supported application. Input messages are intercepted by the
TaskShell, enabling message caching. Hence all messages get to be processed in the
same order within a replication group.

An agent can communicate with a remote agent, unregarding whether it is a single
agent or a replication group, by using a local proxy implemented by the RemoteTask
interface. Each RemoteTask references a distinct remote entity considered as its repli-
cation group leader. The reliability features are thus brought to agents by an instance
of a DARX server (DarxServer) running on every location. Each DarxServer imple-
ments the required replication services, backed up by a common global naming/location
service.

4. Adaptive Control of Replication

We will now detail our monitoring and control architecture 2 for dynamically estimating
the criticality of each agent and deciding on dynamic replication where and when best
needed. The estimation of criticality of each agent will be used to decide, depending on
available resources and the requirements of the designer of the application, which agent
should be replicated and with what strategy (active or passive, how many replicas, where
to create the replicas?).3

2In the following, named monitoring architecture
3In this paper, we will only discuss the decision about which agents to replicate, and about how many

replicas. Other issues are addressed elsewhere, e.g., where to create the replicas in [20].

4.1. A Simple Scenario

As a first simple scenario, let us consider a distributed multi-agent system that helps at
scheduling meetings. Each user owns a personal assistant agent which manages his/her
calendar. This agent interacts with:

- the user to receive his/her meeting requests and the associated information (a title,
a description, possible dates, participants, priority, etc.),

- the other agents of the system to schedule meetings, based on preferences of its
human owner.

If the assistant agent of one important participant (initiator or prime participant) in a
meeting fails (e.g., its machine or PDA crashes), this may disorganize the whole meeting
planification. As the application is very dynamic – new meeting negotiations start and
complete dynamically and simultaneously – any decision for replication should be done
automatically and dynamically.

4.2. Monitoring Architecture

In order to compute criticality and replication decision for each agent, we propose a
distributed monitoring architecture.

In most existing multi-agent architectures, the monitoring mechanism is centralized.
The acquired information is typically used off-line to explain and to improve the system’s
behavior. Moreover, the considered application domains typically only involve a small
number of agents and a priori well-known organizational structures. These centralized
monitoring architectures are not suited for large-scale and complex systems where the
observed information needs to be analyzed in real-time to adapt the multi-agent system
to the evolution of its environment.

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

���
���
���
���
���
���

���
���
���
���
���
���

 M
on

it
or

in
g

L
ev

el
 A

pp
lic

at
io

n
L

ev
el

Domain Agent1

Domain Agent2

Domain Agent3

Domain Agent4

 SendMessage

Event

Control

Agent_Monitor1 Agent_Monitor3

Agent_Monitor2
Host_Monitor i Host_Monitor j

Agent_Monitor4

Domain Agent5

Agent_Monitor5

Figure 2. Distributed monitoring architecture

We thus propose a distributed monitoring architecture to improve the efficiency and
robustness of MASs [29] [25]. This architecture (see Figure 2) includes:

- agent-monitors, one being associated to each application agent (also named do-
main agent),

- host-monitors, one being associated to each host (machine).

The monitoring agents (agent-monitors and host-monitors) are hierarchically orga-
nized. Each agent-monitor communicates only with one host-monitor. Host-monitors ex-
change their local information to build global information (global number of messages,
global exchanged quantity of information. . .).

Each agent-monitor has several purposes:

- Observe its associated domain agent and its interactions,
- Update local information (this behavior depends on the strategy for criticality

estimation, e.g. updating the dependences, see Section 6),
- Compute the criticality of its domain agent,
- Use the agent criticality to decide the replication strategy for its domain agent.

In order to collect the data, we use the observation module. In DARX, every host
runs a DarxServer which comprises an observation module. This module will collect
events and data, both at system-level (failure detections, increase in network latencies ...)
and at application-level (message receptions, replica creations ...). All this information is
used for determining criticalities.

When the criticality of a domain agent is significantly modified, the agent-monitor
notifies its host-monitor. The latter informs the other host-monitors to update global in-
formation. In turn, agent-monitors are informed by their host-monitors when global in-
formation changes significantly.

Host-monitors have several purposes:

- Compute local statistics with aggregation of the agent-monitors parameters,
- Send the new statistics to the agent monitors of the local host when changes are

above some given threshold.

As part of the means to supply adequate support for large-scale applications, the
monitoring service follows a hierarchical organization. It comprises two levels: a local
(host) and a global one (LAN), mapped upon the network topology. Our monitoring
architecture includes this a third category of agents: LAN−monitors. These agents are
not described in this paper.

4.3. Estimating the Criticality

As already discussed in Section 2.3, we are experimenting with several strategies to es-
timate the criticality of an agent. The issues are: What kind of information will be perti-
nent? And how can we obtain it? (statically or dynamically, explicitly stated by the appli-
cation designer, inferred by external observation, e.g., amount of messages exchanged,
or by internal observation, e.g., plans of an agent, etc.).

