
A Symbolic Framework for the Conformance
Checking of Value-Passing Choreographies?

Huu Nghia Nguyen1, Pascal Poizat1,2, Fatiha Zäıdi1

1 LRI; Univ. Paris-Sud, CNRS, Orsay, France
2 Univ. Évry Val d’Essonne, Evry, France

{huu-nghia.nguyen, pascal.poizat, fatiha.zaidi}@lri.fr

Abstract. Choreographies, thanks to their abstract and global perspec-
tive, are well-suited to the specification of distributed systems such as
service compositions and collaborative business processes. Choreography
conformance checking aims at verifying whether a set of distributed peers
or local role specifications match a global specification. This activity
is central in both top-down and bottom-up development processes for
distributed systems. Such systems usually collaborate through informa-
tion exchange, thus requiring value-passing choreography languages and
models. However, most of the conformance checking techniques abstract
value-passing or bound the domains for the exchanged data. As an alter-
native, we propose a conformance checking framework based on symbolic
models and an extension of the symbolic bisimulation equivalence. This
enables one to take into account value passing while avoiding state space
explosion issues. Our framework is fully tool supported.

Keywords: choreography, specification, conformance, symbolic transi-
tion systems, symbolic branching bisimulation, tools.

1 Introduction

Context. Choreography is the description with a global perspective of interactions
between roles played by peers (services, organizations, humans) in some collabo-
ration. A choreography has two components: a set of roles, and the specification
of the legal orderings of message exchanges between these roles. Choreography
languages may be classified wrt. their underlying interaction model [1, 2]: in-
terconnected interface models (e.g., BPMN 1.0 Collaboration Diagrams) where
peer models are defined first, before being connected, and interaction models
(e.g., BPMN 2.0 Choreography Diagrams) where interaction between peers is the
specification atom. The later better suit the needs of choreography specification
due to their perspective abstracting away from peer implementation.

? Version 1 – July 30th, 2012. Part of this works has been published in the proceedings of
ICSOC’2012. This work is supported by the PIMI project (ANR-2010-VERS-0014-03)
of the French National Agency for Research.

2 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

Issues. One key issue in choreography-based development is checking the con-
formance of a set of local descriptions wrt. the choreography global specification.
This issue naturally arises in a bottom-up development process, where peers
implemented as services and advertising behavioural descriptions (conversations)
are reused and composed. The question here is “Will these peers behave altogether
as prescribed in the choreography?”. Conformance is also central in a top-down
development process, where local obligations, kinds of “behavioural skeletons”,
are generated by projection from the choreography. The question here is “Am I
sure that if I implement these local obligations then I will have a correct im-
plementation of the choreography?”. Conformance is therefore a cornerstone for
choreography realizability checking that addresses whether projection may or may
not be used to get a conform set of peer skeletons. Even simple choreographies
such as “A and B must interact first before C and D may interact” can be
unrealizable as-is and require additional exchanges in the implementation to
enforce the ordering of messages (here, an additional message sent from B to C
to prevent C to interact with D before A and B have done so). Therefore, the
definition of conformance should not be too strict. It should support choreography
refinement, e.g., with peers and interactions being added in the implementation
by the service architect in order to enforce the specification. Finally, entities in a
distributed system usually exchange information, i.e., data, while interacting.
As a consequence, data should be supported in choreography specifications, in the
descriptions of the local entities, and in the conformance relation.

Related Work. Testing may be used to check for the conformance of an im-
plementation wrt. a choreography specification [3, 4]. However, it is generally
desirable to detect faults as soon as possible in system development. Further,
verification enables one to check the conformance of systems-to-be, e.g., in a
top-down development process where local obligations are not yet implemented.

In Table 1, we compare approaches for conformance checking. Columns 2
and 3 focus on data support. Some approaches just abstract away from data. This
is known to yield over-approximation issues, e.g., false negatives in the verification
process. For the following, let us suppose a very simple choreography C: “A
and B exchange an integer lower than 5”. Data can be supported by working on
closed implementation-level systems where sent messages contain only ground
data, e.g., “A sends 4 to B” or “A sends x+3 to B, knowing that x is 1”. In such a

Table 1. Choreography conformance approaches

Data & Value-Passing Expressiveness Conformance
supported treatment loops assignment global relation (based on)

[5]

no -

yes no yes Trace equivalence
[6] yes no yes Weak bisimulation
[7] yes no yes Strong bisimulation

[8]

yes

closure yes yes no Weak bisimulation
[9] closure no yes yes Branching bisimulation
[10] bound data yes no yes Branching bisimulation
this paper symbolic yes no yes Branching bisimulation

Conformance Checking of Value-Passing Choreographies 3

case, the state space explosion of the system model is limited. This is because
even if the reception of a message in some entity is denoted with a free variable,
e.g., “B receives from A a y lower than 10”, upon making it correspond with a
sent message, the variable will be bound. Here, y = 4, satisfying B since 4 < 10
and conforming to C since 4 < 5. However, this is not adequate when working
on abstract specifications where there are no such ground sent messages but
only free variables and constraints on their values, e.g., “A sends some x greater
than 3 to B” (note, here, that the exact x is not given, since it can be known
only at run time). Another solution is to bound data domains, e.g., integers are
bound to [0..b]. The issue is that conformance may not yield outside the bounds.
On our example, it works if b < 5 but not if b ≥ 5 since A may then choose
to send 6. Defining bounds in order to avoid false positives in the verification
process can be difficult. In our framework, data is supported using a symbolic
approach and the use of an SMT solver. Conformance may be checked for whole
data domains. If it does not yield, we can determine conditions for it to do.
Here, x < 5. This is particularly relevant in a top-down development process or
for online verification, respectively to add conditional statements in peer skeletons
generated from choreography specifications, or to detect as soon as possible that
an interaction will eventually lead to a conformance error.

Columns 4 and 5 are relative to the expressiveness of the choreography
language. Loops and assignments may yield state space explosion in presence
of data if one does not close the system or bound data domains. We chose to
support loops since we believe that assignments are a less important feature in a
specification language: a specification should express what should be done (“A
sends an x to B and then B replies with a y greater than x”) rather than how it
should be done (“A sends an x to B, B adds 1 to x and sends it back to A”).

