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Abstract—Preventing Byzantine failures in the context of
cloud computing is costly. Traditional BFT protocols induce a
fixed degree of replication for computations and are therefore
wasteful. This paper explores probabilistic Byzantine tolerance,
in which computation tasks are replicated on dynamic repli-
cation sets whose size is determined based on ensuring prob-
abilistic thresholds of correctness. The probabilistic assessment
of a trustworthy output by selecting reputable nodes allows a
significant reduction in the number of nodes involved in each
computation task. The paper further studies several reputation
management policies, including the one used by BOINC as well
as a couple of novel ones, in terms of their impact of the possible
damage inflicted on the system by various Byzantine behavior
strategies, and reports some encouraging insights.
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I. INTRODUCTION

A. Background

Heavy computational tasks are often performed these days
in cloud computing environments by splitting the compu-
tation into multiple tasks using platforms such as Apache
Hadoop [1] and Spark [2], or using volunteer computing
platforms such as BOINC [3]. Commonly, these platforms are
structured around a scheduler whose role is to disseminate
the computation tasks into available compute nodes, who
are responsible for computing the results of these tasks and
returning their results. Obviously, this involves an implicit
assumption that the scheduling and routing costs of tasks to
compute nodes is considerably cheaper than calculating them,
as otherwise it would not make sense to do so. An illustration
of such a typical computing environment appears in Figure 1.

When trying to make such systems resilient to Byzantine
behavior, one is faced with the large replication costs of
masking Byzantine failures. Specifically, under the assump-
tion that there could be up to f Byzantine nodes in the system,
each computation task must be executed by 3f + 1 nodes
in naive application of traditional Byzantine fault tolerance

approaches [4], [5]. More sophisticated mechanisms that
distinguish between execution and validation require between
f+1 [6] to 2f+1 [7], [8]. As an example, if 10 nodes might
be Byzantine, this means that each computation task needs to
be executed on 11 or 21 nodes, as the case may be.

The principle of elasticity in cloud computing is to adapt
resource provisioning as a means to optimize the tradeoff
between cost and performance. Conversely, tolerating Byzan-
tine failures induces incompressible costs. Traditional BFT
protocols require making strong assumptions on the number
of Byzantine nodes that exist in the system assuming for
instance some known and fixed bound f on the number of
Byzantine nodes.

In this paper, we extend the direction proposed in [9]
and explore an alternative design path to the above: instead
of fixing f arbitrarily, we replicate computations so that
the probability of obtaining a correct result is satisfactory
for the application. By trading the provable correctness of
each computation step for a probabilistic one, we reduce the
amount of resources required by the system. Specifically, we
assume that each node j has a given probability pj of acting
in a Byzantine manner during an arbitrary calculation of a
computation task. We define the reputation rj of j as 1−pj . In
addition, rather than requiring absolute masking of Byzantine
failures, we only require obtaining a correct answer to each
computation task with probability above a given threshold.
Consequently, each computation task needs to be replicated
only over the minimal number of compute nodes that will
ensure meeting this probabilistic threshold.

As a motivating example, when a computation is sent to a
group of compute nodes S, if only part of them generate an
incorrect answer, the scheduler can send the same computa-
tion task to additional nodes until the probability of obtaining
the correct result is above the given threshold. Otherwise, if
all replies are the same, only if all the nodes have chosen to
return a false answer it will go undetected by the scheduler.
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Fig. 1. Typical cloud computing environments

In case the probabilities of acting in a Byzantine manner are
independent and identically distributed (IID) and equal to 0.1,
then we can ensure that such an undetected Byzantine failure
will occur with a probability of at most 0.0001 by replicating
the computation on 4 nodes only. Hence, there is a great
potential for reduction of resources compared to traditional
approaches, propelling the exploration of this approach to
Byzantine fault tolerance.

There are several scenarios where treating Byzantine be-
havior as a probabilistic event rather than a binary property of
the nodes makes sense. One such scenario is when Byzantine
behavior is a result of a heisenbug rather than an intrusion.
Even when Byzantine behavior is caused by malice, if the
scheduler picks nodes for replicated executions in a random
manner, and assuming such nodes cannot control this choice,
we can model the probability of one of these nodes being
Byzantine as a probabilistic event. Finally, in order to avoid
detection and in order to conserve resources, an intruder or
attacker might prefer to return bad results only occasionally.
Specific examples of the above are discussed later in this
paper.