The first strategy we studied is based on the concept of role [12]. A role, within an
organization, represents a pattern of services, activities and relations. As such, it cap-
tures some information about relative importance of roles and their dependences. Thus
a role is a promising concept for estimating criticality. This strategy will be described in
Section 5.

A second, alternative, strategy that we studied is based on the concept of depen-
dence. Intuitively, the more an agent has other agents depending on it, the more it is crit-
ical in the organization. The dependences may be inferred, e.g., through the analysis of
communication between agents. That second strategy will be described in Section 6.

Other strategies, e.g., using agent plans, are also currently being investigated [7], but
will not be presented in this paper (for space limitation reasons).

4.4. Replication

An agent may be replicated according to:

- wi: its criticality,
- W : the sum of the domain agents’ criticality,
- rm: the minimum number of replicas which is introduced by the designer,
- Rm: the available resources which define the maximum number of possible si-

multaneous replicas.

The number of replicas nbi of Agenti can be determined as follows:

nbi = rounded(rm + wi ∗Rm/W). (1)

The numbers of replicas are then used by DARX to update the number of replicas
of each agent.

Note that this initial formula does not address the issue of where to create the replicas
nor the cost of replication. We designed a first mechanism, based on resource valuation
and on a bidding mechanism using the contract net protocol (see details in [19] [20]) and
the failure probability of the replicas. Indeed, it is better to have only one replica which
will have in the future an almost zero probability of failure than having many replicas
which are not reliable. Another refined mechanism takes into consideration the failure
probability of the replicas, considers replica allocation as an optimization problem and
uses event-driven policy for updating the probability of machines failures and then of
replicas failures, based on the history of machine failures. It is detailed in [8].

5. Using Roles

In this first strategy, we use the concept of role [30], because it captures the importance
of an agent in an organization, and its dependences to other agents. A role, within an
organization, represents a pattern of services, activities and relations. As such, it captures
some information about relative importance of roles and their interdependences.4

It will be fulfilled by a particular agent. In a e-commerce organization, examples
of roles are: service provider, client, broker, etc. An agent may play several roles at the
same time, e.g., for composite services, a single agent may be at the same time both
client and provider within two hierarchical organizations. And a same role may be played
simultaneously by several agents.

4Intuitively, the CEO of an organization is usually supposed to be more important/critical role than the role

of a simple worker.

5.1. Relative Importance of Roles

The designer is asked to grade the various roles along their criticality. In the simple
scenario introduced in Section 4.1, we are considering only two roles: Initiator
and Participant. Their respective weights will be set by the application designer to
respectively 0.7 and 0.4 (see Table 1).

Table 1. Examples of roles and their weights

Role Weight

Meeting Initiator 0.7

Meeting Participant 0.4

5.2. Types of Roles Considered

Roles are usually defined relatively to some organization, but they actually may also be
defined relatively to some protocol. An example is the standard Contract Net Protocol
(CNP) [40] which considers two roles: manager (which broadcasts the call for proposal),
and bidder (who propose bids). In fact, protocol roles can be considered as some specific
case of organizational role, where some fine grained organization is created dynamically
during the scope of the protocol activation.

5.3. Monitoring Roles

We may consider two cases for monitoring roles:

- role-adoption and role-abandon is signaled by agents,
- role-adoption and role-abandon is not signaled by agents.

In the first case, such role-adoption or role-abandon events are monitored by the
agent-monitor of the agent.

Signaling explicitly role-adoption and role-abandon is usually the case for organi-
zational roles, where organizational actions are usually made public to the organization.
For protocol roles, if agents use a FIPA-ACL and specify explicitly the protocol used
(within the messages), that information can then also be used.

Meanwhile, as we want our role monitoring strategy to be general, we also consid-
ered the case where agents do not always signal their role-adoption and role-abandon.
We just suppose that they communicate with some agent communication language such
as FIPA-ACL [13], but without any assumption of signaling explicitly the protocols.
Moreover, the agents may have different architectures (cognitive, reactive. . .).

5.4. Recognizing Roles

In this analysis, attention is focused on the precise ordering of interaction events (ex-
changed messages). The role analysis module captures and represents the set of interac-

tion events resulting from the domain agent interactions (sent and received messages).
These events are then used to determine the roles of the agent. Figure 3 illustrates the
various steps of this analysis which is done by an agent-monitor.

Figure 3. Roles recognition by an agent monitor

To represent the agent interactions, several methods have been proposed such as state
machines and Petri nets [28]. For our application, state machines provide a well suitable
representation. Each role interaction model is thus represented by a state machine. A
transition represents an interaction event (sending or receiving a message). Figure 4 and
Figure 5 show two examples of state machines that represent the interaction models of
the roles Initiator and Participant described below.

