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2Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile

E-mail: xavier.bonnaire@inf.utfsm.cl

Abstract—Spatio-temporal range queries over Big Location
Data aim to extract and analyze relevant data items generated
around a given location and time. They require concurrent
processing of massive and dynamic data flows. Current solutions
for Big Location Data are ill-suited for continuous spatio-
temporal processing because (i) most of them follow a batch
processing model and (ii) they rely on spatial indexing struc-
tures maintained on a central master server. In this paper, we
propose a scalable architecture for continuous spatio-temporal
range queries built by coalescing multiple computing nodes on
top of a Distributed Hash Table. The key component of our
architecture is a distributed spatio-temporal indexing structure
which exhibits low insertion and low index maintenance costs.
We assess our solution with a public data set released by Yahoo!
which comprises millions of geotagged multimedia files.

Index Terms—Big Location Data; Spatio-Temporal Processing;
Distributed Hash Tables.

I. INTRODUCTION

The proliferation of Location Based Social Networks Ser-
vices (LBSNS) leads to the continuous and dynamic genera-
tion of geotagged data from millions of GPS-enabled devices.
Every minute, there are around 216, 000 new pictures uploaded
on Instagram1. Twitter generates more than 10 million geo-
tagged tweets every day, which represents 2% of the whole
Twitter data flow 2. A recent public data set released by Yahoo!
reveals that around 50% of public pictures and videos uploaded
to Flickr3 are geotagged [1]. Sport tracker applications such
as MyFitnessPal4 and RunKeeper5 generate millions of GPX6

files shared over social networks on a daily basis.
These applications generate massive flows of insertions

(very few deletions) which can not be acquired, managed, and
processed by traditional central solutions within a tolerable
time. They constitute a new field of research known as Big
Location Data [2].

Data items generated by these applications have three com-
mon core attributes T = (x, y, t) composed of a location

1http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-
infographic/

2https://www.mapbox.com/blog/twitter-map-every-tweet/
3https://www.flickr.com
4https://www.myfitnesspal.com
5http://runkeeper.com
6GPS eXchange Format

(x, y) and a time attribute t. For the sake of clarity, let (x, y)
represent the spatial latitude and longitude of GPS coordinates,
and t the number of seconds elapsed since the Epoch: January
1st, 1970 00:00 (UTC).

Performing spatio-temporal range queries over massive and
dynamic data sets allows users to extract relevant information
around a given location and time. For instance the spatio-
temporal range query “Retrieve all pictures tagged with {#Cat,
#Lost} generated inside a geographic bounding box A and
uploaded between t0 and t1” extracts all pictures of lost cats
uploaded by users inside a geographic area and during a given
time interval. This kind of query is both I/O intensive and
processing intensive because it can cover billions of objects
made available via concurrent data insertions.

Recent solutions [3]–[6] extend traditional big data archi-
tectures such as Hadoop [7] and Spark [8] in order to provide
efficient spatio-temporal data access over Big Location Data
sets. However, there are three reasons why these solutions are
ill-suited for online spatio-temporal processing. Firstly, they
rely on a central master server to maintain spatial indexing
structures such as R-Trees [9] and QuadTrees [10]; thus
they induce bottlenecks for massive and dynamic input loads.
Secondly, these traditional spatial indexing structures lack
a time index in order to provide efficient spatio-temporal
data access. Finally, most of them follow a batch processing
model. It is our belief that distributed spatio-temporal indexing
structures can cope better with typical workloads associated
with Big Location Data processing.

In this paper, we propose Big-LHT: a scalable architecture
that coalesces any number of commodity machines on top
of a Distributed Hash Table (DHT) in order to perform
continuous spatio-temporal processing. Big-LHT relies on a
novel distributed spatio-temporal indexing structure, called
Location Hash Tree (LHT); its index maintenance is cost-
efficient, and it offers low insertion costs. A full evaluation of
Big-LHT, using a real world data set composed of millions of
geotagged pictures released by Yahoo!, assesses its scalability
for online spatio-temporal range queries.

The main contributions of this paper are :
• a large scale architecture built on top of a DHT which

distributes the massive flow from location-aware input



Fig. 1: Architectural overview of Big-LHT

devices in order to perform spatio-temporal storage and
processing,

• a location-aware distributed structure which indexes data
based on location and time, and incurs low index main-
tenance costs compared to current spatial indexing struc-
tures.