B. Contributions

In this paper, we explore the impact of probabilistic re-
liability, coupled with a reputation management mechanism,
on mitigating the ability of Byzantine behavior to disrupt the
computation in a cloud computing environment. In particular,
we analyze the probability that a given reply is the correct
answer for a given compute task when the task has been
sent to a replication set of compute nodes with an assumed
individual reputation level. Based on this model, we derive
a corresponding scheduler’s algorithm that greedily contacts
minimal sets of compute nodes until obtaining enough confi-
dence in a given value.

Next, we use our model to explore the ability of Byzantine
behavior to damage the system under two axes. First, trying to
cause the system to waste as much resources as possible. This
is by deliberately returning false answers, which forces the

scheduler to allocate additional nodes to the same compute
task. The main defence of the scheduler in this case is its
reputation management scheme, in which it can dynamically
adjust the reputation of each compute node based on whether
this node returned a value that was deemed to be the correct
one or not. We explore three such reputation management
strategies, namely the one used by BOINC [3] and two novel
ones introduced by us. We show that all three schemes serve
as an effective tool in limiting the influence of Byzantine
behavior on the resources consumed by the system over time.
It is worth pointing out that our original strategies do better
than the one used in BOINC.

Last, the other direction of Byzantine behavior we explore
is trying to hurt the correctness of the computation result by
returning false answers. Yet, in order to avoid detection and
therefore to increase the likelihood of success, in this attack
the Byzantine nodes only return bad results when all compute
nodes chosen for the replication set of the same compute task
are Byzantine. Here, we show that when the scheduler picks
compute nodes in a uniform random independent manner,
Byzantine nodes must contribute to a very large number of
useful computation for each successful attempt to return a
false value. Further, we identify a large and an important
family of problems for which even such occasional success in
returning a false undetected value cannot prevent the system
from obtaining an overall correct result. This means that for
these problems, Byzantine nodes help the system much more
than they hurt it, so their overall impact on the system is
positive!

In summary, our contribution is a study of the impact of
reputation management on the potential damage caused by
Byzantine behavior in cloud computing environments when
the goal is probabilistic reliability. We provide a formal model
for this analysis, and use it to explore the ability of various
reputation management systems in mitigating the damage
caused by Byzantine behavior such as the extra resources
the system is forced to consume and the ability to drive it
into computing wrong results. We hope that our encouraging
findings will serve as a motivation for further exploration of
this direction.

C. Paper Roadmap

The rest of this paper is organized as follows: We survey
related work in Section II. The model assumptions and goals
are specified in Section III. The formal analysis is presented in
Section IV including the resulting scheduler’s algorithm. We
explore various reputation management strategies, including
the one used by BOINC and two novel ones in Section V as
well as the cost to the Byzantine processes when trying to
hide their behavior in Section VI. Finally, we conclude with
a discussion in Section VII.



II. RELATED WORK

Probabilistic consensus protocols ensure correct execution
with probabilistic termination [10]–[13]. Alternatively, they
can be stopped after a finite amount of execution rounds in
which case their termination is guaranteed, but their safety
becomes probabilistic. Several papers study the trade-off
between termination probability and total step complexity of
randomized consensus algorithms [14]–[16].

At any event, these protocols whose aim is to ensure
consensus among the nodes despite Byzantine failures require
at least 3f + 1 nodes (and some even more than that)
[17], [18]. Notice that the typical definition of Byzantine
tolerant consensus is that if all correct nodes propose the
same value, then this value has to be chosen. Hence, in
scientific computing in which the result of each computation
is deterministic based on the input, as in our model, these
protocols can indeed be used to completely mask Byzantine
occurrence, yet at a cost of high resource utilization.

Non-probabilistic BFT protocols always ensure safety, yet
their termination depends on making synchrony timing as-
sumptions [4], [19], [20]. They also require that the number
of nodes participating would be at least 3f + 1.

The idea of separating ordering from execution was ex-
plored in [7]. It was shown that given a trusted ordering entity,
e.g., one that is created using a traditional BFT protocol,
specific operations can be replicated only 2f + 1 times.

In the SETI@HOME project [21], jobs are replicated
by default on 2 machines. The scheduler then compares
the results and if they do not match, it sends the job to
additional machines until enough replies agree (2 by default).
In the more advanced BOINC project [3], there is also an
adaptive replication scheme whose goal is to reduce the
computation overhead. When enabled, BOINC maintains an
estimate E(H) of host H’s recent error rate according to the
following scheme: E(H) is initialized to 0.1. It is multiplied
by 0.95 when H reports a correct (replicated) result. It is
incremented by 0.1 when H reports an incorrect (replicated)
result. Notice that it takes a long time to earn a good
reputation and a short time to lose it.