The last two columns are relative to the kind of conformance being supported
and the behavioural equivalence being used. Global conformance is important in
conformance checking since one wants not only to know if each peer is conform to
its role, i.e., local conformance, but also if the peers altogether have a behaviour
that is conform to the choreography. Local conformance does not implies global
conformance. Weak and branching bisimulations are able to support internal
actions and hiding (formally, τ actions). This is important, e.g., if one has to
deal with messages added to make some choreography realizable. Branching
bisimulation [11] has been preferred over weak bisimulation in the last years since
it is a congruence, hence supports compositional reasoning.

Symbolic bisimulations, defined on Symbolic Transition Graphs (STGs), have
been introduced in [12] with both of early and late semantics. In this work, we use
late semantics. The STGs have then been extended to STGs with assignments
(STGAs) in [13, 14]. These works mostly concentrate on strong and weak bisim-
ulation. Symbolic branching bisimulation has not yet received much attention.
As a consequence, there is tool support for symbolic strong bisimulation [15] and
open bisimulation3, but not for symbolic branching bisimulation.

3 http://sbriais.free.fr/tools/abc/

4 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

Contributions. Our contributions are the following. Based on process algebras
for choreography [16, 5], we propose a specification and description language
with an interaction model addressing both the global (choreography) and the
local (peers description, role requirements) perspective over distributed systems.
Our language supports information exchange and data-related constructs (condi-
tional and loop constructs). We give a fully symbolic semantics to this language
using a model transformation into STGs, thus avoiding data abstraction and
over-approximation, restriction to manually bound data domains, and limitation
to implementation-level closed descriptions. Accordingly, we build on branch-
ing bisimulation [11] and on a symbolic extension of weak bisimulation [14] to
develop a specific symbolic version of branching bisimulation dedicated at check-
ing the conformance of a set of local entities wrt. a choreography specification.
Our equivalence enables one to check conformance in presence of choreography
refinement, i.e., where new peers and/or interactions may be added wrt. the
specification. Going further than a true vs. false result for conformance, our
approach supports the generation of the most general constraint over exchanged
information in order to have conformance. Finally, our framework is fully auto-
mated with a tool-chain that is freely available online (please see Section 4 for
the URL).

Overview. The remainder of the paper is structured as follows. We present our
language, the formal models we use, and our model transformation in Section 2.
We then introduce our conformance relation in Section 3. The implementation of
our framework and experiments are discussed in Section 4. Finally, we conclude
and discuss perspectives of our work.

2 A Language for Choreographies, Roles, and Peers

In this section, we present our specification and description language. It can be
used to specify distributed systems with a global perspective, i.e., choreographies,
to define local requirements, i.e., roles, and to describe the pieces of a distributed
implementation, i.e., peers. Due to this multi-purpose objective, it is first presented
in terms of an abstract alphabet, A. We then explain how A can be realized for
the different purposes. In a second step, we give a semantics to our language, in
terms of a symbolic model, namely Symbolic Transition Graphs.

General syntax. The basis of a behavioural description is the notion of event.
To promote generality, let us first suppose a set A (alphabet) of events of interest.
The syntax of our specification language, L(A), is given by:

L ::= 1 | α | L;L | L+ L | L|L | L[>L | [φ] . L | [φ] ∗ L

In L(A) we can specify activities which are either basic or composite. A
basic activity is either termination (1) or a regular activity (α, with α ∈ A).
We then have structuring operators, that can be used to specify composite ac-
tivities: sequencing (;), non deterministic choice (+), parallel activities (|), and

Conformance Checking of Value-Passing Choreographies 5

interruption ([>). Furthermore, we support data exchange (see below, Choreog-
raphy syntax). Accordingly, we have data-based conditional constructs, namely
guards (.) and while loops (∗), where φ is the condition (a boolean expression).

Process algebras have successfully been used to give a formal semantics to
business process languages and notations [17]. We take inspiration in all-purpose
process algebras such as LOTOS and choreography-oriented ones [5, 16]. Since we
are interested in an abstract formal choreography language, i.e., implementation
independent and with an interaction-based model [1], the usual τ actions can
be ignored [18]. Moreover, since we support data, we do not require τs to model
conditional constructs. While a specification such as if x>y then P else Q is
usually encoded into τ ;P +τ ;Q, we can encode it into [x > y].P +[¬(x > y)].Q.

Choreography (global) specification. A choreography specification describes,
with a global perspective, the legal interactions among roles played by the
participants of a distributed system. In a choreography, each role is identified
by a unique name. The basis of an interaction-model choreography description is
the interaction. Let us denote an interaction c from role a to role b by c[a,b].x,
where x is a variable that represents the information exchanged during interaction
(x is omitted when there is no such information). We stress out that x can be
structured, e.g., to denote a multiple data exchange as done in Web services
with XML message types. A choreography (or global) specification for a set of
roles R, a set of interactions C, and a set of variables V , is an element of L(A)
with A = {c[a,b].x | c ∈ C ∧ a ∈ R ∧ b ∈ R ∧ a 6= b ∧ x ∈ V }.

Example 1. Let us suppose a shipping choreography between two roles: c (client)
and s (shipper). The client first requests shipping by providing the weight of
goods to be sent. If this is less than 5 kgs then the goods will be sent for free.
Otherwise, the shipping has to be paid. This can be described as follows:

Shipping ::= Request[c,s].x1; ([x1 < 5] . FreeShip[s,c] + [x1 ≥ 5] .PayShip[s,c])

Role and Peer (local) descriptions. In a top-down development process,
local descriptions correspond to role requirements (or role for short) obtained
by projection from global specifications. Each role describes what is expected
from a peer that would implement it. In a bottom-up development process,
local specifications correspond to the behavioural contracts or interfaces that
peers advertise in order to foster reuse, composition, and adaptation [17]. In
the sequel, we will use the term local entity, or entity for short, in order to
abstract from the process development being used. Interactions specified in
choreographies correspond to communication primitives in entities. In an entity a,
these primitives can be abstracted as sending and reception events, denoted
respectively with c[a,b]!x and c[b,a]?x, where b is another entity, i.e., a 6= b, and x
is the information exchanged during interaction (x is omitted when there is no
such information). An entity (or local) description for an entity a, a set of roles R
with a ∈ R, a set of interactions C, and a set of variables V , is an element of L(A)
with A = {c[a,b]!x, c[b,a]?x | c ∈ C ∧ b ∈ R ∧ a 6= b ∧ x ∈ V }.