Section II describes our system in detail. Section III assesses
our solution by computing the message complexity of every
operation, and by conducting an experimental evaluation with
a real world dataset. Section IV discusses related work, and
finally Section V presents our conclusions and future work.

II. BIG-LHT DESIGN

This section details the architecture we propose for con-
tinuous scalable spatio-temporal range query processing of
Big Location Data. The goal of our approach is to provide
a scalable architecture which distributes massive and dynamic
input flows on a network of commodity machines (cluster,
Cloud, Desktop Grid, peer-to-peer) and supports efficient
spatio-temporal data access for continuous range queries.

Figure 1 presents the overall architecture of Big-LHT and
its protocol stack as detailed in the next sections. In order
to distribute the input data flows, the input management
layer associates the GPS-enabled devices that upload data
with a DHT service, thus preventing input bottlenecks in
the system. The spatio-temporal storage layer creates data
locality by partitioning the input data set and distributing
it on nodes that control geographic zones. Every node in
charge of a zone maintains a time index. The spatio-temporal
indexing layer introduces a novel spatio-temporal indexing
structure, called Location Hash Tree (LHT), that supports
spatio-temporal range queries and parallel data access at a
low index maintenance cost. Finally, the continuous spatio-
temporal processing layer provides an interface for continuous
spatio-temporal range queries.

We assume that all nodes involved in Big-LHT support the
Network Time Protocol, and thus maintain their local time
within a small deviation from the Coordinated Universal Time

(UTC). Thus every newly uploaded data item comes with a
timestamp corresponding to the local clock value of the node
that stores it.

A. Input management

The input management layer breaks down massive input
flows of spatio-temporal data generated by GPS-enabled de-
vices. We refer to such devices as input nodes, and to nodes
that participate to the input management layer as DHT service
providers (DHT-SPs). To avoid bottlenecks, this layer enforces
a uniform distribution when assigning DHT-SPs to input
nodes. For this purpose, the input management layer relies
on a distributed hash table (DHT).

DHTs [11], [12] use a cryptographic hash function to map
keys and node identifiers in the same namespace. The hash
function usually guarantees natural load balancing. DHTs
generally provide very efficient routing on a large scale,
with a message complexity commonly of O(log(N)) for any
operation, where N is the number of nodes involved. Most
DHT implementations also offer dependability via replication.

Let Ii be an input node: Si
= {S1, ..., Sn} is the set of

n DHT nodes that provide Ii with an access to the input
management service. Every node gets an identifier computed
by applying the SHA-1 hash function to its IP address: an
inputId identifies an input node, a nodeId identifies a DHT
node. By construction, Si is the set of n DHT nodes whose
nodeIds are numerically closest to the inputId of Ii. Sroot is
the node whose nodeId is closer than the nodeId of any other
member of Si.

When an input node Ii enters the system, it uses the DHT
to route a service request message to Sroot. Upon reception of
this message, Sroot replies directly to Ii with the IP addresses
of all nodes in Si. Thus every input node Ii maintains a list
with n DHT-SPs which provide a routing service inside the
DHT. The hash function ensures a uniform distribution of input
nodes among DHT nodes. The maintenance of the DHT-SPs
list is optimistic: an input node that fails to get a reply from a
DHT node routes a new service request via the DHT to acquire
an updated list.

B. Spatio-temporal storage

The spatio-temporal storage layer reintroduces spatio-
temporal data locality over a DHT. To this end, this layer
combines Geohashes and time indexing.

Geohashes7 map a bi-dimensional GPS coordinate (x, y)
into a single one-dimensional binary key z(x, y). They use
a z-ordering space filling curve [13] which loosely preserves
data locality. The z-ordering function z(x, y) interleaves the
bits of every coordinate. For instance, if x = 000, and y = 111

then z(x, y) = 01 01 01. This is a core technique used by Big-
LHT in order to create a spatio-temporal index over a DHT.

