
SFEDL’04 Preliminary Version

Interacting Extended State Diagrams

Gwen Salaün a,1,3 and Pascal Poizat b,2

a DIS, Università di Roma “La Sapienza”, Roma, Italy

b LaMI, Université d’Évry Val d’Essonne, Évry, France

Abstract

Integrated formal description techniques are a promising approach for the specifica-
tion of multi-aspect systems. In this context, we have proposed a formalism, called
Extended State Diagrams (ESD), combining in an homogeneous framework state
diagrams and formal data description languages. Our purpose is here to enhance
the implicit ESD communication mechanisms with explicit descriptions of commu-
nications, which is achieved using synchronization vectors. The use of interaction
diagrams is also discussed.

Key words: Formal Specification Integration, State Diagram,
Formal Datatype, Synchronization Vector, Interaction Diagram.

1 Introduction

In the last few years, the increase of systems complexity made it necessary to
describe them under different aspects. This separation of concerns appeared
at both the programming (the so-called Aspect-Oriented Programming) and
the Specification and Design (AOSD) levels. The use and henceforth the def-
inition of integrated formal description techniques is a promising approach
for the specification of such multi-aspect systems. Following several experi-
ments we made on this subject [1], we have proposed an integrated formalism,
Extended State Diagrams [4] (ESD). ESD uses formal and graphical nota-
tions with the objective of taking advantages of both: user-friendliness and
readability of graphical notations such as the UML, the de-facto standard for
software modelling, and formal notations to enable verification and animating
mechanisms [5]. The static and functional aspects of systems are described
using formal data description languages such as algebraic specifications, Z or

1 Email:salaun@dis.uniroma1.it
2 Email:poizat@lami.univ-evry.fr
3 This work is partially supported by Project ASTRO funded by the Italian Ministry for
Research under the FIRB framework (funds for basic research).

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Salaün and Poizat

B. The dynamic aspects of systems (events, behaviours and communications)
are described using extended state diagrams dealing with the formal datatypes
of the static aspects.

The UML notation is used in ESD to denote event sendings (D2^tick(n+1)
in diagram D3, Fig. 1, for example), and the ESD integration semantics then
builds on this to propose a flexible mechanism of communication constraints
to express possible communication models. These constraints expressiveness
has been illustrated in [4] to deal with the usual object-oriented asynchronous
message-passing communication. However, this technical choice is not an ideal
one. First, it needs the communication constraint to be redefined each time
the specifier needs a specific communication model. Furthermore, the lack of
means to make the communication model between ESDs explicit is error-prone
and harms reuse of specification modules as communication constraints are to
be found into sequential components.

To improve the means of interaction between ESDs, we extend here our
initial proposal with alternative and complementary communication mecha-
nisms, still preserving the formal consistency of the whole integrated formal-
ism: synchronization vectors. The use of interaction diagrams is also dis-
cussed. Both plug in a simple way onto the ESD semantics we gave in [4].
Accordingly, the specification of interactions may be undertaken straightfor-
wardly (no need for additional formalisations).

This article is structured as follows. In Section 2, we summarize the ESD
approach. Sections 3 and 4 then deal with our extension proposals. Finally,
we end with concluding remarks on this work.

2 Extended State Diagrams

This section gives the necessary insights into the ESD semantics. A more
comprehensive presentation of our approach may be found in [4].

Syntax. ESD extends state diagrams (such as Statecharts or the UML ones)
with:

• data boxes in which formal datatype modules are imported and formal vari-
ables are declared and typed

• in transitions, the use of formal datatypes (algebraic terms, Z or B opera-
tions) in guards, in receptions, and in the action part (both in actions and
in event sendings).

This is illustrated in Figure 1 on a simple example of three interacting dia-
grams. From the left hand side to the right hand side, bold labels respectively
denote: (D1) the reception of a natural value in a variable x through the tick

event, (D2) the import of the data description module NAT which is written
using the Larch specification language, (D3) the modification of value of the n

variable in the action part of a transition as well as its definition in the data
box, and the sending to D2 of value n+1 through the tick event.

2

Salaün and Poizat

D2

tick(x:Nat)back

D3

/D1^tick(n+1),

IMPORT LarchSpec NAT n:Nat

1 11

2 22

IMPORT LarchSpec NAT

/n:=n+2 D2^tick(n+1)

IMPORT LarchSpec NAT

back

D1

tick(x:Nat)

Fig. 1. Three interacting ESDs

Semantics. Let us first note that our goal is not to give a formal semantics to
some specific dialect of state diagrams (a lot do exist, see [4] for references).
We rather aim at formalising the extension of such diagrams with formal
datatypes, in a modular way, that is extending their semantics. We take as
an hypothesis that these semantics (called basic hereafter) are given in an
operational way, using labelled transition systems (LTS).