The adaptive replication policy then works as described
below. When the scheduler needs to assign a job to a host, the
scheduler decides whether to trust the host according to the
following rule: Given a trust threshold parameter A, currently
hard-coded to 0.05, if E(H) > A, do not trust the host.
Otherwise, trust the host with probability 1−

√
E(H)/A. If

the scheduler trusts the host, it prefers to send it non replicated
jobs. Otherwise, the scheduler sends replicated jobs to it. We
applied, as in SETI@HOME and BOINC, these mechanisms
and their associated magic numbers in our work. However,
we seek to systematically and rigorously study the impact of
a given choice of replication strategy on the confidence that
the scheduler can obtain in the results.

A close related work to ours is [22] where the authors

propose a reputation-based scheduler. Similarly to our ap-
proach, each node has a probability of being Byzantine
and tasks are replicated over a set of nodes that ensure a
probability of returning a correct response, which should be
above a threshold. However, in order to determine the size and
composition of such a group, the scheduler relies not only on
the reputation of the nodes but also on the majority-based
voting criterion of verification. In our approach, on the other
hand, tasks are just replicated over the minimum number of
nodes that meet the threshold. Moreover, in that work, the
probability that a majority of nodes return the same wrong
answer is neglected. In our case, the probability that all nodes
return the same wrong answer must be below a threshold.

In [6], a trusted scheduler routes computation tasks to f+1

nodes. It is assumed that the computations take a long time to
compute, and therefore the replicas take periodic checkpoints
of their state. A separate set of auditors occasionally verify
that all f + 1 checkpoints are consistent using a consensus
protocol, and if not, they rollback the computation to a
previously consistent checkpoint and restart it on different
nodes. Such a strategy is also used to detect which nodes
were Byzantine and eliminate them from the pool of compute
nodes. As we take a probabilistic correctness approach, we
can replicate the computation on fewer nodes (for moderate
and large values of f ).

A similar idea under the name of spot-checking was dis-
cussed in [23]. In that work, the results returned from compute
nodes of a volunteer computing platform are sporadically
verified by trusted spot-checkers. Whenever a mismatch is
revealed, the nodes that returned false answers are blacklisted
and never chosen again.

The closest work to ours is [9], who define the concept
of iterative redundancy, which improves on the concept
of progressive redundancy proposed in [24]. In progressive
redundancy, when trying to obtain a threshold of t agreeing
results, a compute task is sent to t compute nodes. If all
replies are the same, then the single result is deemed correct.
Otherwise, when there are multiple results, the compute task
is sent to additional t − l nodes until one result obtains
the required threshold of support, where l is the number of
occurrences of the most common value returned. In contrast
to our approach, the goal of iterative redundancy is that one
value will have at least t more supporters than any other value.
It also starts by sending the compute task to t compute nodes
and increasing the number of contacted nodes iteratively until
the threshold is met. Yet, in iterative redundancy, the threshold
t is determined based on the probabilistic reliability that
such an answer will be correct given the assumed average
reliability of nodes in the system.

There are several major differences between the work
in [9] and ours. First, our model allows for various compute
nodes to have different levels of reliability (reputation [25],
[26]). Second, we explore several strategies of reputation



management and the corresponding malicious behavior that
Byzantine nodes may employ against them. In particular, we
investigate the performance of the reputation management
strategy of the popular BOINC system in the face of Byzan-
tine compute nodes as well as the performance penalty for
Byzantine compute nodes who try to hide and only return (the
same) wrong answer when all chosen nodes are Byzantine.
Let us also note that the schedular algorithm in [9] is similar
to ours, but specified in terms of their assumptions, analysis,
and goals.

III. SYSTEM AND THREAT MODELS

We consider a typical cloud IaaS architecture, i.e., one
in which computing tasks continuously arrive and need to
be scheduled on a large pool of available compute nodes
(physical or VMs), similar to the one depicted in Figure 1. To
that end, we assume a trusted node that act as a scheduler for
these computing tasks. In particular, the scheduler is assumed
to be fault-tolerant, always available, and always obey their
prescribed protocol.

The communication in the system is performed by sending
and receiving messages over a communication network. The
network is assumed to be authenticated and reliable, with a
bounded communication latency. That is, a message is only
received if it was indeed sent by some node, and the receiver
always knows who the true sender of a message is.

Unlike the scheduler, the compute nodes may occasionally
act in a Byzantine manner. That is, while executing a com-
puting task, each compute node j may return an incorrect
answer (or not answer at all) with probability pj . We refer to
the probability rj = 1− pj that j returns a correct answer as
the reputation of j. Notice that rj’s may change overtime.