Figure 4. State machine for Initiator role

A library of role definitions is used to recognize the active roles. To facilitate the
initialization of this library, we have introduced a role description language. Each role is
represented by a set of interaction events. This language is based on a set of operators
(similar to those proposed in [42], see Table 2), interaction events and variables.

Interaction events represent the exchanged messages. We distinguish two kinds
of interaction events: ReceiveMessage and SendMessage. The attributes of the
SendMessage and ReceiveMessage interaction events are similar to the attributes
of ACL messages:

Figure 5. State machine for Participant role

- SendMessage(Communicative act, sender, receiver, content, reply-with,
...).

- ReceiveMessage(Communicative act, sender, receiver, content, reply-
with, ...).

Table 2. Operators

Operator Interpretation

A.B Separate two consecutive events

A|B Or

A||B Parallel events

(A)* 0 time or more

(A)+ 1 time or more

(A)n n time or more

[A] Facultative

In order to be able to filter various messages, we introduce the wild card character
?. For example, in the interaction event ReceiveMessage("CFP", "X", "Y",
?), the content is unconstrained. So, this interaction event can match any other interac-
tion event with the communication act CFP, the sender "X", the receiver "Y" and any
content.

In the example of scheduling meetings, the assistant agents use the CNP (Contract
Net Protocol) [13] (see Figure 6) to schedule a meeting. The interaction models of the
initiator and the participant are deduced from the CNP. They are described in Figures 4
and 6.

The description represents the different steps (sent and received messages) of the
role. The description of the Initiator can be interpreted as follows [13]:

Participant

Call For Proposal (cfp)

refuse

not−understood

accept

reject

inform

failure

propose

Initiator

Figure 6. Contract Net Protocol

- A call for proposal (CFP) message is sent to the participants from the initiator
following the FIPA CNP.

- The participants reply to the initiator with the proposed meeting times. The form
of this message is either a proposal or a refusal.

- The initiator sends accept or reject messages to participants.
- The participants which agree to the proposed meeting inform the initiator that

they have completed the request to schedule a meeting (confirm).

An agent may simultaneously fulfill more than one role. Each monitoring agent may
therefore have one or more active role recognition process which are identified by the
attributes reply-to and reply-with.

5.5. Recognition Algorithm

The process of recognition of a role is based on Algorithm 1, where R is the set of roles
which match the current sequence of events. This set includes initially all the roles of the
library.

Note that in many cases, roles can be deduced before the end of the associated se-
quence of interaction events (final state of the associated state machine). In the schedul-
ing meetings example, the role Initiator may be recognized as soon as the CFP
message is received, as it is unique to this role.

5.6. Estimating the Criticality

The recognized roles are then processed by the agent’s criticality module. It relies on a
table T (an example is given in Table 1) that defines the weights of roles. This table is
initialized by the application designer.

Algorithm 1 Role recognition algorithm
Require: R ← Roles of the library

1: for each event e do

2: for each role r ∈ R do

3: if current state of r accepts e then

4: update current state of r

5: else

6: remove r from R

7: end if

8: end for

9: if R has only one role then

10: return r

11: end if

12: end for

The estimation of criticality wi of the agent Agenti which has adopted m roles (ri1

to rim) is computed as follows:

wi = aggregation(T [rij])j=1,m) (2)

6. Interdependences

In this second strategy, we use the notion of dependences between agents as a clue for
estimating criticality.

Interdependence graphs [6] [36] [37] were introduced to describe the interdepen-
dences of agents. These graphs are defined by the designer before the execution of the
multi-agent system. However, complex multi-agent systems are characterized by emer-
gent structures [35] which thus cannot be statically defined by the designer.

Our approach is to explicitly represent dependences between agents as a weighted
graph, and to provide a mechanism to automatically update its respective weights ac-
cording to communications between respective agents. This graph can be interpreted to
define each agent criticality.

For each domain agent, we associate a node. The set of nodes (see Figure 7), named
interdependence graph, is represented by a labeled oriented graph (N , L, W). N is the
set of nodes of the graph, L is the set of arcs and W the set of labels.

N = (Ni)i = 1, n (3)

N6

N1

N2
N3

N5

N8

N9

N7

N4

0.3
0.6

0.2

0.5

0.2
0.7

0.1 0.3

0.5

0.7

0.40.7

0.7

0.5

0.4
0.5

Figure 7. Example of interdependence graph

L = {Li,j}i=1,n,j=1,n (4)

W = {Wi,j}i=1,n,j=1,n (5)

Li,j is the link between the nodes Ni and Nj and Wi,j is a real number which labels
Li,j . Wi,j reflects the importance of the interdependence between the associated agents
(Agenti and Agentj).