Geohashes recursively partitions the (longitude,latitude)
spatial domain. For instance, the first prefixes {0⇤, 1⇤} divide
the longitude dimension in two: Geohashes beginning with

7http://geohash.org



Fig. 2: Management of storage units

’0’ define the northern hemisphere. The next four prefixes
{00⇤, 01⇤, 10⇤, 11⇤} divide the latitude dimension for every
longitude division, resulting in four equal spaces, and so on.
This recursive prefix space division guarantees two properties.
Recursive domain division: a Geohash of size i+ 1 defines a
rectangle contained by a Geohash of size i. Spatial Locality:
shared prefixes imply closeness. For instance, all keys with
the same common prefix 000* are necessarily contained in a
single rectangle represented by this prefix.

Geohashes alone are ill-suited to perform spatio-temporal
range queries because they lack a time index. Our solution,
described below, remedies this deficiency.

Let Zp(x, y) be a prefix of size p for a given Geohash
which covers a rectangular geographic area of size R. Zp(x, y)
partitions the surface of the earth in 2

p rectangular zones of
area R, where p is a system parameter which depends on
the application. A high value of p generates small rectangular
zones whereas a small value generates big zones.

We dynamically associate a rectangular geographic zone
Zp(x, y) with the DHT node whose nodeId is closest to key
K = SHA(Zp(x, y)). We refer to this node as the manager of
the geographic zone Zp. From here on, we will note Zp(x, y)
as Zp.

In order to distribute storage resources and to improve
spatio-temporal data access, every manager holds the label
l = Zp that identifies its assigned zones, and handles a
dynamic storage structure composed of nodes that act as
storage units. Figure 2 depicts our dynamic storage structure.
Storage units form a double linked list sorted by upload time.
The last storage unit of the list stores the most recently
uploaded data items. This structure scales horizontally, and
allows sequential access to temporal data as well as efficient
extraction of the most recent data uploads in a given zone.
The manager also maintains a storage unit table which maps
the identifier of each storage unit to (i) the upload timestamp
t of the last item it stores and (ii) the number of objects that
it stores. This table provides low latency parallel data access
extended with a time index to allow searches over given time
intervals. The maximum size Tmax of this table is a parameter
of the system.

The assignment of zones to managers is dynamic. When a
DHT node receives an input data item inside a new zone Zp, it
sets its state as manager and its label as Zp. Then it forwards
the message to the first storage unit: the DHT node whose
nodeId is closest to key K = SHA(Zp|0). The receiving node
sets itself as a storage unit for Zp. It follows that the system
only creates managers for geographic zones where input data
has actually been generated. This prevents node provisioning
for zones that are empty.

The label l = (Zp|i) of a storage unit determines the DHT
node it gets assigned to: the node whose nodeId is closest
to key K = SHA(l). Every storage unit holds: its label
that identifies the zone Zp for which it stores data, its state
which can be either frozen or live, in-memory user-generated
metadata such as tags and comments, a persistent data storage
space which stores up to B data items, and references to its
immediate predecessor and successor nodes. Both frozen nodes
and live nodes store data, but only live nodes can receive new
incoming data. Once a data item arrives to its assigned live
node, it is associated with a timestamp t corresponding to the
local clock value.

Storage unit index maintenance. Big-LHT provides two
main operations, split and merge, to maintain the index of
the storage units structure. The split operation allocates a new
storage unit when a live node reaches its maximum storage
capacity B. Conversely, when two consecutive frozen nodes
store less than B items they merge into a single storage unit.

The split index maintenance works as follows. First, the
live node changes its state to frozen and notifies its manager.
Upon reception of a storage request at position B + 1, the
manager forwards the request to a new storage unit labeled
lnew = (Zp|i + 1). The new storage unit sets itself to live
and sends two ACKs: one back to the manager and one to its
now frozen predecessor in order to update the double linked
list structure.

A merge maintenance operation occurs when two consec-
utive storage units have less than B data items. First, the
manager node sends a merge message to the two consecutive
storage units. The manager selects the node which has the
lowest objects counter to move the data items and provides
the link to its merge in order to update the double linked
list structure. Upon reception of this message the storage unit
transfers all stored data to its sibling node, removes its label
l = Zp|i, and sends back an ACK to the manager in order
to remove its entry from the storage unit table. This strategy
reduces the data movement cost of the merge operation.

