
Multi-site Gargamel: Optimistic Synchronization for Reliable
Geo-Replicated Databases

Pierpaolo Cincilla
INRIA UPMC

pierpaolo.cincilla@lip6.fr

Sébastien Monnet
INRIA UPMC

sebastien.monnet@lip6.fr

Marc Shapiro
INRIA UPMC

http://lip6.fr/Marc.Shapiro/

ABSTRACT
Databases scale poorly in distributed configurations. This is
mainly due to the cost of concurrency control and to resource
contention. The alternative of centralizing writes works well
only for read-intensive workloads, whereas weakening trans-
actional properties is problematic for application developers.
In a previous work we introduced Gargamel, a middleware
that spreads non-conflicting update transactions to different
replicas, but still provides strong transactional guarantees.
We extended Gargamel to geo-replication settings. If a data-
center fails, the database remains available at other locations.
We minimize the synchronization cost, synchronizing opti-
mistically replicas at distant data-centers. The evaluations of
our prototype using distant Amazon data-centers show that
Gargamel improves both response time and load by an order
of magnitude when contention is high (highly loaded system
with bounded resources), and that in the geo-replicated case,
the slow-down is negligible.

1. INTRODUCTION
Databases systems have been used for decades to store and

retrieve data.
Their pervasive nature makes databases fault tolerance (i.e.,

the ability to respond gracefully to a failure) and performance
(in terms of throughput and response time) critical. Fault
tolerance and performance are often addressed by replica-
tion which allows data to be stored by a group of machines.
Database replication has the potential to improve both per-
formance and availability, by allowing several transactions to
proceed in parallel, at different replicas.

Database replication works well for read-only transac-
tions, however it remains challenging in the presence of up-
dates. Concurrency control is an expensive mechanism; it is
also wasteful to execute conflicting transactions concurrently,
since at least one must abort and restart.

There are several approaches to make distributed databases
scalable. The concurrency control bottleneck can be allevi-
ated by relaxing the isolation level [6, 3], relaxing the trans-
actional ACID properties [15, 5, 1], parallelising reads [10, 11,
13], or by partial replication [14, 2].

The above-mentioned approaches families work well for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4NG’14 December 8, 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-3222-4 ...$15.00.

some classes of application, but not for others: relaxing the
isolation level introduces anomalies that can potentially break
application invariants. Giving up transactional ACID prop-
erties is bug-prone and difficult to get right for application
developers. Parallelising reads works well for read-dominated
workloads but does not scale to write-intensive ones. Par-
tial replication is not practical in all workloads because cross-
partition transactions are not well supported, and potentially
inefficient.
In previous work we introduced Gargamel [4] and we de-

scribed how it scales up replicated databases efficiently to a
potentially large number of replicas with full support for up-
dates, without giving up consistency.
Gargamel retains the familiar consistency guarantees pro-

vided by commercial databases and provides strong trans-
actional guarantees. It avoids replica synchronization after
each update by moving the concurrency control system before
the transaction execution, at the load balancer level. We de-
scribed a database architecture distributed over a single site
(i.e., data-center) focusing on the ability to scale and on op-
timal resource utilization. These goals are met, thanks to
a pessimistic concurrency control. This serializes conflicting
transactions ahead of time to avoid aborts and spreads non-
conflicting ones.
In this paper, we present our new contribution: a multi-

site architecture, using one Gargamel scheduler per site. Our
approach has the potential to lower client latency by connect-
ing to a closer replicas. This requires schedulers to synchro-
nize in order to avoid divergence. To avoid penalizing system
throughput, the schedulers synchronize optimistically, off of
the critical path. Furthermore, multi-site Gargamel provides
the ability to have a (or several) geographically distributed
copies of both (i) the database and (ii) the scheduler’s meta-
data. This permits to support the failure of a whole data-
center.
Our contributions are the following:
- We describe how multi-site Gargamel allows several geo-

replicated sites, each composed by a scheduler and a set of
nodes to proceed in parallel, offering a high level of fault tol-
erance.
- We mitigate the high inter-site latency by synchronizing

transaction execution among sites optimistically, off of the
critical path.
- We show how multi-site Gargamel is suitable to lower

client perceived latency by putting schedulers closer to them,
to improve availability spreading schedulers in multiple geo-
graphical locations and to expand the system when the work-
load exceeds the capacity of a single site.
- We describe the system architecture, the distributed

scheduling and the collision resolution algorithm and outline
the fault tolerance.