Based on the above, whenever a scheduler node receives
a compute task, it sends it to multiple compute nodes. When
the replies arrive, the scheduler compares them. If they all
agree, then the scheduler knows that this is the correct answer
with a certainty that depends on the reputations of the nodes
chosen. Otherwise, if some replies do not return within the
deadline, the scheduler knows that these nodes are faulty and
sends the same compute task to additional nodes. Similarly,
if the replies do not match, then the scheduler knows that at
least some of the nodes acted in a Byzantine manner and may
send the compute task to additional nodes until it has enough
probabilistic confidence in one of the replies.

We further assume that each compute task i has a nor-
malized compute time Ti and that each compute node j has
a known computing speed Cj . Hence, when there are no
failures, a task i that is scheduled to be computed on a node
j completes its execution on j within time Ti/Cj .

The number of nodes needed to execute each compute task
in order to gain a certain confidence level in the reply is the
main topic of this paper.

IV. PROBABILISTIC BYZANTINE TOLERANCE BASED ON

REPUTATION

In this section, unless specified otherwise, we assume that
failure probabilities are independent.

A. Basic Formal Analysis

When the scheduler sends a compute task to a set S of
compute nodes, the probability that all of them are correct is
given by

PC =
∏
j∈S

ri (1)

Similarly, the probability that all are Byzantine is

PB =
∏
j∈S

(1− rj) (2)

Further, the probability that a specific subset S1 of S is
Byzantine and all others are correct is

PSB =
∏
j∈S1

(1− rj) ·
∏

j∈(S\S1)

rj (3)

while the probability that all nodes in S1 are correct and
all others are Byzantine is

PSC =
∏
j∈S1

rj ·
∏

j∈(S\S1)

(1− rj) (4)

In particular, the probability of having at least one correct
node is 1 − PB and the probability of having at least one
Byzantine node is 1−PC . The probability of having exactly
i correct answers is∑

Si⊂S

∏
j∈Si

rj ·
∏

j∈(S\Si)

(1− rj),

where Si denotes subsets of S of size i. In the particular
case in which all compute nodes have identical reputation
and uniform choosing probability, we get(

|S|
i

)
(rj)

i · (1− rj)n−i.

where n = |S|. The goal of the scheduler is to send the
task to enough nodes such that the chances of not detecting
a false answer is below a given threshold, denoted TB . The
latter may occur only if all the chosen nodes are Byzantine
since, in this case, they may all return the same false answer.
Hence, S needs to be chosen such that PB is bounded by the
required threshold TB . For example, if pj = 0.1 (rj = 0.9)
for each compute node j and the threshold is 0.0001, then S
should include at least 4 compute nodes. Notice that in this
case, the a-priori chance of obtaining a correct answer from
all nodes in S is 0.94 = 0.6561. Further, with probability
4 · 0.93 · 0.1 = 0.2916, there are exactly 3 correct answers,
etc.

Similarly, the probability that the correct answer will be
returned by at least i nodes is the summation of the proba-
bilities of having k correct answers for all i ≤ k ≤ n. In the
above example, the probability of having at least 3 correct
replies is therefore 0.6561 + 0.2916 = 0.9477, etc.



B. When All Replies are the Same

Once the results are returned by the chosen nodes, the
scheduler can compute the following probabilities in order to
decide whether to accept any of the values or to submit the
compute task to additional compute nodes in order to increase
its trust in the correctness of the reply. For example, suppose
that all replies included the same value v. This means that
either all compute nodes were correct or all compute nodes
were Byzantine. Clearly, the situation in which all nodes are
Byzantine is the worst, since the scheduler cannot detect that
the result is incorrect.

We define by α the probability that all replies are incorrect
and by β the probability that all replies are the same. Hence,
we are interested in the probability P (α|β) = P (β|α)P (α)

P (β)

(from Bayes theorem). Since Byzantine nodes can do what-
ever they want, we have no expression for P (β|α), but
it can be upper bounded by 1. Also, P (α) = PB while
PC ≤ P (β) ≤ (PC +PB) (again, it is not equal to PC +PB
since the Byzantine nodes do not necessarily return the same
answer even when all selected nodes are Byzantine). This
gives a bound on P (α|β):

P (α|β) < PB
PC
≤ TB (5)

Using the numbers and assumptions of the example above,
we get that the probability that all replies are incorrect is still
close to 0.0001.