6 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

Example 2. A tentative to implement the shipping choreography (which is correct
as we will see in the following) is that the client sends the weight to the shipper
and then waits for either free or paid shipping, while it is the shipper that checks
the weight in order to decide which shipping is used:

Client c ::= Request[c,s]!y1; (FreeShip[s,c]? + PayShip[s,c]?)

Shipper s ::= Request[c,s]?z1; ([z1 < 5] . FreeShip[s,c]! + [z1 ≥ 5] .PayShip[s,c]!)

Symbolic Transition Graphs. A Symbolic Transition Graph [12] is a transition
system where a set of variables, possibly empty, is associated to each state and
where each transition may be guarded by a boolean expression φ that determines
if the transition can be fired or not. Actions labeling transitions will correspond
in our work to the elements of the alphabets we have seen earlier on. We also
add a specific event, X, to denote activity termination. The set of free and bound
variables of these actions are defined as following: bv(c[,].x) = bv(c[,]?x) = {x},
fv(c[,]!x) = {x}, and otherwise both fv(α) and bv(α) are empty. We also
use fv(e) to denote the set of free variables in expression e.

Definition 1 (Symbolic Transition Graph). A Symbolic Transition Graph
(STG) is a tuple (S, s0, T) where S is a non empty set of states, each state having
an associated set of free variables fv(s), s0 ∈ S is the initial state, and T is a

set of transitions of the form s
[φ] α−−−→ s′ with s, s′ ∈ S and fv(φ)∪ fv(α) ⊆ fv(s)

and fv(s′) ⊆ fv(s) ∪ bv(α).

A non-symbolic semantics for STGs would bound free variables using domain
enumeration, e.g., bound an integer x to {0, 1, 2, . . .}, thus yielding state space
explosion. In the symbolic semantics, substitutions are associated to STG states.
Let us begin with some notations. V is a set of variables, ranged over by x, y, z, x1,
etc. A variable substitution (substitution for short) σ is a mapping from V to V . ∅
denotes the empty substitution. σ[x 7→ y] is the substitution σ where the mapping
from x to y is added, eventually erasing a previous mapping from x. eσ denotes
the application of σ to e. A term [12] is a pair sσ where s is a state and σ is a
substitution. In the sequel, we denote states by s, s1, s′, etc. and terms by t, t1, t′,
etc. We may now define the (late) symbolic semantics of an STG as relation
over terms (Fig. 1). Substitutions apply to free variables in the guard and in
the sent information. In case of a reception (rule RECEIVE) or an interaction
(rule INTERACT), a variable, x, becomes bound. To denote this symbolically
(without enumeration), the substitution in the target state is updated using a
fresh variable, z, instead of a value. Please note that −→ is used for STG transitions
(over states) and 7−→ is used for STG semantics (over terms).

Model transformation to STGs. We use STGs as a formal model to give
semantics to our language. This is achieved by a rule-based transformation defined
in Figure 2 where 0 is the empty description (only used for semantics), X denotes
activity termination, α denotes any event but for X, and α̂ denotes any event
(including X). The symmetric rules for CHOICE1 and PAR1 can be inferred from
them and are omitted here.

Conformance Checking of Value-Passing Choreographies 7

(TERMINATE)

s
[φ] X−−−→s′

sσ
[φσ] X7−−−−→s′σ

(SEND)

s
[φ] c[,]!x−−−−−−→s′

sσ
[φσ] c[,]!xσ7−−−−−−−−→s′σ

(RECEIV E)

s
[φ] c[,]?x−−−−−−−→s′

sσ
[φσ] c[,]?z7−−−−−−−→s′

σ[x 7→z]

(INTERACT)

s
[φ] c[,].x−−−−−−→s′

sσ
[φσ] c[,].z7−−−−−−−→s′

σ[x7→z]

Fig. 1. Symbolic semantics of an STG

Product of STGs. The product of STGs is used to give a semantics to a
set of interacting local entities (Fig. 3). We assume that the STGs use disjoint
sets of variables which can be achieved using, e.g., indexing by the name of
the entity. The first rule (TERM) expresses that the composition terminates
successfully when all its components do so. The second rule (PAR1) represents
the independent evolution of one of the STGs (the first one). Finally, the third
rule (COM1) denotes a synchronization between a sending a data in x to b and b
receiving it in variable y. Normally, the variable y of b would be fixed by x
however we intend to evaluate y with all its possible valuation. In this rule,
t[x 7→ y] with t = sσ denotes the term sσ[x7→y]. Further, 〈t1, t2〉, with t1 = s1σ1

and t2 = s2σ2
, denotes the term (s1, s2)σ1∪σ2

. The symmetric rules for PAR1 and
COM1 can be inferred from them and are omitted here. We give a binary version
of the product for simplicity purposes. An n-ary version of it can be obtained
working on tuples 〈t1, . . . , tn〉 of terms instead of pairs 〈t1, t2〉, generalizing TERM
to n terminations, and having n symmetric rules PAR1, . . ., PARn. COM does
not change being generic on a and b. Our algorithm for the product of STGs can
be found in section 4.

Example 3. The STGs for the choreography in Example 1 and for the client
and shipper in Example 2 are shown in Figure 4(a-c). Figure 4(d) presents the

(SKIP)

1
[true] X−−−−−→0

(ACT)

α
[true] α−−−−−→1

(SEQ1 − L1 does not end)

L1

[φ] α−−−→L′
1

L1;L2

[φ] α−−−→L′
1;L2

(SEQ2 − L1 ends, begin L2)

L1

[φ1] X−−−−→L′
1, L2

[φ2] α̂−−−−→L′
2

L1;L2

[φ1∧φ2] α̂−−−−−−→L′
2

(CHOICE1 − choose L1)

L1

[φ] α̂−−−→L′
1

L1+L2

[φ] α̂−−−→L′
1

(PAR1 − one step in L1)

L1

[φ] α−−−→L′
1

L1|L2

[φ] α−−−→L′
1|L2

(PAR3 − synchronous termination)