A node is thus related to a set of other nodes that may include all the nodes of a
system. This set is not static: it can be modified when a new domain agent is added, or
when an agent disappears, or when an agent starts interacting with another agent.

Our hypothesis is that the criticality of an agent Agenti relies on the interdepen-
dences of other agents on this agent. So, the agent is critical if the weights wijj=1,n are
important. In this case, the failure of Agenti may be propagated to the agent Agentj . It
thus affects a subset of agents which form a connex component in the interdependence
graph.

6.1. Adaptation of Interdependences

The interdependence graph is initialized by the designer 5. It is then dynamically adapted
by the system itself. The proposed adaptation algorithm of the interdependence graph is
described below.

Several parameters may be used to define the interdependences between agents, such
as communication load, executed tasks, roles of agents, or their goals. An adaptation
algorithm updates the interdependence graph. This adaptation relies on local information
(e.g., communication load, CPU time) and on global information, which is defined as an

5Note that it can actually be initialized by another strategy, based on static analysis of agent references,

which will not be detailed here.

aggregation of the local information of the various agents and hosts. Currently we use
communication load as the local information. Our hypothesis is that if an Agenti does
not communicate with Agentj then Agenti does not depend on Agentj .

Let us consider an interval of time ∆t. The agent-monitors are activated every ∆t.
At every step, an agent-monitor executes the adaptation algorithm.

6.2. Algorithm

This algorithm relies on the global number of sent messages NbM(∆t) which is calcu-
lated by the host-monitor:

NbM(∆t) =
∑

i=1,n

∑

j=1,n ß 6=j

NbMi,j(∆t) (6)

where NbMi,j(∆t) is the number of messages received by agenti from agentj during
the interval of time ∆t.

Wi,j is defined as follows (Algorithm 2):
This algorithm is very simple, thus the cost of monitoring is very low. Consequently,

it is useful for applications where the semantics of messages is not required. However,
several applications rely on semantics of messages. So, we have proposed a new algo-
rithm that deals with performatives as additional input information (e.g., request has
a weight greater than cancel) [20].

7. Experiments

The following sections describe the experiments. Experiments were carried out on the
GRID5000 platform (see www.grid5000.fr/). The scenario used for the experiments
is the scheduling of meetings introduced in Section 4.1. This scenario was implemented
with the platform DimaX [19] which implements our adaptive replication mechanism. It
is based on DarX (see Section 3).

7.1. Performances

The proposed monitoring multi-agent architecture is very useful to implement the pro-
posed adaptive replication mechanism. However, the monitoring cost overhead does not
seem insignificant. So, our first series of experiments measures the monitoring cost in
the proposed architecture. We consider, a multi-agent system with n distributed agents
that execute the same scenario (a fixed set of meetings to schedule). A multi-agent sys-
tem goal is to schedule all the meetings. We realized several experiments with various
numbers of agents. For each n (100, 200, ..., 45000), we considered m meetings (2, 4,
..., 900). We used n

50 machines for each experiment and we repeated each experiment 20
times. We considered four cases: 1) a multi-agent system without monitoring, 2) a multi-
agent system with monitoring where roles are explicitly signaled, 3) a multi-agent sys-
tem where roles are implicilty recognized (see Section 5.4) and 4) a multi-agent system
with monitoring based on dependences (see Section 5.5).

Algorithm 2 Basic adaptation of the interdependences
1: Let threshold1 a threshold defined by the designer. Its default value is 0.001.

2: Let NbMi,j(∆t) be the number of messages sent by agenti to agentj during some

interval of time ∆t.

3: Let n be the number of agents.

4: Let NbMax(∆t) (resp. NbMin(∆t) and NbMin(∆t)) be the maximum (resp.

minimum and average) number of messages between couples of agents (i, j). More

precisely:

NbMax(∆t) = max
i=1,n,j=1,n,i 6=j

(NbMi,j(∆t)) (7)

NbMin(∆t) = min
i=1,n,j=1,n,i 6=j

(NbMi,j(∆t)) (8)

NbAver(∆t) =
∑

i=1,n,j=1,n,i 6=j

(NbMi,j(∆t))/n ∗ (n− 1) (9)

5: α(t) = 0.5

6: for each j different of i do

7: if If link li,j exists then

8: Update the weights by using the following rule:

Wi,j(t+∆t) = Wi,j(∆t)+(Nbi,j(∆t)−NbAver(∆t))/(NbMax(∆t)−NbMin(∆t))+α(t)

(10)

9: end if

10: end for

11: α(t + ∆t) = α(t)− 0.01

12: if Wi,j(t + ∆t) < threshold1 then

13: Wi,j(t + ∆t) = 0

14: end if

We then measure the global execution time for scheduling the m meetings. Figure 8
shows the average global execution time for these four different monitoring approaches.
We found that, for each strategy, the monitoring cost is almost a constant function. The
monitoring activity does not increase very much when the number of agents (domain
agents and associated monitoring agents) increases. That can be explained by the pro-