Figure 1: Multi-site system architecture

- We demonstrate the effectiveness of the multi-site specu-
lative scheduling and the collision resolution algorithm with
extensive experimentations with a prototype deployed on
Amazon Elastic Compute Cloud (EC2), varying the transac-
tion incoming rate, the database performances, and compar-
ing against a single site deployment.
- We conclude from the experimentation that: (i) The

optimistic scheduling approach mitigates the high inter-site
latency. (ii) Collisions do occur, but they have only a little
impact.
The paper proceeds as follows. Section 2 overviews the

multi-site Gargamel architecture. The distributed scheduling
and collision resolution algorithms are discussed in Section 3.
We discuss fault tolerance in Section 4. The prototype and
experimental results are detailed in Section 5. Finally, we
conclude and consider future work in Section 6.

2. SYSTEM ARCHITECTURE
In multi-site Gargamel, as illustrated in Figure 1, there are

several sites, each with its own Gargamel scheduler and a local
set of nodes.
A site might be, for instance, a multicore server within a

data-center, or a data-center in a cloud. The important point
is that the time to deliver a message sent from one site to
another, the inter-site message latency, is much higher than
the time from one of the schedulers to its local workers. A
worker is one of the process accessing the database. In our
experiments each node has one worker for each CPU.
Each scheduler manages transactions execution at its nodes

as described in details in [4]: within a site, conflicting transac-
tions are serialized and non-conflicting ones are spread among
replicas.
A scheduler receives transactions from local clients and

sends them to its nodes for execution in parallel. Further-
more, a scheduler needs maintain and synchronize a depen-
dencies graph, representing dependencies among transactions,
with other schedulers. Synchronization between schedulers is
optimistic i.e., a scheduler first sends the transaction to a
worker, then synchronizes with other schedulers.
A multi-site configuration may be useful in many cases. For

instance, if the client-to-scheduler message latency is high, it
may be beneficial to create a site close to the client. This
helps to lower the client-perceived latency. Another case is
when the workload exceeds the capacity of a single site; and of
course, when high availability is required and replicas should
be spread in multiple geographical locations.

3. DISTRIBUTED SCHEDULING AND
COLLISION RESOLUTION

Schedulers communicate asynchronously with one another,

Two Sites S1 and S2, receive three conflicting transactions
t1, t2, t3. (a) S1 receives t1 and forwards it to S2. (b) S1

and S2 receive t2 and t3 at the same time. (c) t2 and t3 are
forwarded along with their scheduling position. S1 and S2

discover a collision. (d) S1 and S2 agree on the position of t2
after t1 and kill t3, S2 reschedules t3 and forwards it to S1.

Figure 2: Example collision.

After the collision detection and before its resolution S1 re-
ceives t4. (a) (d’) S1 receives t4, schedules it “betting” on t2
and forwards it to S2. (b) (e’) S1 and S2 agree on the position
of t2 after t1 and kill t3, S2 reschedules t3 and forwards it to
S1.

Figure 3: Example bet.

While S2 is rescheduling t3 after t2 S1 schedules t4 after t2. A
new conflict arises. (a) (d”) S1 receives t4 and S2 reschedules
t3 at the same time. (b) (e”) t3 and t4 are forwarded along
with their scheduling position. S1 and S2 discover a new
collision.