L1

[φ1] X−−−−→L′
1, L2

[φ2] X−−−−→L′
2

L1|L2

[φ1∧φ2] X−−−−−−−→L′
1|L

′
2

(GUARD)

L
[φ′] α̂−−−−→L′

[φ].L
[φ∧φ′] α̂−−−−−→L′

(LOOP1 − one more iteration)

L
[φ′] α̂−−−−→L′

[φ]∗L
[φ∧φ′] α̂−−−−−→L′;[φ]∗L

(LOOP2 − end of the loop)

[φ]∗L
[¬φ] X−−−−→0

(INTER1 − one L1 step)

L1

[φ] α−−−→L′
1

L1[>L2

[φ] α−−−→L′
1[>L2

(INTER2 − L1 ends, interruption not possible)

L1

[φ] X−−−→L′
1

L1[>L2

[φ] X−−−→L′
1

(INTER3 − interruption by L2)

L2

[φ] α̂−−−→L′
2

L1[>L2

[φ] α̂−−−→L′
2

Fig. 2. Transformation from our language to STGs

8 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

(TERM) (PAR1) (COM1)

t1
[φ1] X7−−−−→t′1, t2

[φ2] X7−−−−→t′2

〈t1,t2〉
[φ1∧φ2] X7−−−−−−−→〈t′1,t′2〉

t1
[φ] c.x7−−−−→t′1

〈t1,t2〉
[φ] c.x7−−−−→〈t′1,t2〉

t1
[φ1] c[a,b]!x7−−−−−−−→t′1, t2

[φ2] c[a,b]?y7−−−−−−−−→t′2

〈t1,t2〉
[φ1∧φ2] c[a,b].y7−−−−−−−−−−→〈t′

1[x7→y]
,t′2〉

Fig. 3. Rules for the product of STGs

product of the STGs in Figure 4(b) and Figure 4(c). The free variables of the
states are given below them, e.g., {x1} for state 2 in the choreography STG.

3 Choreography Conformance

In this section, we present our conformance relation between a model denoting
the semantics of a set of local descriptions for interacting entities, I, and a chore-
ography global specification, C. In the sequel, I will be named implementation
even if we have seen before that it may denote either a real implementation
or a set of local requirements to be implemented. Since the semantic models are
STGs, we define conformance over two STGs, one for I and one for C. We choose
branching bisimulation [11] as a basis since it supports equivalence in presence
of τ actions that result from the hiding of interactions added in implementations
wrt. specifications, i.e., refinement. However, branching bisimulation is defined
over ground terms (no variables), while STGs may contain free variables.

In [9, 10], this issue is considered by introducing at each state an evaluation
function that maps variables to values, thus reducing open terms to ground ones.
Conformance is then verified only for some fixed values of the model variables.
It is possible to check conformance for different fixed values. However, this may
lead to state space explosion when domains of the variables are very big. As

1

{}
2

{x1}
3

{}
4

{}

Request[c,s].x1
[x1 < 5]FreeShip[s,c]

[x1 ≥ 5]PayShip[s,c]

X

(a) Shipping choreography

1

{y1}
2

{}
3

{}
4

{}

Request[c,s]!y1
FreeShip[s,c]?

PayShip[s,c]?

X

(b) Implementation of Client

1

{}
2

{z1}
3

{}
4

{}

Request[c,s]?z1
[z1 < 5]FreeShip[s,c]!

[z1 ≥ 5]PayShip[s,c]!

X

(c) Implementation of Shipper

1,1

{}

2,2

{y1}

3,3

{}

4,4

{}

Request[c,s].y1
[y1 < 5]FreeShip[s,c]

[y1 ≥ 5]PayShip[s,c]

X

(d) Composition of (b) and (c)

Fig. 4. STGs for Ex. 1 and Ex. 2

Conformance Checking of Value-Passing Choreographies 9

1

{}
2

{y1}
4

{}
5

{}3

{}

Request[c,s].y1

[y1 < 5]FreeShip[s,c]

[y1 ≥ 5]Tel [c,s] PayShip
[s,c]

X
(a)

1

{}
2

{y1}
4

{}
5

{}

3

{y}

Request[c,s].y1

[y1 < 5]FreeShip[s,c]

[y1 ≥ 5]Tel [c,s].y [y ≥ 10]PayShip
[s,c]

[y < 10]X

X
(b)

Fig. 5. Two refinements for the shipping implementation in Fig. 4(d)

an alternative, we base our work on (late) symbolic extensions of bisimulations,
introduced in [12–14], that directly support open terms.

Making implementation and specification comparable. First of all, we
remind the reader that we assume the two STGs have disjoint sets of variables
which can be achieved using, e.g., indexing. We also assume for simplicity that a
local entity has the same identifier than the corresponding role in the choreography.
This constraint could be lifted using a mapping function. Additional interactions
may have been introduced in the implementation wrt. the specification during
refinement, e.g., to make it realizable. In order to compare the STGs, we have
first to hide these interactions, which is done using restriction (Def. 2).

Definition 2 (Restriction). Given an STG S = (S, s0, T) and a finite set of
actions A, the restriction of S to A, denoted by S �A, is the STG, S ′, obtained
from S by renaming into τ all the actions that do not exist in A and updating
the set of free variables of each state in S ′ in order to satisfy Definition 1.

Example 4. We give refinement examples in Figure 5. In the first case (a), we
have an additional interaction to agree on the phone (there is no choice) that
non-free shipping will be used. In the second case (b), the client can specify the
maximum (s)he agrees to pay for the shipping (y). This influences the sequel of the

1

{}
2

{y1}
4

{}
5

{}3

{}

Request[c,s].y1

[y1 < 5]FreeShip[s,c]

[y1 ≥ 5]τ PayShip
[s,c]

X
(a)

1

{y}
2

{y, y1}
4

{}
5

{}

3

{y}

Request[c,s].y1

[y1 < 5]FreeShip[s,c]

[y1 ≥ 5]τ [y ≥ 10]PayShip
[s,c]

[y < 10]X

X
(b)

Fig. 6. Restrictions of the STGs in Fig. 5

10 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

implementation since the non-free shipping costs $10: if the user requires to pay
less, no shipping is done. The restriction of STGs in Figure 5 to the set of actions
used in the choreography specification, {Request[c,s], F reeShip[s,c], PayShip[s,c]},
yields the STGs in Figure 6.