 50000

 55000

 60000

 65000

 70000

 100 150 200 250 300 350 400

E
xe

cu
tio

n
T

im
e

Number of Agents

WITHOUT MONIT
WITH MONIT (ExpliciteRole)

WITH MONIT (Interdep)
WITH MONIT (ImplicitRole)

Figure 8. Fault-Tolerant Multi-Agent Systems Costs

posed optimization within the multi-agent architecture, such as the hierarchical organiza-
tion of monitoring agents and the communication between the agent-monitors and host-
monitors. For instance, to build the global information (global number of sent messages
...), the host-monitors communicate only if the local information changes significantly.
Moreover, the host-monitors exchange local information only when there is an important
change. Therefore, the number of communications between these agents is optimized.

7.2. Robustness

For this second series of experiments, we used a fault simulator. The fault simulator stops
an agent currently playing the role of initiator and which has not been replicated. This
simulator chooses randomly an agent and stops its thread. If the killed agent was playing
the role of an initiator, then its associated meeting scheduling negotiation (protocol) fails,
unless the agent has been replicated. Thus that experiment measurement provides some
measure of the accuracy of the strategy to identify most critical agents and protect them.

We considered a multi-agent system with 1500 agents. We run each experiment 10
minutes and we introduce 1000 faults. We repeated several times the experiment with a
variable number of extra resources Rm. Here, Rm defines the number of extra replicas
that can be used by the whole multi-agent system. This experiment measures the rate of
succeeded simulations SR which is defined as follows:

SR =
NSS

TNS
(11)

where NSS is the number of simulations which did not fail and TNS is the total number
of simulations. Let us remind that a simulation fails when the fault simulator stops a
critical agent which has not been replicated.

We considered three strategies: 1) the replication is random, 2) the replication is
based on role-based strategy and 3) the replication is based on the dependences algo-
rithm.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

S
uc

ce
ss

 R
at

e

Number of replicas

Random
Role-Based

Dependences-Based

Figure 9. Rate of succeeded simulations for each number of replicas with the four strategies

Note that in our experiments, we compute the number of terminated negotiations
instead of the number of successful negotiations. Figure 9 compares the success rate SR
as a function of the number of extra replicas, for the four strategies. First, it shows that
two strategies give better results than the random strategy. The strategy with dependences
is the most accurate. This can be explained by fact for application domains where the
roles have the same importance, the strategy based on dependence may lead to better
results.

We are currently conducting measures on different types of applications. The objec-
tive is to try to empirically identify possible features of applications, correlated to the
relative accuracy of different strategies.

8. Related Work

8.1. General Replication Architectures

In distributed computing, many toolkits include replication facilities to build reliable ap-
plications. However, many products are not flexible enough to implement an adaptive

replication [5] [14] [15]. MetaXa [14] implements in Java active and passive replication
in a flexible way. Java was extended with a metalevel architecture. However, MetaXa re-
lies on a modified Java interpreter. GARF [15] realizes fault-tolerant Smalltalk machines
using active replication. Similar to MetaXa, GARF uses a reflexive architecture and pro-
vides different replication strategies. But, it does not provide adaptive mechanisms to
apply these strategies.

Chameleon [23] is an adaptive fault tolerance system using reliable mobile agents.
The methods and techniques are embodied in a set of specialized agents supported by
a fault tolerance manager (FTM) and by host daemons for handshaking with the FTM
via the agents. Adaptive fault tolerance refers to the ability to dynamically adapt to the
evolving fault tolerance requirements of an application. This is achieved by making the
Chameleon infrastructure reconfigurable. Static reconfiguration guarantees that the com-
ponents can be reused for assembling different fault tolerance strategies. Dynamic re-
configuration allows component functionalities to be extended or modified at runtime by
changing component composition, and components to be added to or removed from the
system without taking down other active components. Unfortunately, through its central-
ized FTM, this architecture is not scalable and the FTM represents a bottle-neck as well
as a failure point for the system.

AQuA [33] is a middleware built above Ensemble [34]; it offers an adaptive fault
tolerance scheme for CORBA-compliant software. AQuA provides its own built-in repli-
cation strategies and uses the monitoring features of Ensemble in order to determine and
configure the right strategy for each component at runtime. Such decision making is left
to AQuA’s most prominent element: its Proteus dependability manager. Proteus operates
in a way that is more user-independent than the pre-defined plans used in Chameleon:
it samples the QoS requirements of every component it manages, and determines the
right configuration with respect to information provided by monitoring entities, called
observers. AQuA suffers from the same flaw as Chameleon: although the Proteus de-
pendability manager is set as a replicated component within AQuA, thus decreasing the
risk of its becoming a failure point, it still represents a bottle-neck for entire chunks of
the software it supports. Also, AQuA limits its own potential by preventing more than
one strategy to be applied in the same replication group.