Figure 4: Example collision on bet.

and are loosely synchronized. A scheduler can receive a
transaction, either from a local client (home transaction)
or from another scheduler (remote transaction). First, con-
sider a home transaction. The scheduler performs the normal
scheduling algorithm described in [4]. This is done without a
priori synchronization with the other schedulers. Once it has
scheduled the remote transaction, the scheduler forwards it to
all the other sites (asynchronously and reliably) along with its
scheduling position. Schedulers use reliable FIFO broadcast
to propagate transactions between them.

Once committed by the local database, the transaction’s
write-set is propagated to all other nodes (in both local and
remote sites). The latter apply the write-set without re-
executing the transaction [9]. Thus, although a given trans-
action is scheduled at all sites, it nonetheless consumes com-
putation resource at a single site only. This avoids duplicate
work, and divides the load.

3.1 Collisions
When a scheduler S receives a remote transaction from

a scheduler S′, it schedules it according to the single-site
scheduling algorithm. When it compares its scheduling po-
sition with the position at S′, it may find that the S′ site has

Life-cycle of messages exchanged between clients, schedulers
and nodes to execute a transaction. (1) The client sends a
transaction to its home scheduler. (2) The scheduler schedules
the transaction locally and (3) sends it for execution to a node.
(4) The scheduler broadcasts the transaction, along with its
back dependency to all other schedulers and (5) reaches an
agreement on the position of the transaction in the depen-
dencies graph. (6) The scheduler informs the node on the
outcome of the agreement process (commit or kill). (7) In
case of commit, the node broadcasts the write-set to other
nodes and (8) acknowledges the client. In case of kill the
node discards the execution.

Figure 5: Transaction message life-cycle

Figure 6: Transaction life-cycle

ordered the transaction differently. We call this situation a
collision, S and S′ must not both commit the transaction in
different order (i.e., in a different position in the dependencies
graph), otherwise they would diverge. Figures 2, 3 and 4 give
some examples on how collisions happen and how they are
managed.

Solving collisions requires a synchronization protocol. The
obvious solution would be to synchronize a priori, but this
could be costly, since inter-site message latency is assumed
high.

Instead, Gargamel’s synchronization is optimistic. It is ex-
ecuted in the background, off of the critical path.

As illustrated in Figure 6, a collision may occur at differ-
ent times in the life-cycle of a transaction: If the collision is
detected after the transaction is queued, but before it is exe-
cuted, it is simply re-queued in its correct position. We call
this a cancellation. If the collision is received after the trans-
action starts, the offending transaction is forcefully aborted.1

We call this killing the transaction. A transaction may not
commit before the collision/non-collision information is re-
ceived. If this is the case, then commitment must wait. We
call this situation a stall.

A cancelled transaction costs nothing in terms of through-
put or response time. A killed transaction (either during ex-
ecution or after a stall) costs lost work, this has an impact
on both throughput and response time. A stall followed by
a commit do not cost lost work, but this impacts throughput
and response time. Our experiments show that if message
latency is small compared to the transaction incoming rate,

1Note that this is the only case where a transaction aborts,
since Gargamel has eliminated all concurrency conflicts.

collisions most often result in cancellations. Even if the sys-
tem suffers from a high collision rate, the lost work remains
small.

3.2 Collision and Synchronization Protocol
A collision splits a chain (i.e. a sequence of dependent

transactions) into incompatible branches. In the example in
Figure 2(c), the collision between transactions t2 − t3 splits
the chain into a branch t1 − t2 and a branch t1 − t3. Those
branches must not be both executed, because t1, t2 and t3
mutually conflict, and should be serialized.
When this occurs, schedulers must reach agreement on

which branch to confirm (Figures 2(d)). To this effect, Gar-
gamel runs a consensus protocol between schedulers. In
the presence of several branches, the protocol confirms the
longest; or, if equal, the one with the first transaction with
the smallest ID.
The transactions in another branch are either cancelled or