Conformance relation. Thanks to the previous steps (product of the local
entity STGs and STG restriction), in the sequel we may consider STGs with
interaction, termination, and hidden actions only, i.e., α̂ ∈ {c[a,b].x,X, τ}. Further,
thanks to the use for choreography conformance (Def. 5, below), we know that the
first of the two STG we compare may have τ actions (resulting from restriction)
while the second STG (the choreography specification) may not.

A key element is to be able to “absorb” series of τs. The idea originates
from weak forms of bisimulations such as weak bisimulation [19] and branching

bisimulation [11] where we have a transition s
τ
=⇒ s′ if we have a path of zero or

more
τ−→ transitions between s and s′. However, to work with STGs, these s

τ
=⇒ s′

transitions have to be extended to support the guards that may appear on
τ−→

transitions. This is achieved using rules EMPTY and TAU∗ in Figure 7. Rule SEM
in this figure defines the semantics of

τ
=⇒ transitions. This semantics is denoted

with relations
τZ==⇒ over terms in the same way than we had −→ transitions in

STG and 7−→ in their semantics. These rules are a simplification of the ones in [14]

that support s
α̂
=⇒ s′ transitions where α̂ is not always τ (this difference being a

consequence of the definition of weak bisimulation wrt. branching bisimulation).

In presence of variables and guards, the semantics of transition firing in STGs
can be supported by domain enumeration as we have seen before. To avoid this
(and the risk of state space explosion), we give a symbolic semantics to firing too,
associating to transitions the condition under which it can be fired (Def. 3).

Definition 3. A transition t
[φ] α̂7−−−→ t′ (resp. t

[φ] τ
Z===⇒ t′) is fireable under condition

ρ, fv(ρ) ⊆ fv(φ), iff ρ ⇒ φ. In such a case, we write ρ |= t
[φ] α̂7−−−→ t′ (resp.

ρ |= t
[φ] τ

Z===⇒ t′). By extension, we write ρ |= t
[φ] τ

Z===⇒ t′
[φ′] α̂−−−−→ t′′ if we have

ρ |= t
[φ] τ

Z===⇒ t′ and ρ |= t′
[φ′] α̂7−−−−→ t′′.

Our conformance relation (Def. 4) is inspired by the extension of weak bisim-
ulation into branching bisimulation [11] and the extension of weak bisimulation
into symbolic weak bisimulation [14]. We take into account termination (X) and
the fact that there may be τs only in the first of the two compared STGs.

(EMPTY)

s
[true] τ

=====⇒s

(TAU∗)

s
[φ1] τ
===⇒s1,s1

[φ2] τ−−−−→s′

s
[φ1∧φ2] τ

======⇒s′

(SEMANTICS)

s
[φ] τ
===⇒s′

sσ
[φσ] τZ====⇒s′σ

Fig. 7. Retrieval of
τ
=⇒ transitions and their semantics

Conformance Checking of Value-Passing Choreographies 11

Definition 4 (Symbolic Branching Bisimulation for Conformance). A
binary relation over terms, Rρ, parametrized by a boolean formula ρ, is a symbolic
branching bisimulation for conformance (SBBC) iff (t1, t2) ∈ Rρ implies:

1. ∀ (ρ |= t1
[φ1] τ7−−−−→ t′1) (t′1, t2) ∈ Rρ

2. ∀ (ρ |= t1
[φ1] X7−−−−→ t′1) ∃ (ρ |= t2

[φ2] X7−−−−→ t′2)

3. ∀ (ρ |= t1
[φ1] c.x17−−−−−→ t′1) ∃ (ρ |= t2

[φ2] c.x27−−−−−→ t′2) (t′1[x1 7→z], t
′
2[x2 7→z]) ∈ R

ρ′

with ρ′ = ρ[x1 7→ z, x2 7→ z] and z is a fresh variable

4. ∀ (ρ |= t2
[φ2] X7−−−−→ t′2) ∃ (ρ |= t1

[φ1] τZ====⇒ t′1
[φ′

1] X7−−−−→ t′′1) (t′1, t2) ∈ Rρ

5. ∀ (ρ |= t2
[φ2] c.x27−−−−−→ t′2) ∃ (ρ |= t1

[φ1] τZ====⇒ t′1
[φ′

1] c.x17−−−−−→ t′′1) (t′1, t2) ∈ Rρ ∧
(t′′1 [x1 7→z], t

′
2[x2 7→z]) ∈ R

ρ′

with ρ′ = ρ[x1 7→ z, x2 7→ z], and z is a fresh variable

Definition 4 gives the conditions under which two terms, t1 and t2, are Rρ

equivalent. Case (5) states that for an interaction fireable under condition ρ
from t2 to t′2, there must be an equivalent interaction fireable under condition ρ
from t1 to t′′1 , possibly after zero or more τ transitions between t1 and some t′1.
Equivalence of interactions is up to renaming of the used variables (x1 and x2)
into a fresh variable z. Moreover, following branching bisimulation, we must
have t′1 and t2 (respectively t′′1 and t′2) equivalent. In the later case, we have to
take into account the renaming of x1 and x2 by z in terms (t′′1 and t′2) and in
the equivalence relation condition (ρ). Case (4) is simpler. To a termination in t2
corresponds a termination in t1 reachable after zero or more τs. Since no data
is bound by termination, we just have to take into account recurrence over Rρ.
Cases (2) and (3) are symmetric versions of cases (4) and (5) respectively, simpler
since there are no τs in the specification/t2. Finally, case (1) states that nothing
is to correspond in t2 to a τ transition in t1, but for the recurrence over Rρ.

Given two STGs I = (S1, s01, T1) and C = (S2, s02, T2), we write I .ρC if
there exists a SBBC relation Rρ between the terms formed by the two initial
states with empty substitutions, i.e., (s01∅, s02∅) ∈ Rρ. We can now give the
formal definition of choreography conformance.

Definition 5 (Choreography Conformance). Let C be a choreography spec-
ification and I be an implementation consisting of n local entities P1, . . . , Pn,
let C be the STG for C, I be the STG generated by the product of the STGs for
P1, . . . , Pn, and A be the alphabet of C, I conforms to C iff I �A .trueC.