C. Multiple Answers

If the scheduler receives more than one answer, then
obviously at most one answer is correct and any other answer
was generated by Byzantine nodes. Suppose one of the replies
is v1 and denote by S1 the set of compute nodes that returned
v1. The a-priori probability that S1 includes correct nodes
(and therefore v1 is correct) and all other nodes are Byzantine
is PSC (formula 4). Denote by γ the event in which all
nodes in S1 are correct and all others acted in a Byzantine
manner. Denote by δ the event in which either all nodes
in S1 are correct and all other nodes are Byzantine or all
nodes in S1 are Byzantine (and we do not know anything
about the other nodes). The probability that v1 is the correct
value is the same as the probability that S1 are correct and
is expressed by P (γ|δ) = P (δ|γ)P (γ)

P (δ) . Obviously, P (δ|γ) = 1

and P (γ) = PSC . Further,

P (δ) =
∏
j∈S1

(1− rj) + PSC

and therefore

P (γ|δ) = PSC∏
j∈S1

(1− rj) + PSC
(6)

Hence, in this scenario, the scheduler needs to send the
compute task to additional nodes until one value meets the
correctness threshold.

Let us note that since the chance of a split vote, in which
there are two answers each having a similar number of
supports, is very low and becomes negligible as the size of
the set of compute nodes performing the compute task is
increased. For example, with 4 nodes as above, the chance
of an equally split vote is only 0.0486 and rapidly diminishes
with additional nodes.

If we consider b Byzantine nodes with the same reputation
rB and that every correct node has the same reputation r, the
probability that P (γ|δ) is above a correctness threshold TC
is given by the following formula:

r|S1|(1− rB)b

(1− r)|S1| + r|S1|(1− rB)b
> TC .

We can deduce that

|S1| >
log(TC/(1− TC))− b · log(1− rB)

log(r/(1− r))
(7)

Note that TC = 1 − TB . Finally, it is possible that
some replies did not arrive at all. Since we assume failure
independence in this section, the scheduler needs to send the
compute task to additional nodes until enough nodes return
an answer whose probability of being correct is above the
given threshold.

D. The Schedular’s Algorithm

In this section, we assume that the scheduler’s main goal is
to conserve resources in expectation while obtaining the min-
imal thresholds for correct values. This leads to a scheduling
algorithm as listed in Algorithm 1, executed for each compute
task. The algorithm takes as input a task CT and the threshold
value TB . Specifically, the scheduler selects a minimal set of
nodes R1 for which if all of them return the same reply, then
the probability that it is the incorrect result is below the TB
threshold. To that end, it can use the formula (5) for P (α|β),
by setting S = R1 for PC and PB in formulae (1) and (2)
respectively.

Let us denote by M1 the set of nodes in R1 that returned
the value v that was most popular among the values returned
by nodes in R1. If all results are the same (M1 = R1), then
v is chosen (lines 8 and 9). Otherwise, the schedular finds a
second disjoint subset R2 such that if all nodes in R2 return
the same value as the one returned by nodes in M1, then
the probability that this value is the correct one is above the
required correctness threshold, TC = 1 − TB (line 14). To
that end, it uses the formula (6) for computing P (γ|δ), setting
S = R1 ∪R2 and S1 =M1 ∪R2.

If now all nodes in R2 return the same result as the ones
in M1, then this value is chosen and the protocol terminates
(lines 11 and 12). Otherwise, we define M2 to be the set of
nodes from R1 ∪ R2 (line 4) that returned the most popular
value and the scheduler searches for a set R3 such that if all
its members return the same result as the ones in M2, then



Algorithm 1: Scheduler’s Algorithm
input : Compute task CT; Threshold TB

1 R← ∅;
2 Choose a minimal set of nodes R1 s.t. cond1(R1,TB);
3 for i← 1 to ∞ do
4 Set R← R ∪Ri;
5 Send CT to all members of Ri;
6 Wait for replies from Ri;
7 Let v be a most frequent value in all replies received

and let Mi be the set of all nodes that returned it;
8 if (i == 1) and (Mi == R) then
9 return v;

10 end
11 if cond2(R, Mi, T) then
12 return v;
13 end
14 Choose a minimal set Ri+1 s.t. Ri+1 ∩R == ∅ and

cond2(R ∪Ri+1, Mi ∪Ri+1, TB);
15 end

16 cond1(set S, threshold th)
17 calculate PB and PC over S according to formulae

(2) and (1);
18 return (PB/PC ≤ th);

19 cond2(set S, set S1, threshold th)
20 calculate P (γ|δ) over S and S1 according to

formula (6);
21 return (P (γ|δ) > (1− th));

this value will be correct with probability above the required
threshold TC , etc.

Notice that while the for loop in the scheduler’s algorithm
is not bounded, in practice, it terminates with high probability.
For preventing it from terminating, different values should be
returned often enough such that the correctness threshold TC
is never reached, which would mean that continuously nodes
need to act in a Byzantine fashion. However, the probability
of not terminating diminishes exponentially with the size of
the set of contacted nodes (R in the algorithm).