Our semantics is given using groups of rules [4]. The first two groups (R1
and R2) are used to type-check terms and give them an interpretation using
evaluation mechanisms. The R3 group is used to extend the basic semantics
to describe the individual evolutions of extended diagrams, which is achieved
by extending the states of the basic semantics with variable bindings (denoted
by E), an input event queue (Qin, where events arrive and are stored) and an
output event queue (Qout, denoting sent events). This extension takes possible
value receptions and actions into account. This yields a set {Di : (S, S0, T)}
of LTSs. The R4 group is then used to describe possible modifications in
the queues of each diagram resulting of an open-system semantics (additions
in input queues, removals from output ones). This yields again a set {Di :
(Sopen, S0

open, T open)} of LTSs where, for each Di, T open ⊆ T ×E∗

in×E∗

out, with
Ein (resp. Eout) being the set of all input events (resp. output events) of Di. As

usual with LTS, (s, label, s′, E+, E−) ∈ T open is denoted by s
label
→ E+,E− s′. Rule

R5, given a communication model constraint CC, then builds a global LTS
(S, S0, T) resulting from the product of the R4 ones, that is S = ΠDi

Sopen(Di),
S0 = ΠDi

S0
open(Di), and T = {t ∈ ΠDi

T open(Di) | CC(t)}.

CC may be defined for example to relate legal open-systems queue modi-
fications between two diagrams in an asynchronous message-passing commu-
nication model:

CC(s1
l1→E

+

1
,E

−

1
s′1, . . . , sn

ln→E
+
n ,E

−

n
s′n) ⇔

∀sender∈ 1..n, ∀Dreceiverˆe ∈ E−

sender, Dreceiver ∈ ∪i∈1..nDi ⇒ e ∈ E+
receiver

This separation of (sets of) rules, enables one to reuse specific ones and
replace or specialise other ones to deal with specific needs. It is this modularity

3

Salaün and Poizat

which enables one to propose alternatives for the sets of rules mentioned above,
and as far as this article is concerned to enhance R5.

3 Interacting ESDs with Synchronization Vectors

An alternative to implicit communication policies into component is to specify
interactions using synchronization vectors, which are expressive, formal and
readable (even if only textual) means to write interactions between ESDs.
Synchronization vectors have originally been introduced by Arnold and Nivat
[2] and are used for instance in the AltaRica formalism [3]. An extension of this
initial concept is defined in Korrigan [7] in which advanced synchronization
vectors using temporal logic formulas enable one to compose automata thanks
to different strategies.

Syntax. If technically we use synchronization vectors, our goal is to keep a
good level of readability, hence finding an intermediate level between [2,3] basic
vectors (which model only basic synchronous communication) and Korrigan
more expressive, but also much more difficult to use, temporal formulas. Our
vectors can be used to model different synchronization policies between ESDs,
as for exemple:

• asynchronous, oriented, one to n, different names: [a!,ε,b?,ε,c?]

• synchronous, value passing, one with many: <a!,ε,b?,ε,c?>

• synchronous, value agreement, many with many: <a!,ε,b!,ε,c!>

• synchronous, value negotiation, many with many: <a?,ε,b?,ε,c?>

< . . . > vectors deal with synchronous communication, whereas [. . .] ones
deal with asynchronous communication. Prefixing events with diagram iden-
tifiers (e.g. <D1.a!,D2.b?,D3.c?>) is not needed. Correspondence is obtained
through the order of events in vectors. In vectors the only information kept
on events is whether they are input (e.g. e!) or output (e.g. e?) events.
The information on variables or values bound to the events is dealt with by
rule R3 of the ESD semantics. ε is used as usual with synchronization vec-
tors to express that the corresponding ESD does nothing (this will match
its “stuttering-steps” ε transitions) while other synchronize. Asynchronous
vectors contain exactly one output event.

Semantics. The formalisation of interaction through synchronization vectors
is made in such a way that its rules may replace the R5 one in our ESD seman-

tics. First of all, remember that a global transition t = (s1
l1→E

+

1
,E

−

1
s′1, . . . ,

sn
ln→E

+
n ,E

−

n
s′n) is only valid (R5) if CC was true for it. Here CC is param-

eterised with a set V of vectors. A transition is valid for a set of vectors if it
is valid for one: CC(t, V) ⇔ ∃v ∈ V, t |= v.