Conformance computation. Our algorithm for the computation of the SBBC
relation between two STGs is a modification and simplification of the one proposed
in [14] that computes symbolic weak bisimulation. Simplification was made
possible due to the use of SBBC for choreography conformance: there may be
τs in I but not in C. The algorithm outputs a set of boolean formulas ρs1,s2
relative to pairs of states (s1, s2), s1 being in I and s2 in C. ρs1,s2 denotes the
conditions under which s1 and s2 are SBBC related (Def. 4). In the algorithm,

12 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

these boolean formulas are encoded as a Predicate Equation Systems (PESs) [13],
i.e., a set of predicate equations. A predicate equation (PE) is a function which
contains a boolean expression, e.g., R(x) ::= (x ≥ 0).

Example 5. Applying the algorithm on the STGs in Figure 6(b) (i.e., restriction
of Fig. 5(b)) and in Figure 4(a) (specification), we retrieve the following PES:

R1,1() ::= ∀Z0 R2,2(Z0, Z0)
R2,2(y1, x1) ::= (((x1≥5⇒ y1≥5 ∧R3,2(y1, x1)) ∧ (y1≥5⇒ x1≥5 ∧R3,2(y1, x1)))

∧((x1<5⇒ y1<5 ∧R4,3) ∧ (y1<5⇒ x1<5 ∧R4,3)))
∧(¬(y<10))

R3,2(y1, x1) ::= ((x1≥5⇒ y≥10 ∧R4,3) ∧ (y ≥ 10⇒ x1 ≥ 5 ∧R4,3))
∧((¬(y<10)) ∧ (¬(x1<5)))

R4,3() ::= true

It can be simplified into {R1,1 ::= y ≥ 10, R2,2 ::= y ≥ 10, R3,2 ::= y ≥ 10 ∧
Z0 ≥ 5, R4,3 ::= true, } but this demonstrates the need for an automatic PES
satisfiability checking procedure.

4 Implementation and Experiments

In this section, we give details on our tool-chain for choreography conformance
checking. We also present some of the experiments we have made to evaluate it.

The architecture of our tool-chain is given in Figure 8. We take as input a
choreography global specification C, with m roles. We also take an implementa-
tion description I, given as n≥m entity local descriptions. These may correspond
either to peer descriptions or to role requirements. The case when n>m denotes,
e.g., an implementation where some peers have been added to make a chore-
ography realizable. All inputs are first transformed into STGs. The product of
STGs and the restriction to actions in C are used to retrieve a unique STG for I,
thus yielding two STGs to compare: one for C (C) and one for I (I). We then
check if I conforms to C, which generates the largest boolean formula ρ such that
the initial states of I and C are SBBC related. Finally, this formula is analysed
using the Z3 SMT solver in order to reach a conformance verdict. This can
be “always true” or “always false”, “always” meaning whatever the data values

Choreography
roles 1 . . .m (m ≤ n)

Model trans.

Local descr.1
. . .

Local descr.n

Model trans.
. . .

Model trans.

STG1

. . .

STGn

STG product STGI

STGC

Conformance

boolean formula ρ

Formula Checker

Z3 SMT Solver Verdict
(true, false, ρ, inconclusive)

Fig. 8. Architecture of our tool-chain

Conformance Checking of Value-Passing Choreographies 13

exchanged between peers are. However, sometimes we can have conformance only
for a subset of these values. Going further than pure true/false conformance, our
tool-chain thus allows to compute the largest constraint on data values, ρ, that
would yield conformance. Complex constraints may cause the solver to return a
timeout. In such a case, we emit inconclusiveness as a verdict.

Our tool-chain may be downloaded from our Web pages4. The Z3 SMT
solver5 has to be installed separately for licence reasons. We plan to interface our
tool-chain with the SMT-LIB API in order to let users choose other SMT solvers.

STGs product. The Algorithm 1 represents the implementation of the pro-
duction rules in Figure 3. In this algorithm, we use t to denote disjoint union,
i.e., S1 t S2 is defined only if S1 ∩ S2 = ∅. We use also two other functions re-
nameVariable and updateFreeVariables. The first one, renameVariable(S, s, v, v′),
renames the variable v into v′ when it is used in guard of transitions after state s
of STG S. The second one is used for updating the set of free variables of each
state in order to satisfy the STG definition (Def 1).

Algorithm 1: Product of n STGs

Data: n STGs Si = (Si, s0i, Ti)
Result: a STG S = (S, s0, T), the product of S1, . . . ,Sn

1 s0 := {s01, s02, . . . , s0n} ; /* initial state ∗ /
2 S := {s0} ; /* set of nodes */

3 T := ∅ ; /* set of transitions */

4 product ({s01, s02, . . . , s0n}) ;
5 /* update set of free variables of each state to satisfy STG definition */

updateFreeVariables (S, s0, T);
6 return (S, s0, T) ;

7 product ({s1, s2, . . . , sn}) = begin
8 s := {s1, s2, . . . , sn};

9 foreach s1
[φi11] X
−−−−−→ si11, s2

[φi22] X
−−−−−→ si22, . . . , sn

[φinn] X−−−−−−→ sinn, do

10 s′ := {si11, . . . , sinn}; S := S t {s′}; T := T ∪ s
[φi11∧...∧φinn] X
−−−−−−−−−−−−→ s′;

11 foreach sl
[φil] c

[a,b]!xil−−−−−−−−−→ sil, sk
[φjk] c

[a,b]?xjk−−−−−−−−−−→ sjk with l 6= k ∧ l, k ∈ {1, . . . , n} do
12 s′ is constructed from s by replacing xl by xil and xk by xjk ;

13 S := S t {s′}; T := T ∪ s [φil∧φjk] c[a,b].xjk−−−−−−−−−−−−→ s′;
14 renameVariable (Sl, sl, xil, xjk) ;
15 product (s′) ;

16

Conformance computation. Following [13], a PES can be written using sub-
stitutions in order to simplify its notation. For example, the PES {R0() ::=
∀z R1(z, z);R1(x, y) ::= (x > y)} is rewritten {R0 ::= ∀z R1([x/z, y/z]);
R1 ::= (x > y)}.