Figure 2 shows the average number of steps of the sched-
uler’s algorithm when the threshold TB varies. The fraction
of Byzantine nodes in the system is fixed to 15% and all
the nodes have the same reputation r. If the latter is high
(r = 0.99), then the algorithm quickly converges in just 1.345
steps, i.e, within a very small number of iterations.

V. ON THE COST OF BYZANTINE BEHAVIOR

A. Impact of reputation strategies

We first study the impact of reputation update policies on
the correctness threshold TC and the size of required same
value set, S1.
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Fig. 2. Expected convergence time of scheduler’s algorithm (in number of
iterations required for convergence). The algorithm quickly converges when
the reputation of nodes increases.

a) Reputation strategies: Considering formula (7), the
chosen strategy to increase and decrease nodes’ reputation
has an impact on the size of S1. Thus, for evaluation sake,
we consider the following three strategies:
• The BOINC strategy presented in Section II where

reputations are computed as 1 - error rate.
• The symmetrical strategy, where the reputation of a

node is increased (respectively, decreased) by X% each
time it returns a correct (respectively, wrong) value.

• The asymmetrical strategy, where Byzantine nodes are
more punished than the others: the reputation of a node
is increased by X% each time it returns a correct value
and is decreased by 2X% when it returns a wrong value.

The threshold TC is equal to 0.97 and in order to avoid that
Byzantine nodes’ reputation slows down too fast, we consider
that these nodes return a bad value with probability p = 0.5.
For the symmetrical and asymmetrical strategies, X was set
to 20%.

Exploiting the three described update reputation strategies,
Figure 3 gives the evaluation of the reputation of both the
correct and Byzantine nodes at each time step. BOINC
punishes compute nodes for Byzantine behavior severely and
rewards their trust for good behaviour very slowly. On the
other hand, the reputation of correct nodes in BOINC grows
much slower than in the symmetric and asymmetric strategy.
Ultimately, the goal of the reputation system is to obtain
efficient resource utilization, which is explored in the next
section.

b) Cost of one Byzantine behavior: We first consider
only one Byzantine node (b = 1). Figure 4 shows the
evolution of the size of S1, i.e., as each strategy updates
differently the reputation of correct and Byzantine nodes, we
have evaluated how the size of S1 decreases over the time.

We can observe in the figure that, as expected, strategies
have different impact in S1’s size. BOINC, which strongly
punishes the Byzantine node, is less efficient because the



0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 

re
p

u
ta

ti
o

n
 

time 

BOINC r 

BOINC rb 

Sym r 

Sym rb 

Asym r 

Asym rb 

Fig. 3. Reputation strategies evolution. BOINC and asymmetric punish
nodes severally, while asymmetric and symmetric better reward good behav-
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Fig. 4. Evolution of size of S1 for b =1 and TC = 0.97 for the 3 reputation
strategies. By keeping the highest difference between the reputation of correct
and Byzantine nodes, the asymmetric strategy quicker converges to the
smallest value of S1.

reputation of correct nodes increases slowly. However, in the
asymmetric strategy, the size converges faster to small values
than in the other strategies since the Byzantine node is more
severely punished when it returns a wrong value, compared
to the other two strategies. In summary, the asymmetric
strategy converges to the smallest set size faster due to
its combined harsh punishment for Byzantine behavior with
favorable rewards for good behavior. It is, therefore, the best
strategy.

We denote a “smart” Byzantine node, the one which,
aiming at keeping a better reputation, does not always return
a wrong value. Hence, in order to evaluate the impact of a
“smart” Byzantine node on the asymmetric strategy, the best
one, we have also measured the time for S1 to be of size
1, which characterizes the convergence time, i.e., the period
during which the Byzantine node can slow down the system.
After that, the reputation value of the Byzantine node will
be too small to have any impact on the system. To this end,
we have varied the probability p of the Byzantine node of
returning a wrong value and consider 3 correctness threshold
values. The results are given in Figure 5.
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Fig. 5. Convergence time to reach the minimum size of S1 (|S1| = 1) when
the probability of the Byzantine node to return a wrong value varies. A smart
Byzantine node with sporadic wrong value computation highly increases the
convergence time.
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Fig. 6. Size of S1 for TC = 0.97 when b varies. When the system is stable,
the adding of several Byzantine nodes increases the number of nodes needed
to be contacted.