8.2. Fault-Tolerant Multi-Agent Architectures

Several approaches address the multi-faced problem of fault tolerance in multi-agent sys-
tems. These approaches can be classified in two main categories. A first category focuses
especially on the reliability of an agent within a multi-agent system. This approach han-
dles the serious problems of communication, interaction and coordination of agents with
the other agents of the system. The second category addresses the difficulties of making
reliable mobile agents which are more exposed to security problems [38]. This second
category is beyond the scope of this paper.

Within the family of reactive multi-agent systems, some systems offer high redun-
dancy. A good example is a system based on the metaphor of ant nests [1]. Unfortu-
nately:

- we cannot design any application in term of such reactive multi-agent systems.
Basically we do not yet have a good methodology. Moreover, these systems are
more suitable for simulations.

- we cannot apply such a simple redundancy scheme onto more cognitive multi-
agent systems as this would cause inconsistencies between copies of a single
agent. We need to control its redundancy.

Some work [9] offers dynamic cloning of specific agents in multi-agent systems.
But their motivation is different, the objective is to improve the availability of an agent
if it is too congested. The considered agents seem to have only functional tasks (with no
changing state) and fault-tolerance aspects are not considered.

Hagg introduces sentinels to protect the agents from some undesirable states [21].
Sentinels represent the control structure of their multi-agent system. They need to build
models of each agent and monitor communications in order to react to faults. Each sen-
tinel is associated by the designer to one functionality of the multi-agent system. This
sentinel handles the different agents which interact to achieve the functionality. The anal-
ysis of its beliefs on other agents enables the sentinel to detect a fault when it occurs.
Adding sentinels to multi-agent systems seems to be a good approach, however the sen-
tinels themselves represent failure points for the multi-agent system. Moreover, the prob-
lem solving agents themselves participate in the fault-tolerance process.

Fedoruk and Deters [10] propose to use proxies to hide the agent replication, i.e.
enabling the replicas of an agent to act as a single entity towards other agents. The proxy
manages the state of the replicas. All the external and internal communications of the
group are redirected to the proxy. However this increases the workload of the proxy
which is a quasi central entity. To make it reliable, they propose to build a hierarchy of
proxies for each group of replicas. They point out the specific problems of read/write
consistency, resource locking also discussed in [39]. This approach lacks flexibility and
reusability in particular concerning the replication control. The experiments have been
done with FIPA-OS which does not provide any replication mechanism. The replication
is therefore realized by the designer before run time.

Kaminka et al. [24] adapt a monitoring approach in order to detect and recover faults.
They use models of relations between mental states of agents. They adopt a procedural
plan-recognition based approach to identify the inconsistencies. However, the adaptation
is only structural, the relation models may change but the contents of plans are static.
Their main hypothesis is that any failure comes from incompleteness of beliefs. This
monitoring approach relies on agent knowledge. The design of such multi-agent systems
is very complex. Moreover, agent behaviors cannot be adaptive and the system cannot be
open.

Horling et al. [22] present a distributed diagnosis system. The faults can directly
or indirectly be observed in the form of symptoms by using a fault model. The diag-
nosis process modifies the relations between tasks, in order to avoid inefficiencies. The
adaptation is only structural because they do not consider the internal structure of tasks.
The different diagnosis subsystems perform local updates on the task model. However,
a problem of performances can occur in this approach because the global performance
improvement is based on a local performance improvement.

The work by Kraus et al. [26] proposes a solution for deciding the allocation of extra
resources (replicas) for agents. They proceed by reformulating the problem in two suc-
cessive operational research problems (knapsack and then bin packing). Their approach
and results are very interesting but they are based on too many restrictive hypotheses to
be made adaptive.

At the Free University of Amsterdam, the Intelligent Interactive Distributed Sys-
tems Group (headed by Pr. Frances Brazier), runs a research project related to our gen-
eral objectives. They designed an agent architecture intended for replication, named
AgentScape. They separate the public part of an agent, which is immutable and may be
freely replicated, from its private part which should be kept unique. They are studying
how they may combine their agent architecture and our current adaptive replication plat-
form, named DARX [31]. Note that they do not address the issue of adaptive replication
control yet.

Last, a related and much more general project is the Autonomic Computing Program
of IBM. This program aims to design adaptive computing systems, being able to self
adapt (self configure, self optimize, self repair. . .). They propose a general blueprint ar-
chitecture (monitor, analyze, plan, execute). A prototype architecture/framework, named
ABLE (Agent Building and Learning Environment) [4], partially implements it and pro-
vides a toolbox of components (implemented as JavaBeans) for manipulating and using
monitored information (rules, neural networks, statistics. . .). Autonomic computing has
very wide spectrum and is a long term goal. Although fault-tolerance is one of its cru-
cial parts, the ABLE architecture by itself does not solve the problem, but the blueprint
guidelines are an interesting direction.