Upon deletion of the last data item inside a zone, the
manager node leaves the zone and sends a leave message to
the last remaining storage unit so that it removes its label
l = Zp|i.

Manager index maintenance. Our storage management
scales outby allocating a new manager for a given zone Zp

when the storage unit table reaches Tmax and the last live
node becomes frozen. This procedure works as follows. Upon
reception of a new data insertion the manager provides a new
manager by forwarding the insertion request to the DHT node



whose nodeId is closest to key ki+1
= SHAi+1

(Zp). ki+1

results from applying the SHA-1 hash function recursively i+1

times. That is, ki+1
= SHA(SHA(...(Zp))) i+ 1 times. For

instance, i = 0 generates key k0 = SHA(Zp).
Upon reception of this message, the DHT node sets itself

as manager of Zp at level i and sends an ACK back to the
manager at level i � 1 and another ACK to the manager at
level i = 0. We refer to the manager of level i = 0 as the root
manager of Zp.

Similarly to storage units, managers form a double linked
list: every manager maintains a link both to its predecessor
and to its successor. Additionally, the root manager maintains
a link to the manager which holds a live storage unit for this
zone.

When a manager leaves a zone Big-LHT provides a merge
operation which works as follows. First, it sends a leave
message both to its predecessor and to its successor so that
they update the double linked list. The root manager leaves a
zone only if it is the last manager in the double linked list.

Data insertions. Storing a data item consists in locating
the live node associated with the zone where the data item
is generated. This operation is implemented on this layer as
follows. First, the Input node sends a StorageRequest message
to one of its DHT-SPs nodes. Upon reception of this message
the DHT-SPs node translates the location coordinates (x, y) to
their GeoHash representation and extracts prefix Zp. Then, it
routes the message to the node whose nodeId is closest to key
K = SHA(Zp).

When this node receives this message there are three possi-
bilities. a) The message was generated inside a new zone Zp:
In this case, the DHT node which receives this message sets
itself as root manager for Zp and forwards the request to the
first storage unit labeled l = (Zp|0). Upon reception of the
storage request, the new storage unit sets itself as live node
for Zp and sends an ACK back to the source Input node in
order to finish the transaction. b) The message was generated
inside an existing zone Zp: In this case, the manager receives
the request and forwards this message to the live storage unit
which in turn sends an ACK back to the source node in order
to finish the transaction. c) The message arrives to a manager
with a full Storage unit table. In this case, the node forwards
the query to a new manager at level i which forwards the
query to the live node.

Data deletions. Deleting an object with an identifier id,
generated at GPS coordinates (x, y), and successfully up-
loaded at a time t, works as follows. First, the sender DHT
node routes the deletion request to the root manager of the
zone. The request traverses the double linked list until it
reaches the manager which covers t. This node forwards the
query to the storage unit whose time index contains the data
item.

C. Spatio-temporal indexing
The main goal of this layer is to provide support for

scalable spatio-temporal range queries. That is, given any
spatial bounding box B = (sl, sh) this layer must find all

Fig. 3: Example of an index with LHT

existing zones (i.e. manager nodes) which hold zones inside
B.

Indexing data Structure. We index all zones created by
the spatio-temporal storage layer in a novel indexing structure
named Location Hash Tree (LHT). LHT exploits the recursive
domain definition property of Geohashes as follows. Upon
creation of a new manager M with label Zp, the node routes
a JOIN message via the DHT to the node whose label l is the
prefix of Zp. We refer to this node as the forwarder of M .

Upon reception of a JOIN message there are two possible
cases. (i) The receiving node does not belong to the indexing
structure. In this case, the node sets its state as forwarder node
and adds the joining node as its child. Then it routes a JOIN
message to the nodeId that is closest to the prefix of its label.
(ii) The node that receives the JOIN message belongs to the
indexing structure. In this case, the node just adds the joining
node as its child. If there is no forwarder for any prefix of
this label, this process gets repeated until it reaches the root
node.

The JOIN message contains the label of manager Zp and
its level i. Every forwarder maintains a children table which
contains three entries: the label Zp of every child, its direct
IP address, and its level i in case the child node is a manager.