killed, as explained earlier. Cancelling or killing a transaction
T also cancels all local transactions that depend (directly or
indirectly) on T . Thus, Gargamel does not need to run the
confirmation protocol for each transaction it aborts, but only
for a subset composed by one transaction for each branch.
Scheduling a transaction that conflicts with two or more col-

liding transactions requires betting on which one will win the
confirmation protocol. Indeed, if a transaction is appended
to conflicting branches it will be cancelled when one of the
conflicting branch is cancelled. A bet consists in appending
the transaction to one of the branches, hoping that the chosen
branch will be confirmed. In order to maximize the probabil-
ity of winning the bet, a scheduler applies the same heuristic
as the collision protocol, i.e., it bets on the longest branch,
or, if equal, one the one with the smallest transaction ID.
In the example in Figure 3, S1 receives t4, which conflicts

with both t2 and t3. S1 may bet either the chain t1 − t2 − t4
or on t1 − t3 − t4. Suppose the former (by smallest ID rule);
if t2 is confirmed, then t4 will also be confirmed and the bet
was a good one. In the worst case t2 is cancelled and cause
the cancellation of t4 or S1 bet on t2 at the same time that
S2 reschedule t3 causing a new conflict. The latter case is
illustrated by Figure 4.

4. FAULT TOLERANCE
We only consider crash faults [12].We assume that nodes

do not crash during the recovery process.
Multi-site Gargamel has a “natural” redundancy.This re-

dundancy comes from the fact that each node has a full replica
of the database, and each scheduler a full replica of the depen-
dencies graph. We can use this redundancy for crash recovery.
The system can recover as long as there is at least one

correct scheduler and one correct node. For correctness, once
a scheduler or a node suspects a machine to be crashed, it
will discard all subsequent messages from it to avoid false
detection problems.
We address two different kind of failures: scheduler failure

and node failure.

4.1 Scheduler Failure
The clients maintain a list of alternate schedulers. When a

client suspects that a scheduler S has failed, it notifies a cor-
rect scheduler S′ and sends to S′ the list (transactionList)
of transactions it has sent to S and that were not completed.
Recall that schedulers use reliable First In, First Out (FIFO)
broadcast to propagate transactions between them, so if a
scheduler has a remote (i.e., not coming from one of its clients)

Default parameters Value
Number of nodes 64
Number of workers per node 1
Incoming rate 50/100/150/200 t/s
Nodes and clients EC2 instances M3.medium
Schedulers EC2 instances M3.xlarge
Load 100,000 transactions
Warehouses (TPC-C) 10

Table 1: Experiment parameters

transaction in its local view, then eventually all correct sched-
ulers will receive that same transaction.
A transaction t in transactionList can be in one of three

possible states: i) t is in the local view of S′: this means
that the scheduler has crashed after step 4 of Figure 5 (trans-
action propagation between schedulers). This implies that the
transaction has been already delivered for execution to some
node (see Figure 5). In this case, S′ will take no actions. The
client will eventually receive the reply for that transaction.
ii) t is not in the local view of S′ and is not sched-
uled for execution at any of the nodes of S: this means
that the scheduler has crashed before step 3 of Figure 5. The
transaction is “lost” because, except for the client, none of the
surviving nodes on the system knows about it. In this case,
S′ reschedules the transaction as a home transaction transac-
tion. iii) t is not in the local view of S′ and it is sched-
uled for execution at one of the nodes of S: this means
that S crashed after step 3 and before step 4 of Figure 5. The
transaction has been scheduled and sent to a node for exe-
cution, but the shceduleRemote message was not sent to the
other schedulers. In this case, S′ retrieves the transaction and
its back dependency (as calculated by S) and reschedules it
locally in the same position (i.e., keeping the back dependency
calculated by S), and sends shceduleRemote to other sched-
ulers (including itself). This recovers the execution from the
point at which was interrupted.
This procedure can be repeated until there is at least one

correct scheduler in the system.