With a reliable threshold of TC = 0.97, p has a high impact
on the convergence time. For instance, a “smart” Byzantine
node which only returns one wrong value within 10 times
(p = 0.1), increases 5 times the convergence time compared to
a Byzantine node which always returns a wrong value (p = 1).
On the other hand, for greater threshold value, p has a lower
impact. For instance, if we set TC = 0.999, the same “smart”
Byzantine node only doubles the convergence time whereas
with TC = 0.9999 (not illustrated in the figure) the smart
node only increases by 10% the convergence time.

c) Cost of several Byzantine behaviors: Figure 6 shows
the size of S1 when the number of Byzantine nodes varies (x-
axis) for a threshold TC = 0.97 in the asynchronous strategy.
Considering a stable system (|S1| = 1) where r = 0.99856

and rb = 0.9, the number of Byzantine nodes is increased.
Each Byzantine node arrives with a reputation rb = 0.9 and
we observe an increase by one of S1 every 3 Byzantine nodes.
We can thus conclude that the initial reputation value of nodes
has a direct impact on the increase of S1 size. For instance, if
we consider an initial reputation value equal to 0.7, the size
of S1 is increased every 5 Byzantine nodes insertions.
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Fig. 7. Overhead according to the fraction of Byzantine nodes. When
the proportion of Byzantine nodes is high, the probability of having wrong
responses in larger sets increases, inducing a higher overhead.

B. Additional cost of Byzantine nodes

We now express the cost to obtain a given number of
correct responses. We denote Nact(s) the number of nodes
necessary to be contacted in order to obtain s responses from
correct nodes. Nact(s) is at least equal to s plus possibly
additional nodes, if some of the first s responses concern
Byzantine nodes. Considering fb as the fraction of Byzantine
nodes of the system, the number of responses returned by
Byzantine nodes, NByz , in a set of size s, is given by:

NByz(s) =

s∑
i=1

i.

(
s

i

)
.f ib

Then, Nact for a set of size s is given by the following
formula:

Nact(s) = s+Nact(bNByz(s)c) (8)

Figure 7 shows the percentage of overhead, i.e., the cost
of contacting additional nodes (=(Nact(s) − s)/s), when fb
varies for different sizes of response set s in the asynchronous
strategy. An overhead of 50% means that, in average, 1.5s
nodes must be contacted in order to obtain s values returned
by correct nodes.

C. The impact of churn

Churn may have a strong impact in the evaluation of the
size of S1 since new correct (resp., Byzantine) nodes which
arrive in the system can have an initial reputation value
underestimated (resp., overestimated), when compared to the
reputation of those nodes which are already in the system.
We have thus evaluated the impact of nodes churn on the
size of S1 by considering the asymmetrical strategy. We set
the threshold TC to 0.97 and the number of Byzantine nodes
b to 5. Churn was simulated by increasing the proportion of
new nodes that arrive in the system at each time. Their initial
reputation was fixed to 0.9. The results are given in figures
8.

We can observe that even a low churn of 10% (churn =
0.1 in the figures) has a high impact in the convergence time:
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(a) Evolution of size of S1 with churn.
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(b) Convergence time with churn.

Fig. 8. Impact of churn with TC = 0.97. As expected, high churn
delays convergence since the system has less chance to learn and adjust
the reputation of nodes.

the time to reach a set of size 1 is 1.625 times longer than
with no churn. For high levels of churn (churn ≥ 0.3), the
convergence time increases drastically. Figure 8(b) shows the
convergence time in relation to the churn rate.

VI. ON THE COST OF HIDING BYZANTINE BEHAVIOR

Byzantine nodes whose main goal is to hurt the correctness
of the computation and avoid the discovery of their behavior
as much as possible, may act as follows: Whenever all com-
pute nodes chosen for a given compute task are Byzantine,
then they all collaborate to return the same false value.
Otherwise, they all return the correct result for the compute
task. Note that here we move to a model in which Byzantine
behavior is deterministic and dependant on the choice of
compute node. Since in this model an incorrect answer is
never detected, the reputation of all nodes is always the same.

We analyze the case in which the number of Byzantine
nodes is a fraction of all other nodes, and the scheduler
picks compute nodes uniformly at random and independently
for each compute task. In this case, when the fraction of
Byzantine nodes is fb, where 0 ≤ fb ≤ 1, whenever the
scheduler chooses a set S of compute nodes for a given task,
the probability that all of them will be Byzantine is f |S|b .
Hence, in a long running system, in expectation, once every
1

f
|S|
b

all nodes will be Byzantine, returning an undetectable



false answer. In all other times, a correct answer will be
returned.