Figure 3 presents an example of the LHT indexing structure
with p = 4, that is managers have a label Zp of size 4. The
manager node with label 0000 joins LHT. In this example, this
node routes a JOIN message via the DHT to the node labeled
l = 000⇤. Since the latter is already a forwarder node, the
join process finishes. The join process can generate up to p
recursive join messages if there is no forwarder along the path
until the root node is reached. For instance, when the manager
labeled 0000 joins LHT, its insertion generates p = 4 recursive
join messages until the root node labeled l = ⇤ is reached.

When a manager node leaves a zone, it sends a LEAVE
message to its forwarder which deletes the entry from its
children table. If the manager is the last node in its table,
this node leaves LHT by sending a LEAVE message to its
parent. This process iterates until it reaches a forwarder with



// m is the range query message;
// R is the query result
zi = GeoHash(sl);
zf = GeoHash(sh);
// Computes the common prefix of maximum size p;
shared-prefix = commonPrefix(zi, zf , p);
K = SHA(shared-prefix);
node = route(m,K);
if node is a forwarder node then

// recursively forward the query until all manager
nodes are reached;
node.forward(zi,zf );

end
if node is a manager node then

// Forward the query to all storage units which covers
the time interval;
node.forward(ti, tf );

end
if node is a storage unit then

// Get all the data which match the range query
constraints;
R = getData(sl, sh, ti, tf );

end
if node is an external node then

// There is no data in the spatio-temporal interval;
R = ; ;

end
Algorithm 1: Spatio-temporal parallel range query process-
ing pseudocode

at least one entry in its children table.
LHT follows a prefix tree (trie) indexing structure similar to

Prefix Hash Tree (PHT) [14]. Both solutions follow a prefix
tree strategy to index data, but they are different in three key
aspects: (i) LHT grows along a bottom-up data flow, (ii) LHT
generates no leaf nodes (managers) without data, and (iii) LHT
defines a grid where every leaf node (managers) holds a space
of area A and introduces a time index with horizontal splits.

D. Spatio-temporal range queries
We now detail how spatio-temporal range queries are per-

formed on top of Big-LHT.
Given a spatial bounding box B = (sl, sh) and a time

interval [ti, tf ], a spatio-temporal range query retrieves all
objects uploaded within [ti, tf ] and generated inside (sl, sh).
(sl, sh) are the GPS coordinates of the lower and higher limits
of bounding box B.

We introduce two algorithms to implement spatio-temporal
range queries on Big-LHT. Both algorithms exploit the spatial
locality property of Geohashes where all spatial items which
share the same common prefix are in the same spatial area.

The first algorithm combines parallel an sequential data
access. The sender node computes the Geohash of the two
spatial bounding box limits (sl, sh) and routes the query via
the DHT to the node whose label of maximum size p shares
the common prefix string between sl and sh. By the spatial

locality property of Geohashes this node covers the whole
spatial bounding box (sl, sh).

Depending on the state of the node which receives the query
we identify three cases. (i) The node is a forwarder node.
In this case, it recursively forwards the query onward to the
managers nodes that cover the spatial range. (ii) The node is a
manager node. In this case, a single node covers the required
spatial range. (iii) The node is an external node (i.e, neither a
forwarder node nor a manager node). In this case there is no
data in the given spatial range. When a manager receives the
query it reads the time range [ti, tf ] and forwards the query to
the storage unit that covers the lower time range ti. Finally,
the query sequentially crosses the double linked list structure
until it reaches the storage unit that covers tf .

The second algorithm provides parallel data access. It works
exactly like the first algorithm until it reaches all manager
nodes which cover the spatial range. Upon receiving a range
query, every manager uses its storage unit table to forward
the query to all storage units that cover the time range [ti, tf ].
Algorithm 1 presents a pseudocode of the parallel spatio-
temporal range query algorithm.

III. EVALUATION

This section presents theoretical and experimental assess-
ments of Big-LHT both for data insertions and spatio-temporal
range queries. Our theoretical evaluation measures the message
complexity for every operation of Big-LHT. Our experimental
evaluation uses the Yahoo! public dataset [15] that comprises
millions of geotagged multimedia files (photos and videos) to
assess the impact of Big-LHT parameter settings on system
performance.

A. Theoretical evaluation
1) Data insertions: Let N be the number of nodes in the

DHT. The insertion of a data file directly routes to the manager
of the zone Zp the data belongs to. Equation 1 presents the
average message cost of an insertion.