4.2 Node Failure
When a Scheduler suspects a node failure, it fetches from

the dependencies graph the list of transactions sent to that
node for execution and checks on the survivor nodes which
write-sets have not been received. It then reschedules for ex-
ecution transactions that have not been received by survivor
nodes. Notice that nodes send reply to clients after broadcast-
ing the write-set to other nodes, otherwise in case of failure
clients can receive more than one reply to the same transac-
tion.

5. EVALUATION
The main Gargamel prototype components (nodes, sched-

ulers and emulated clients) are written in Java (∼12k lines
of code). They communicate through JGroups [7], a reliable
multicast system. Our concurrency control and update prop-
agation mechanism is based on group communication, and
correctness depends on the properties of the communication
channels.
We use an unmodified version of PostgreSQL [16], an open

source relational Database Management System (DBMS) for
nodes’ database. The communication with the database is
done through Java Database Connectivity (JDBC). Garga-
mel is evaluated using the TPC-C benchmark.

Default parameters Value
Number of nodes 32
Number of workers per node 1
Incoming rate 20 to 100 t/s
Load (single-site) 10,000 transactions
Warehouses (TPC-C) 10

Table 2: Experiment parameters for in-disk database

5.1 Multi-Site Gargamel Evaluation
In this set of experiments we compare multi-site Gargamel

against single site Gargamel on a in-memory database. We
measure the client-perceived latency (i.e. the time elapsed be-
tween the time the client sends the transaction and the time
it receives the corresponding commit message). Figure 7 com-
pares the case of all transactions being serialised at a single
node to Round-Robin and single-site Gargamel (both using
and not using certification) in terms of transaction latency for
different incoming rates. Figure 8 shows the latency perceived
by clients in Ireland and Oregon in the single site and multi-
site configuration varying the incoming rate. The latency per-
ceived by the client in Ireland on the single site setting is an
order of magnitude lower than the latency experienced by all
other clients. This is because in single site Gargamel transac-
tions coming from the Ireland EC2 region are executed in the
local data-center and do not need to synchronize remotely. In
the other hand, transactions coming from clients located in
Oregon in the single site Gargamel case show a much higher
latency because they suffer for the high latency between the
west of Europe and the west of the United States. Interest-
ingly, the latency observed for the client located in Oregon in
the single site configuration, are similar to the ones observed
in the multi-site configuration, a little bit higher than multi
site Gargamel clients in Oregon and a little bit lower than
multi-site Gargamel clients in Ireland. This is because from
whatever client multi-site Gargamel receives a transaction,
it synchronizes with the other scheduler, paying the price of
a transatlantic round-trip message. In multi-site Gargamel,
clients in Oregon have a lower latency than clients in Ireland
because in order to simplify the implementation, our proto-
type elects a scheduler do be the leader of the agreement
protocol. The leader resolves conflicts in case of collisions. In
our experiments the leader is the Oregon scheduler, giving a
small advantage to clients connected to that scheduler.

In average, multi-site Gargamel does not show any improve-
ment or overhead over single-site Gargamel for transactions
that come from distant clients. This is because at low in-
coming rate, as in this experiment configuration, transactions
are executed as soon as they arrive, so multi site Gargamel
does not form long execution chains and the agreement la-
tency cannot overlap the time the transaction spend waiting
for the execution of previous transactions in its chain. The
optimistic scheduling benefit comes from the fact that the
agreement on the transaction execution order between sites
proceeds in parallel with the transaction execution.