The main function is function close, called initially on the initial states of the
two STGs we compare. This function compares two states, s1 and s2 up to some

4 http://www.lri.fr/˜nhnghia/tools/
5 http://research.microsoft.com/en-us/um/redmond/projects/z3/

14 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

substitution σ, and returns the most general formula such that s1 and s2 are SBBC
bisimilar. This is formula false in the worst case (s1 and s2 are not branching
bisimilar). close relies on the match function that encodes the different cases

in Definition 4. Trans(s1, s2) = {α|s1
[φ1] τ
===⇒ s′1

[φ′
1] α−−−−→ s′′1} ∩ {α|s2

[φ2] α−−−−→ s′2}
denotes the common observable actions that can be performed both from s1 and
from s2. Since function close visits a pair (s1, s2) ∈ S1 × S2 at most once, it
always terminates after a finite steps, as for the algorithm whose complexity is
O(|S1| × |S2|).

Algorithm 2: Conformance PES computation

Data: two STGs I = (S1, s0,1, T1) and C = (S2, s0,2, T2)
Result: a PES, i.e., a set P of PEs (one for each couple of states in a subset of S1 × S2)

1 W := ∅ ; /* visited couple nodes */

2 P := ∅ ; /* predicates for couples of visited nodes */

3 close (s0,1, s0,2, ∅) ;
4 return P ;

5 close (s1, s2, σ) = begin
6 if (s1, s2) 6∈W then
7 W := W ∪ {(s1, s2)}; Rs1,s2 := match(s1, s2, σ); P := P ∪ {Rs1,s2} ;

8 return Rs1,s2(σ) ; /* a predicate ρs1,s2 with parameter σ */

9 match (s1, s2, σ) = begin
10 foreach γ ∈ Trans(s1, s2) do /* Trans(s1,s2): set of actions 6= τ of */

11 ργ := matchEv (γ, s1, s2, σ) ; /* next transitions from s1, s2 */

12 /* The others events (6∈ Trans(s1, s2)) must not occur */

13 foreach s1
[φ′
j,1] τ

====⇒ s′j,1
[φj,1] αj,1−−−−−−→ sj,1 such that αj 6∈ Trans(s1, s2) do

14 ρj,1 := ¬φj,1 ; /* exist τ in implementation */

15 foreach s2
[φi,2] αi,2−−−−−−→ si,2 such that αi 6∈ Trans(s1, s2) do

16 ρi,2 := ¬φi,2 ; /* no τ in specification */

17 return
∧
γ
ργ ∧

∧
j

ρj,1 ∧
∧
i

ρi,2 ;

18 matchEv (X, s1, s2, σ) = begin

19 foreach s1
[φ′
j,1] τ

====⇒ s′j,1
[φj,1] X−−−−−→ sj,1, s2

[φ′′
i,2] X
−−−−−→ si,2 do

20 /* if no τ between s1 and s′j,1, then sj,1 and si,2 always conform */

21 if s1 ≡ s′j,1 then ρij := true; else ρij := close(s′j,1, s2, σ) ;

22 φj,1 := φ′j,1 ∧ φ′′j,1 ;

23 return
∧
i

(
φi,2 ⇒

∨
j

(φj,1 ∧ ρij)) ∧
∧
j

(φj,1 ⇒
∨
i

(φi,2 ∧ ρij)) ;

24 matchEv (c, s1, s2, σ) = begin
25 z := newVar () ; /* create a new fresh variable */

26 foreach s1
[φ′
j,1] τ

====⇒ s′j,1
[φ′′
j,1] c.xj,1−−−−−−−→ sj,1, s2

[φi,2] c.xi,2−−−−−−−→ si,2 do
27 if s1 6≡ s′j,1 then φj1 := φ′j,1; ρij := close(s′j,1, s2, σ);

28 else φj,1 := φ′′j,1; ρij := ∀z close(sj,1, si,2, σ[xj,1 7→ z, xi,2 7→ z]) ;

29 return
∧
i

(
φi,2 ⇒

∨
j

(φj,1 ∧ ρij)) ∧
∧
j

(φj,1 ⇒
∨
i

(φi,2 ∧ ρij)) ;

PES satisfiability and conformance verdict. The formula resulting from
conformance checking is under the form of a PES (see Section 3). It has to
be analysed in order to reach a conformance verdict. This step is performed
with Z3, a state-of-the art theorem prover from Microsoft Research that can be
used to check for the satisfiability of a set of formulas, i.e., find if there is an
interpretation that makes all asserted formulas true.

Conformance Checking of Value-Passing Choreographies 15

Listing 1.1. Translation into the Z3 language of the PES in Example 5

1 ; encoding of the PES - it can be tried online at: http :// rise4fun.com/z3
2 ; note: newlines should be added manually if copy/paste from PDF is used
3 (set -option :print-warning false)
4 (declare-fun y () Int)
5 (define -fun R4_3 () Bool true)
6 (define -fun R3_2 ((y_1 Int)(x_1 Int)) Bool (and (and (implies (>= x_1 5) (and

(>= y 10) R4_3)) (implies (>= y 10) (and (>= x_1 5) R4_3))) (and (not (< y
10)) (not (< x_1 5)))))

7 (define -fun R2_2 ((y_1 Int)(x_1 Int)) Bool (and (and (and (implies (>= x_1 5)
(and (>= y_1 5) (R3_2 y_1 x_1))) (implies (>= y_1 5) (and (>= x_1 5) (R3_2
y_1 x_1)))) (and (implies (< x_1 5) (and (< y_1 5) R4_3)) (implies (< y_1

5) (and (< x_1 5) R4_3)))) (not (< y 10))))
8 (define -fun R1_1 () Bool (foral l ((Z_0 Int)) (R2_2 Z_0 Z_0)))
9 ; uncomment for step 1, comment for step 2

10 (assert (= R1_1 false))
11 ; comment for step 1, uncomment for step 2
12 ; (assert (= R1_1 true))
13 (check-sat)

In order to use Z3, we translate the PES into the Z3 input language as
demonstrated in Listing 1.1 for the PES in Example 5. Each predicate equation
in the PES is translated as a boolean function (using define-fun) and each free
variable is translated as an integer function (using declare-fun). In our example,
variables are integers, but we stress out that complex types such as XML ones
can be supported too, following [20].