Cinsertion(N) ⇡ log(N) + 2 (1)

The data insertion cost may diverge from equation 1 in two
special cases. a) There is more than one manager for zone
Zp. In this case, the root manager node forwards the insertion
request message to the manager at level i which holds the
live storage unit; this adds one additional message. b) Either
a storage unit or a manager reaches its maximum storage
capacity. In this case, the next insertion request is used to
dynamically create a new node which adds an average cost of
log(N) routing hops to equation 1. With a message complexity
of O(log(N)) for insertions, we feel confident in stating that
such operations scale with the number of nodes on Big-LHT.

2) Data deletions: Let i be the number of manager levels
for a given zone Zp. A delete operation must go through the
list of i managers until it reaches the storage unit which spans
the time interval of the item. Equation 2 presents the average
cost of a delete operation on Big-LHT. The lower bound of this
cost corresponds to cases where the data is stored by the root



0.01

0.02

0.03

0.04

0.05

 0  10  20  30  40  50  60  70  80  90

P
e

rc
e

n
ta

g
e
 o

f 
in

se
rt

io
n
 r

e
q

u
e

st
s

Node #

Ideal storage load
p=05, s=0.006
p=15, s=0.007
p=25, s=0.007

(a) Storage data distribution

0.01

0.05

0.10

0.15

0.20

0.25

 0  10  20  30  40  50  60  70  80  90

P
e
rc

e
n
ta

g
e

 o
f 

re
ce

iv
e

d
 in

se
rt

io
n

 r
e

q
u

e
st

s

Node #

Ideal insertion load
p=05, s=0.037
p=10, s=0.018
p=15, s=0.010
p=25, s=0.005

(b) Insertion load distribution on managers nodes
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Fig. 5: Insertions and range query latency

manager node. The upper bound corresponds to the deletion
of data stored by the last manager at level imax

log(N) + 1 / Cdeletion / log(N) + imax + 1 (2)

Deletions have a message complexity of O(log(N)+imax).
The value of imax depends on the maximum number of entries
in the storage units table maintained by a manager, which
in turn depends on the memory capacity of every node. In
most scenarios this is a very low value because the order
of magnitude of an entry in the storage units table is in
bytes. Delete operations cost more than insertions. In practice,
LBSNS applications incur far less deletions than insertions.

The prefix domain space partitioning used by Big-LHT
improves the insertion/deletion cost compared to traditional
spatial indexing structures such as R-Trees [9] and QuadTrees
[10] because it avoids the expensive root-to-leaf path. This
strategy exhibits the following two benefits (i) It removes the
bottleneck on the root node, and (ii) It reduces the insertion
cost because data is directly addressed to the target manager
node.

3) Storage index maintenance cost: The split index main-
tenance operation performed by a storage unit in Big-LHT
consists in forwarding an insertion request to the new live
node without any data transfer. The new node then sends two
ACKs in parallel in order to update the double linked list

structure. Equation 3 gives the average cost of a storage index
maintenance operation.

Cstorage�split ⇡ log(N) + 2 (3)

The split operation on Big-LHT drastically reduces the data
transfer cost incurred by traditional indexing structures such
as R-Trees [9] and QuadTrees [10] which can be considerable
for big indexed objects such as multimedia files.

Let B be the maximum number of items stored on a single
node. The merge index maintenance operation aims to reduce
as much as possible the data transfer cost. It moves � files
from the node which stores the smallest amount of data items,
where 1  �  B/2. It involves the emission of three ACK
messages. As LBS applications exhibit a very low rate of
deletions compared to insertions, split operations are likely
to be much more frequent than merge operations.

4) LHT index maintenance cost: Let p be the size of the
Geohash prefix used to define geographic zones; p is a fixed
parameter of the system. When a new manager joins/leaves
LHT it sends a JOIN/LEAVE message which gets forwarded
recursively, possibly as far as the root node. Equation 4 com-
putes average index maintenance cost. It reaches a maximum
value of p⇥ log(N) messages when the message reaches the
root node.

log(N) / CLHT�index / p⇥ log(N) (4)



5) Spatio-temporal range query cost: Let r = p�cp be the
number of LHT tree levels that a spatio-temporal range query
with a common prefix of length cp must traverse. Let s be
the average number of storage units that cover the time range
per manager node. The upper bound on the message cost of a
range query corresponds to a situation where all zones (i.e, all
manager nodes) concerned by the range query prefix hold data
in LHT. Equation 5 computes the upper bound on the average
number of messages for a given spatio-temporal range query.