Given the way the schedular chooses nodes, each Byzantine
node participates in 1

f
|S|
b

computations for each time in which
all other nodes are also Byzantine. At this time, all of them
can return a bogus answer without computing the real task,
and thus they do not waste any computational resources.
However, in the other times, Byzantine nodes need to compute
the task in order to know the correct answer returned by
correct nodes. Assume that all computation tasks consume
similar resources denoted by C. The amount of computation
resources that each Byzantine node consumes in order to avert
a single computation result is

(
1

f
|S|
b

− 1) · C.

Another way of looking at this problem is that, with such
a hiding strategy, Byzantine nodes actually contribute with
a significant amount of useful work for valid computations.
That is, for each compute task that they sabotage, they do
useful work for ( 1

f
|S|
b

− 1) computations. For example, in the

case that fb is 0.2 and |S| = 4, they contribute to 624 valid
computations for each disrupted one, which suggests that this
strategy is highly inefficient for the Byzantine nodes.

In fact, for a large family of important (iterative) problems,
we show below that using the hiding strategy, the worst
damage Byzantine nodes can do is to slightly delay the
computation. However, while doing so, they in fact spent
more resources with useful work for the computation than the
amount of extra resources necessary to correct their wrong-
doing.

Specifically, the idea is that in many iterative computing
problems, there is a bound on the difference between the
partial result obtained in a given iteration and the partial
result that is expected in the following iteration. Further, if
the convergence is guaranteed regardless of the exact value
with which each iteration started, that is, the iterative method
is globally convergent, then the worst damage that such
coordinated Byzantine behavior may causes is a setback of
at most a single (or very few) iterations. In particular, most
iterative methods for systems of linear equations are globally
converging. In case the method is only locally convergent,
such as Newton’s method, small deviations made by Byzantine
nodes will typically not prevent convergence whenever the
initial guess enabled convergence.

On the other hand, large deviations can usually be detected
and ruled out as they noticeably diverge from the values
expected by the rate of convergence of the iterative method,
which again prevents hiding Byzantine nodes from employing
them. In the above example, this means that, for each iteration
it disrupts, a Byzantine node contributes to 624 valid itera-
tions and, therefore, its damage is at most the equivalent of
executing a small number of valid iterations. In other words,

in the above examples, when nodes are selected uniformly
at random by the scheduler for each iteration independently,
hiding Byzantine nodes contribute to much more useful work
than the damage they do and, even if they can slightly prolong
the computation process, they cannot halt it.

VII. CONCLUSION

The main contribution of this paper is a study of probabilis-
tic reliability in Byzantine cloud computing environments. In
particular, we have found promising evidence that reputation-
based replication substantially helps in mitigating Byzantine
behaviors and its impact on the correctness of the computation
in such environments.

Assuming an environment where most compute nodes
are trustworthy, the approach is simple. It replicates task
executions on a varying number of nodes to ensure that a
consistent answer from all nodes has a significant probability
of being correct. When no returned value obtains enough
support to be deemed correct, additional nodes are contacted.
Yet, in order to conserve resources, if all these additional
nodes return the most popular returned value up to that point
then the probability that this value is the correct one is above
the required correctness threshold.

Iterations of this process converge fast towards a trustwor-
thy answer, with the additional advantage that they detect
incorrect nodes with a significant degree of accuracy and
actively discourage malicious behaviors. Nodes with consis-
tently incorrect responses will quickly get discarded. Nodes
that respond correctly most of the time in order to acquire a
good reputation before injecting wrong data incur a very high
effort/reward ratio, and end up actually taking a positive part
in the system’s computation. Further, we have also identified
important sets of problems in which such nodes cannot disrupt
the system from eventually reaching a correct answer. The
worst damage they can do is a slight slowdown and, in fact,
they end up helping the system more than disrupting it.

We have also investigated the effectiveness of multiple rep-
utation management strategies, including the one employed
by BOINC as well as a couple of novel ones. We found
that all three are effective, but our new method, nicknamed
asymmetric was the best in terms of its impact on the
consumed resources and convergence times.

Given the encouraging results of this work, we plan to
extend this direction by taking the computational power of
nodes into account when forming the replication sets. The
goal will be to identify beneficial trade-offs between the
total computation time and the trustworthiness of the result.
More precisely, the scheduler algorithm consists of multiple
iterations that end when some value obtains the reliability
threshold. Choosing very fast nodes can reduce the time to
compute each iteration. However, if these nodes are less
reliable, then additional iterations may be needed. Hence,
when the goal is the expected compute time until a reliable



answer is obtained, one should look for an optimal tradeoff
point between the positive impact of high compute power and
the negative influence of lower reliability. We should point out
that in cloud computing environment, usually, the higher the
compute power of a node, the higher the cost of reserving it.
Thus, there exists also a tradeoff between cost and reliability
to be exploited.
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