We check R1 1 in order to conclude on conformance. For this, the check-sat

Z3 command is run following Table 2. If R1 1 asserted false (as in Listing 1.1)
yields an unsat response then there is no interpretation such that R1,1 is false,
hence we can conclude directly that conformance is true. Otherwise, we have to
retry with R1 1 asserted to true to reach a verdict.

Table 2. Decision table for conformance based on PES satisfiability checking

check-sat response
conformance decision

R1 1 asserted false R1 1 asserted true

unsat not needed true

otherwise
unsat false
sat ρ1,1 (R1,1)

timeout inconclusive

Experiments. We have experimented our tool-chain, including on examples
from the literature (Tab. 3). For the implementations and the specifications, we
respectively give the numbers of peers, roles, interactions, and transitions and
states in the corresponding STGs. We also give the conformance verdicts in the
paper the example is taken from and with our approach. Finally, we give the

16 Huu Nghia Nguyen, Pascal Poizat, Fatiha Zäıdi

Table 3. Experimental results

Id Name [Reference] #Peers/Roles
Implementation Specification Verdict Duration

#Int. #Trans./States #Int. #Trans./States Orig./Ours (seconds)

01 Shipping [n/a] 2/2 3 4/4 3 4/4 -/YES 0.069
2/2 4 5/5 3 4/4 -/YES 0.084

Example 5 → 2/2 4 6/5 3 4/4 -/ρ 0.102

04 Market [9] 4/4 8 9/10 8 10/10 YES/NO 0.118
8/4 16 27/26 8 10/10 YES/NO 0.201

06 RFQ [10] 3/3 6 8/7 6 8/8 NO/NO 0.078

07 Booking [7] 4/4 8 12/11 8 12/11 YES/YES 0.096

execution time (Mac Book Air with OS 10.7, 4 GB RAM, core i5 1.7 GHz) for
the process described in Figure 8 (but for the time to parse the input files).

Rows 1 to 3 correspond to the specification STG in Figure 4(a) and, re-
spectively, to the implementations STGs in Figures 4(d) (row 1), 5(a) (row 2),
and 5(b) (row 3). Rows 4 and 5 correspond to the example and mutation in [9].
The difference in the verdict comes from the fact the we distinguish between an
STG ending with X (successful termination) or not, hence an implementation
deadlocking after achieving all interactions of a specification will not conform
to it: the specification may do X while the implementation may not. Row 6
corresponds to a negative example in [10] and row 7 to a positive one in [7].

5 Conclusion

In this paper, we have proposed a formal framework for checking the conformance
of a set of role requirements or peer descriptions with reference to a choreography
specification. Symbolic models and equivalences enable us to check conformance
in presence of data without suffering from state space explosion and without
bounding data domains. Going further than strict conformance, we are able to
give the most general constraint over data exchanged between peers in order
to achieve conformance. Our approach is fully automated with tools we have
developed and the use of the Z3 SMT solver.

We advocate that once a choreography projection function supporting data is
defined, then our framework could be used not only for conformance checking but
also for realizability checking. This is our first perspective. A second perspective
is to extend our framework in order to support assignment and asynchronous
communication. BPMN is the standard notation for business processes and
supports choreography since version 2.0. Our last perspective is to integrate the
extensions of our tools as a verification plugin for the BPMN 2.0 Eclipse editor.
A BPMN 2.0 to STG model transformation is ongoing, based on our BPMN to
LTS (no data) one [21].

Conformance Checking of Value-Passing Choreographies 17

References

1. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies.
Information Technology 50(2) (2008) 122–127

2. Lohmann, N., Wolf, K.: Decidability Results for Choreography Realization. In:
Proc. of ICSOC’11. (2011)

3. Kaschner, K.: Conformance Testing for Asynchronously Communicating Services.
In: Proc. of ICSOC’11. (2011)

4. Nguyen, H.N., Poizat, P., Zäıdi, F.: Passive Conformance Testing of Service
Choreographies. In: Proc. of SAC’12. (2012)

5. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the Theoretical Foundation of
Choreography. In: Proc. of WWW ’07. (2007)

6. Basu, S., Bultan, T.: Choreography Conformance via Synchronizability. In: Proc.
of WWW’11. (2011)

7. Salaün, G., Bultan, T., Roohi, N.: Realizability of Choreographies using Process
Algebra Encodings. In: Proc. of IFM’09. (2009)

8. Li, J., Zhu, H., Pu, G.: Conformance Validation between Choreography and
Orchestration. In: Proc. of TASE’07. (2007)

9. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration Conformance for System Design. In: Proc. of COORDINATION’06.
(2006)

10. Kazhamiakin, R.: Choreography Conformance Analysis : Asynchronous Communi-
cations and Information Alignment. In: Proc. of WS-FM’06. (2006)

11. Van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3) (1996)

12. Hennessy, M., Lin, H.: Symbolic Bisimulations. Theoretical Computer Science
138(2) (1995) 353–389

13. Lin, H.: Symbolic Transition Graph with Assignment. In: Proc. of CONCUR’96.
(1996)

14. Li, Z., Chen, H.: Computing Strong/Weak Bisimulation Equivalences and Observa-
tion Congruence for Value-Passing Processes. In: Proc. of TACAS’99. (1999)

15. Basu, S., Mukund, M., Ramakrishnan, C., Ramakrishnan, I., Verma, R.: Local and
Symbolic Bisimulation Using Tabled Constraint Logic Programming. In: Proc. of
17th ICLP. (2001)

16. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Confor-
mance and Contract Compliance. In: Proc. of SC’07. (2007)

17. Poizat, P.: Formal Model-Based Approaches for the Development of Com-
posite Systems. Habilitation thesis, Université Paris Sud (November 2011)
http://www.lri.fr/˜poizat/documents/hdr poizat.pdf.

18. Kopp, O.: Do We Need Internal Behavior in Choreography Models? In: Proc. of
1st ZEUS. (2009)

19. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
20. Bentakouk, L., Poizat, P., Zäıdi, F.: Checking the Behavioral Conformance of Web

Services with Symbolic Testing and an SMT Solver. In: Proc. of TAP’11. (2011)
21. Poizat, P., Salaün, G.: Checking the Realizability of BPMN 2.0 Choreographies.

In: Proc of SAC’12. (2012)