9. Conclusion

Large-scale multi-agent systems are often distributed and must run without any interrup-
tion. To make these systems reliable, we proposed a new approach to evaluate the criti-
cality of agents dynamically[18]. In this paper, we presented two strategies for estimating
the criticality of each agent, the first one based on the notion of role, and the second one
based on the notion of dependence between agents. The agent criticality is then used to
replicate agents in order to maximize their reliability and availability based on available
resources.

To validate the proposed approach, we realized a fault-tolerant framework (DARX)
and we used a multi-agent platform (DIMA [17]) to implement multi-agent systems.
The integration of DARX with the multi-agent platform DIMA provides a generic fault-
tolerant multi-agent platform. In this paper, we evaluated and compared both our pro-
posed strategies for estimating criticality (based on roles and on dependences) on a com-
mon small scenario. We believe that the obtained results are promising. Meanwhile, more
experiments with various scenarios (crisis management, cooperative patrolling, cooper-
ative control), and with alternative strategies (notably, using plans) are being conducted
to further validate our approach.

Acknowledgements

The authors would like to thank all members, present and past, of the Fault-Tolerant
Multi-agent Systems project at LIP6 for their contributions.

Moreover, the authors would like to thank he Grid 5000 project (www.grid5000.fr),
which allows them to realize their experiment with a large number of agents.

References

[1] N. A. Avouris and L. Gasser, editors. Distributed Artificial Intelligence: Theory and Praxis, chapter

Using Reactive Multi-Agent Systems in Simulation and Problem Solving. Kluwer Academic, London,

1992.

[2] F. Belkouch, M. Bui, and L. Chen. Self-stabilizing quorum systems for reliable document access in fully

distributed information systems. Studies in Informatics and Control, 7(4):311–326, 1998.

[3] M. Bertier, O. Marin, and P. Sens. Performance analysis of a hierarchical failure detector. In Proc. of the

International Conference on Dependable Systems and Networks, San Francisco, CA, USA, june 2003.

[4] J.P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao. ABLE: A toolkit for building

multiagent autonomic systems. IBM Systems Journal, 41(3):350–371, 2002.

[5] K. P. Birman. Replication and fault-tolerance in the isis system. SIGOPS Oper. Syst. Rev., 19(5):79–86,

1985.

[6] C. Castelfranchi. Decentralized AI, chapter Dependence relations in multi-agent systems. Elsevier,

1992.

[7] A. de Luna Almeida, S. Aknine, J.-P. Briot, and J. Malenfant. Méthode de réplication basée sur les plans

pour la tolérance aux pannes des systèmes multi-agents. In Journées Francophones sur les Systèmes

Multi-Agents (JFSMA’05), Special Issue, Revue des Sciences et Technologies de l’Information (RSTI),

pages 183–186, november 2005.

[8] A. de Luna Almeida, S. Aknine, J.-P. Briot, and J. Malenfant. A predictive method for providing fault

tolerance in multi-agent systems. In IAT, pages 226–232, 2006.

[9] K. Decker, K. Sycara, and M. Williamson. Cloning for intelligent adaptive information agents. In

ATAL’97, LNAI, pages 63–75. Springer Verlag, 1997.

[10] A. Fedoruk and R. Deters. Improving fault-tolerance by replicating agents. In AAMAS, pages 373–744,

Bologna, Italy, 2002.

[11] J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[12] J. Ferber and O. Gutknecht. Aalaadin: a meta-model for the analysis and design of organizations in

multi-agent systems. In ICMAS’98, July 1998.

[13] FIPA. Agent communication language, foundation for intelligent physical agents, Geneva, Switzerland.

http://www.cselt.stet.it/ufv/leonardo/fipa/index.htm, 1997.

[14] M. Golm. Metaxa and the future of reflection. In OOPSLA -Workshop on Reflective Programming in

C++ and Java, pages 238–256, 1998.

[15] R. Guerraoui, B. Garbinato, and K. Mazouni. Lessons from designing and implementing GARF. In

Object-Based Parallel and Distributed Computation, number 791 in LNCS, pages 238–256, 1995.

[16] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Computer, 30(4):68–

74, 1997.

[17] Z. Guessoum and J.-P. Briot. From active objects to autonomous agents. IEEE Concurrency, 7(3):68–76,

1999.

[18] Z. Guessoum, J.-P. Briot, O. Marin, A. Hamel, and P. Sens. Software Engineering for Large-Scale Multi-

Agent Systems, chapter Dynamic and Adaptative Replication for Large-Scale Reliable Multi-Agent Sys-

tems, pages 182–198. Number 2603 in LNCS. April 2003.