Crange�query / log(N) + 2

(r�1)
+ 2

r ⇥ (s+ 1) (5)

Note that the parallel range query algorithm goes down
through r levels until all storage units are reached. Therefore
it incurs a complexity latency of O(r) which is much lower
than the upper bound on the average number of messages.

Similarly to insertions and deletions, the spatio-temporal
range query algorithm of Big-LHT induces a much lower
message complexity than traditional indexing structures such
as R-Trees [9] and QuadTrees [10] because it directly reaches
the node in charge of the subspace, thus avoiding the root-to-
leaf path when the common prefix does not contain the root
node.

B. Experimental evaluation
We implemented a prototype of our architecture on top of

FreePastry, an open-source implementation of Pastry [11]. We
ran all experiments presented in this section on an intel core i7
2.6Ghz with 8GB RAM, OS X 10.9.1, and Java VM version
1.6.0-65 .

Every experiment indexes 1,000,000 geotagged multimedia
files (photos and videos) from the Yahoo! public dataset [15]
in a DHT comprising N = 100 nodes. Every storage unit has
a capacity of B = 1, 000 data items and the maximum number
of entries of the storage units table is Tmax=10,000.

We aim to assess the impact of p, the prefix size, on
insertions and on spatio-temporal range queries. Table I gives
the area size and and the number of zones generated for
different values of p. A small value for p generates a small
quantity of big zones. Note that the number of generated zones
differs from the theoretical number of zones required to cover
the entire map, and that the ratio between the two values
decreases fast as the prefix size increases. For instance, with
p = 25 the number of generated zones is only 0.3% of the total
number of zones. This is a benefit of our approach towards
spatial skewness of data: Big-LHT does not allocate managers
for zones that contain no data.

1) Storage data distribution: This experiment analyzes the
data distribution of Big-LHT storage. We compare our results
with the ideal case using the above configuration when every
node reaches exactly 1% of the whole insertion load.

Figure 4a presents the storage distribution for different
values of p; s is the standard deviation for the number of
insertions on every node. Increasing the value of p from to 5

to 25 only increases the standard deviation s from 0.006 to
0.007. These results suggest that p bears little impact on the

Prefix size ⇡ Zone area size (R) Generated zones/Total zones
5 5,004 km ⇥ 5,004 km 32/32

10 1,251 km ⇥ 625 km 531/1024
15 156 km ⇥ 156 km 5, 189/32, 768
25 4.9 km ⇥ 4.9 km 127, 167/33, 554, 432

TABLE I: Impact of p on zone coverage of geolocated data

data distribution, which is logical because storage units are
uniformly distributed among DHT nodes.

2) Insertion load distribution: This experiment assesses
the impact of zone size on the insertion load distribution,
measured as the percentage of insertions requests per manager
node. Figure 4b presents the insertion load distribution and its
associated standard deviation s for different values of p. We
compare our results with the ideal case where every manager
handles exactly 1% of the entire insertion load.

A small prefix (p = 5) distributes the load over 32
managers, which produces the worst insertion load balancing,
measured as the highest standard deviation s = 0.037. In this
configuration, node 10 handles about 25% of the insertion
load. With respect to insertion requests, increasing the value
of p improves load balancing significantly because it divides
the space in smaller zones, and therefore distributes the load
among more managers. For instance, p = 10 generates 531
zones and decreases the standard deviation to s = 0.018, with
the maximum load on a single node lower than 10%.

3) Insertion latency: This experiment stresses the system
with a high insertion load: 100, 000 insertions per second
uniformly distributed among DHT, to evaluate its impact on
latency. We measure latency as the time elapsed between the
emission of a request and the reception of an insertion ACK
from the responding live storage unit.