Let type be the function defined such as for any input event e? in vectors,
type(e?) = Ein, and for any output event e!, type(e!) = Eout. Moreover,

4

Salaün and Poizat

type(ε) = Eε. The rule for synchronous communications is:

(s1
l1→E+

1
,E−

1
s′1, . . . , sn

ln→E+
n ,E−

n
s′n) |= < e1, . . . , en > ⇔

∃v, ∀i ∈ 1..n



















li = ei(v) if type(ei) = Ein (a)

Qout(si) − Qout(s
′

i) = {ei(v)} if type(ei) = Eout (b)

li = ε ∧ Qout(si) = Qout(s
′

i) if type(ei) = Eε (c)

This rule deals at the same time with event name and types which have to
match between the vector and the transitions, and with value passing. Input
events and ε are in the transition labels of the ESD LTSs. Output events are
not, they are put into the output queues of senders (R3 rules) and extracted
when communicating (R4 rule). Hence, they correspond to differences, in-
between source and target states of transitions, in the corresponding ESD
output queue, Qout. All output events have to agree on the same value (v),
while input events will receive it. The rule presented here deals with single
value passing but may be generalized to n values as in LOTOS [6].

Asynchronous communication uses the E+ and E− elements of global tran-
sitions. The rule for asynchronous communication is then obtained replacing
(a) with ei(v) ∈ E+

i and (b) with ei(v) ∈ E−

i .

Less strict versions of synchronization may be expressed with less strict
versions of the vectors. For example, broadcast communication (i.e. only
some of the required receivers may really synchronize, as opposed to multi-
cast communication where all registered receivers have to synchronize) may
be expressed.

Application. Our example (Fig. 2) is made up of three interacting di-
agrams: a sender which transmits naturals, an even computer which tests if
numbers are even, and an adder which adds two naturals. A value is broad-
casted synchronously by the sender to the even computer, then another value
is sent to the adder. Finally, the result of the addition is communicated to
the even computer. The vectors corresponding to the communications for this
example, with ESD reference order being Sender, EvenComput, Adder, are:

{< send!, rec?, rec? >, < send!, ε, rec? >, < ε, rec?, resA! >}

Note that these vectors do not imply any order in the interaction firing, only
legal synchronizations. This drawback of synchronization vectors may be lifted
using interaction diagrams.

To end this section, let us stress that xCLAP [5] makes it possible to
compute synchronous products (with our transition-related vectors but also
state-related ones), a skill recovered from its predecessor, CLAP [8]. These
expressive means could also be applied to ESDs and the whole specification
(some extended state diagrams and synchronization vectors) could be ani-

5

Salaün and Poizat

IMPORT LarchSpec NAT
n:Nat

Sender

/send(n)

tick/n:=n+1

tick/n:=n+1

IMPORT LarchSpec NAT

rec(x:Nat)

rec(y:Nat)

Adder

IMPORT LarchSpec NAT

rec(x:Nat)/resE(even(x))

EvenComput

/resA(x+y)tack/n:=n−1

Fig. 2. Three interacting ESDs without implicit communication

comm

Sender EvenComput Adder

comm

msc runex

comm

Fig. 3. MSC interaction for the three ESDs

mated using the xCLAP simulation features.

4 Interacting ESDs with Interaction Diagrams

Our goal in this section is to give insights that ESD interactions could also
be described using interaction diagrams (this term taking into account their
dialect such as MSC or UML sequence diagrams).

We describe in Figure 3 the possible interactions between our three exam-
ple components (Fig. 2). As MSC do not enable components to synchronize
on events with different names (which is a drawback as this harms the reusabil-
ity levels of components), Figure 2 ESDs synchronized transitions should be
renamed in comm. However, temporal ordering of synchronizations may be
expressed (which was not the case with synchronization vectors).

Semantics. MSCs yield different CC rules dealing with the different kinds of
interactions they define. Taking for example an interaction between any two
diagrams D1 and D2 on event e (such as the one between Sender and Adder on

comm), the CC rule is: CC((SDi

li−→ S ′

Di
)i∈1..n, M) ⇔ M |= {(SDi

)i∈1..n}
apply(e)
−−−−→

{(SDi
)i∈1..n}[(S

′

Di
/SDi

)i∈1..2], with notation E[x/y] denoting as usual the set
E ′ which is equal to E substituting x for y. CC uses transitions labelled with
apply obtained from deduction rules. The rule here is described in Figure 4.
As for state diagrams [4], we do not aim at formalising interaction diagrams,

6

Salaün and Poizat

S = {SD1
, ..., SDn

}

SD1
SD2

� e

SD1

e
−→ S′

D1
SD2

e
−→ S′

D2

M |= S
apply(e)
−−−−−→ S[S′

D1
/SD1

, S′

D2
/SD2

]

Fig. 4. MSC interaction semantics

but rather being able to reuse their different semantics in a generic way in the
definitions of our communication constraints semantics rules. � is assumed to
be the function of the chosen MSC semantics that yields legal transitions of
the MSC models. Here it states that an interaction on e is possible between
D1 and D2 which are respectively in states SD1

and SD2
.