[19] Z. Guessoum and N. Faci. Dimax: A fault- tolerant multi-agent platform. In In the ACM Electronic

Proceedings of the ICSE’05 4th International Workshop on Software Engineering for Large-Scale Multi-

Agent Systems (SELMAS’05), Shanghai, China, May 2006. ACM Software Engineering Notes.

[20] Z. Guessoum, N. Faci, and J.-P. Briot. Adaptive replication of large-scale multi-agent systems - towards

a fault-tolerant multi-agent platform. In In the ACM Electronic Proceedings of the ICSE’05 4th Interna-

tional Workshop on Software Engineering for Large-Scale Multi-Agent Systems (SELMAS’05), St Louis,

MI, USA, May 2005. ACM Software Engineering Notes.

[21] S. Hagg. A sentinel approach to fault handling in multi-agent systems. In C. Zhang and D. Lukose,

editors, Multi-Agent Systems, Methodologies and Applications, number 1286 in LNCS, pages 190–195,

1997.

[22] B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt organizational structures. In 5th

International Conference on Autonomous Agents, pages 529–536, Montreal, 2001. ACM Press.

[23] Z. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant. Chameleon: A software infrastructure for

adaptive fault tolerance. IEEE Trans. Parallel Distrib. Syst., 10(6):560–579, 1999.

[24] G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams by overhearing: A multi-agent plan-

recognition approach. Journal of Intelligence Artificial Research, 17:83–135, 2002.

[25] G. Karjoth. Access control with ibm tivoli access manager. ACM Trans. Inf. Syst. Secur., 6(2):232–257,

2003.

[26] S. Kraus, V.S. Subrahmanian, and N. Cihan Tacs. Probabilistically survivable MASs. In IJCAI’03, pages

789–795, 2003.

[27] V. R. Lesser and L. Gasser, editors. Proceedings of the First International Conference on Multiagent

Systems, June 12-14, 1995, San Francisco, California, USA. The MIT Press, 1995.

[28] H. Mazouzi, A. ElFallah-Seghrouchni, and S. Haddad. Open protocol design for complex interactions

in multi-agent systems. In AAMAS, Bologna, Italy, July 2002. ACM.

[29] N. J. Muller. The openview enterprise management framework. Int. Journal of Network Management,

6(5):271–283, 1996.

[30] J. J. Odell, H. V. Dyke Parunak, and B. Bauer. Representing agent interaction protocols in UML. In

Fourth International Conference on Autonomous Agents, pages 121–140, 2000.

[31] B. J. Overeinder, F. M. T. Brazier, and O.Marin. Fault Tolerance in Scalable Agent Support Systems:

Integrating DARX in the AgentScape Framework. In CCGRID, pages 688–, 2003.

[32] D. Powell, editor. Delta-4: A Generic Architecture for Dependable Distributed Computing. Springer-

Verlag, 1991.

[33] Y. Ren. AQuA: A Framework for Providing Adaptive Fault Tolerance to Distributed Applications. PhD

thesis, University of Illinois at Urbana-Champaign, 2001.

[34] O. Rodeh, K. Birman, and D. Dolev. The architecture protocols in the Ensemble group communication

system. In Information Systems and Security (TISSEC), 2001.

[35] J. S. Sichman and R. Conte. Multi-agent dependence by dependence graphs. In AAMAS2002, pages

483–490, Bologna, Italy, 2002. ACM.

[36] J. S. Sichman, R. Conte, and Y. Demazeau. Reasoning about others using dependence networks. In

Actes de Incontro del gruppo AI*IA di interesse speciale sul inteligenza artificiale distribuita, Roma,

Italia, 1993.

[37] J. S. Sichman, R. Conte, and Y. Demazeau. A social reasoning mechanism based on dependence net-

works. In Proceedings of ECAI’94 - European Conference on Artificial Intelligence, Amsterdam, The

Netherlands, August 1994.

[38] F. De Assis Silva and R. Popescu-Zeletin. An approach for providing mobile agent fault tolerance. In

S. N. Maheshwari, editor, Second International Workshop on Mobile Agents, number 1477 in LNCS,

pages 14–25. Springer Verlag, 1998.

[39] L. Silva, V. Batista, and J. Silva. Fault-tolerant execution of mobile agents. In International Conference

on Dependable Systems and Networks, pages 135–143, 2000.

[40] R. G. Smith. The contract net protocol: High-level communication and control in a distributed problem

solver. IEEE Trans. Computers, 29(12):1104–1113, 1980.

[41] R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group communication system. Commu-

nications of the ACM, 39(4):76–83, 1996.

[42] M. Wooldridge, N. Jennings, and D. Kinny. The methodology Gaia for agent-oriented analysis and

design. AI, 10(2):1–27, 1999.