Figure 5a gives insertion latencies for different values of p.
Smaller values of p produce the highest insertion latencies, be-
cause the smaller number of nodes is more likely to introduce
bottlenecks. For instance, p = 5 induces insertion latencies
of up to 6 seconds, with a median between 1 and 2 seconds.
Increasing the value to p = 15 drastically reduces the insertion
latency to a maximum value of about 1 second with a median
of about 500 milliseconds. Note that increasing the value to
p = 25 bears little impact, as p = 15 already acheives optimal
results for this input workload.

4) Spatio-temporal range query latency: This experiment
assesses the scalability of Big-LHT under a massive flow
of spatio-temporal parallel range queries. In this evaluation
we set the prefix size to p = 15, which produces the best
tradeoff between insertion latency and storage data distribu-
tion according to our previous results, and index 1, 000, 000
geotagged items. We then measure the average range query
latency with different input query workloads: from r = 1, 000
range queries per second to r = 100, 000 queries per second.
Every query asks for all objects inside a given spatio-temporal
range: it reads an input Geohash from our data set and extracts
a common prefix cp at random. This strategy generates a
workload which follows the input data distribution for different



sizes of the spatio-temporal space. For instance, a value cp = 1

generates a query which covers half of the spatio-temporal
domain. It enters the tree at a high level and then goes down
in parallel until it reaches all storage units. Choosing cp = p
generates a range query which asks for data inside a single
zone.

Figure 5b presents the average spatio-temporal range query
latency of Big-LHT in this experiment. A first observation
is that the average range query latency evolves linearly with
respect to the common prefix size cp, a logical result of the
parallel sweeps down the tree. Given that different workloads
produce similar curves, we conclude that Big-LHT scales
gracefully with the workload.

IV. RELATED WORK

The need to store, query and analyse big location data has
recently motivated the usage of traditional spatial indexes such
as R-Trees [9] and Quad-Trees [10] on top of traditional big
data solutions such as Hadoop [7], Hbase [16], and Spark
[8]. These solutions can fall into three groups: (i) Hadoop-
based solutions; (ii) Resilient Distributed Dataset (RDD) based
solutions, and (iii) Key-value store-based solutions.

Hadoop-based solutions such as SpatialHadoop [3],
Hadoop GIS [4], and ESRI Tools for Hadoop [6], extend
the traditional Hadoop architecture [7] with spatial indexing
structures in order to avoid a scan of the whole dataset
when performing spatio-temporal analysis. SpatialHadoop [3]
builds spatial indexing structures such as R-Trees [9] over
HDFS [4] in order to perform MapReduce tasks. However,
these solutions are ill-suited to perform online spatio-temporal
processing because (i) they maintain a global index structure
on a single node that is prone to become a bottleneck, and
(ii) they follows a batch processing model which requires
processing the whole data set for every task.

Resilient Distributed Dataset (RDD) based solutions
such as Spatial Spark [5] and GeoTrellis8 extend traditional
RDD solutions such as Spark [8]. Similarly to Hadoop-based
solutions, these systems are designed for batch processing and
do not target online spatio-temporal processing.

Key-value store-based solutions support spatio-temporal
processing by building spatial indexing structures on top of
key-value storage solutions. MD-Hbase [17] extends Hbase
[16] with multi-dimentional indexing structures such as Quad
Trees [10] and K-d trees [18] over a key-value storage layer
through linearization techniques such as z-ordering [13]. It
provides support for spatio-temporal range queries. However,
the bucket split overhead introduces a data movement cost
which limits the peak throughput. Big-LHT overcomes this
issue by providing a low split index maintenance cost because
it scales horizontally when a storage unit is overloaded.

V. CONCLUSION

This paper proposes a new approach towards continuous
spatio-temporal range queries over Big Location Data. Our

8http://geotrellis.io

solution combines a storage architecture which distributes
massive flows of data uniformly and a distributed spatio-
temporal indexing structure that scales. A theoretical analysis
of the message complexity of every Big-LHT operation, as
well as an experimental evaluation conducted over a Yahoo!
dataset comprising 1,000,000 multimedia files, show that our
solution remains cost-efficient on a large scale.

We are currently working on a full scale experimentation
of Big-LHT to assess its behaviour on a very large number
of nodes. We also plan to explore an alternative solution for
the distribution of Big Location Data storage and querying: a
storage structure that fully matches the distributed index by
introducing the time dimension in the indexation.
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