Interaction diagrams are complementary with synchronization vectors as
far as graphical representations and temporal ordering of the communication
scheme are concerned. However, a shortcoming of the different interaction di-
agram semantics is that none of them deals with all the different types of com-
munication we dealt with using synchronization vectors. Sequence diagrams
proposed in UML 2.0 are much more satisfactory as far as expressiveness is
the issue, but they are not (yet) fully formalised.

5 Concluding Remarks

Explicit communication policies increase the reusability level of integrated
specification as no specific communication information is present in the se-
quential components. In this paper we have proposed extension mechanisms
to explicitly specify the interactions between ESDs. Our synchronization vec-
tors may express very different synchronization policies. The use of interaction
diagrams is less expressive but takes benefit from its specifier-friendly graph-
ical representation.

Related works include first process algebras (mainly LOTOS [6] as far are
integrated specifications are concerned). However, their implicit synchroniza-
tion policy is often hard to understand (for example the implicit synchroniza-
tion on the ending of processes, δ). Moreover, as our synchronization vectors
plug above our existing ESD semantics, we may express both synchronous and
asynchronous communication, or the synchronization of n processes among
m, which is not the case for LOTOS. An approach closer to ours are ISM
[9]. ISM are high-level Input/Output Automata with the same expressiveness
than ESD but a significantly improved structuring. However, the communi-
cation between ISMs is more restricted than ours because only asynchronous
buffered communication is available.

Perspectives of this work are twofold. A first direction is to generalise our
approach to a framework supporting general (and generic) means to specify

7

Salaün and Poizat

interactions between dynamic specification modules. This would in some sense
require the definition of a more general coordination language for a vast class
of integrated specification languages. Our second perspective is to extend the
xCLAP toolkit [5] animation and verification means using the ideas developed
here (xCLAP itself is an extension of the CLAP [8] tool which dealt with
simpler specification languages).

References

[1] Allemand, M., C. Attiogbé, P. Poizat, J.-C. Royer and G. Salaün, SHE’S Project:

a Report of Joint Works on the Integration of Formal Specification Techniques,
in: Workshop on Integration of Specification Techniques with Applications in

Engineering, 2002, pp. 29–36.

[2] Arnold, A., “Finite Transition Systems,” Prentice-Hall, 1994.

[3] Arnold, A., G. Point, A. Griffault and A. Rauzy, The AltaRica Formalism for

Describing Concurrent Systems, Fundamenta Informatica 40 (1999), pp. 109–
124.

[4] Attiogbé, C., P. Poizat and G. Salaün, Integration of Formal Datatypes within

State Diagrams, in: M. Pezzè, editor, International Conference on Fundamental

Approaches to Software Engineering, LNCS 2621 (2003), pp. 341–355.

[5] Auverlot, A., C. Cailler, M. Coriton, V. Gruet and M. Noël, xCLAP: Animation

of State Diagrams with Formal Data, Master’s Degree Project, University

of Nantes. Available at http://www.dis.uniroma1.it/∼salaun/xCLAP/ (2003),
directed by C. Attiogbé and G. Salaün.

[6] Bolognesi, T. and E. Brinksma, Introduction to the ISO Specification Language

LOTOS, in: P. H. J. van Eijk, C. A. Vissers and M. Diaz, editors, The Formal

Description Technique LOTOS, Elsevier Science Publishers North-Holland, 1989
pp. 23–73.

[7] Choppy, C., P. Poizat and J.-C. Royer, A Global Semantics for Views, in:
T. Rus, editor, International Conference on Algebraic Methodology And Software

Technology, LNCS 1816 (2000), pp. 165–180.

[8] Choppy, C., P. Poizat and J.-C. Royer, The Korrigan Environment, Journal of
Universal Computer Science 7 (2001), pp. 19–36.

[9] Oheimb, D. v., Interacting State Machines: a Stateful Approach to Proving

Security, in: A. Abdallah, P. Ryan and S. Schneider, editors, International

Conference on Formal Aspects of Security, LNCS 2629 (2002), pp. 15–32.

8

	Introduction
	Extended State Diagrams
	Interacting ESDs with Synchronization Vectors
	Interacting ESDs with Interaction Diagrams
	Concluding Remarks
	References