5.2 Impact of Database Performance
We evaluate the impact of transaction execution latency

running the same experiments of Section 5 in a less efficient
database. The next set of experiments is based on a in-disk
PostgreSQL database. Points in the following plots are pro-
duced with a single run of 10k transactions. We reduced the
number of transactions of each experiments from 100k to 10k
to keep constant the total “running time” i.e. the time it

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

L
at

en
cy

 (
m

s)

Throughput (t/s)

1 node serialisation
Round-Robin (64 nodes)

Gargamel certification (64 nodes)
Gargamel no certification (64 nodes)

Figure 7: Single-site comparison

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120

L
at

en
cy

Throughput (t/s)

Multi-site Oregon
Multi-site Ireland

Single-site Oregon
Single-site Ireland

Figure 8: single site VS multi-site Gargamel

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

L
at

en
cy

Throughput (t/s)

Multi-site Oregon
Multi-site Ireland

Single-site Oregon
Single-site Ireland

Figure 9: Single site Gargamel VS multi-site Garga-
mel slow database

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

N
um

be
r

of
 tr

an
sa

ct
io

ns

Incoming rate (t/s)

Collisions
Cancellations

Kills

Figure 10: Impact of collisions

takes for the system to execute all the transactions. Unless
differently specified, we use the parameters from Table 2.
The in-disk database is more than ten times slower than

the well-tuned in-memory database.
In the experiments presented by Figure 9 we compare how

multi-site and single site Gargamel perform when using a slow
in-disk database. As for the experiments illustrated by Fig-
ure 8, we measure the latency perceived by different clients
located in different regions as the incoming rate, and conse-
quently the throughput, increases. The main difference with
executions using an in-memory database is that even the la-
tency of clients in Ireland in single site Gargamel experience
a high latency, and the difference with other clients is smaller
than for the in-memory database. This is due to the long
transaction execution time (between 50 and 90 millisecond).
In this experiment the incoming rate is low, so transactions
are executed as soon as they arrive in the system. They do
not form chains and the higher execution time is not enough
to show the benefits of the optimistic scheduling approach.

5.3 Impact of Collisions
The optimistic scheduling is interesting when Gargamel

forms transactions chains. To show this, we have to saturate
the system. At high incoming rates Gargamel organizes trans-
actions in chains according to their conflict relations. Multi-
site Gargamel schedules transactions at each site according
to the local view, then synchronizes schedulers optimistically.
In this way multi-site Gargamel masks the agreement delay
(because the agreement is performed in parallel with the exe-
cution of the transactions in the chain), but collisions on the
transaction execution order at different sites are possible. In
order to evaluate the impact of collisions and the effectiveness
of the optimistic approach we saturate Gargamel schedulers
pushing the incoming rate up to 100 transactions per second
in the in-disk database.
Figure 10 shows the number of transactions that collide,

and among colliding transactions how many are cancelled and
how many are killed. We recall that a transaction is cancelled
when it is rescheduled before its execution starts, and is killed
when its execution is started and have to be aborted in the
database. The key difference is that cancellations do not cause
waste of work because the transaction is not executed at any
replica but just rescheduled at a different position while kills
involve executing and aborting a transaction at a node, wast-
ing resources. As showed in Figure 10, when the incoming rate
is low, at 30 transactions per second, there are few collisions.
Those collisions result in a kill of the corresponding transac-
tion, because transactions are executed as soon as they arrive

0

50

100

150

200

250

300

0 20 40 60 80 100 120

T
im

e
(m

s)

Incoming rate (t/s)

Cumulative time spent waiting

Figure 11: Cumulative time spent waiting for agree-
ment

and there is no time to reschedule them. Until 60 transactions
per second, collisions are very rare and roughly half of them
cause the transaction to abort (kill) and the other half cause a
simple rescheduling (cancellation). When the incoming rate
increases, the number of collision increases as well and the
effectiveness of the optimistic protocol became visible: most
of the collisions cause a simple cancellation and transactions
are rescheduled before being executed. At an incoming rate
of 80 transactions per second and more, the number of col-
lision increases rapidly (from 10 to more than 30), but the
number of collisions that cause lost work, remains stable and
low. Even if multi site Gargamel experience some amount of
collisions, the lost work remains low, and the degradation of
the resource consumption optimality is modest.
The optimistic scheduling imposes to synchronize sched-

ulers to agree on the transaction position in the dependencies
graph. Transactions cannot be committed in the database
until the agreement on their position in the chain is reached.
If a transaction execution finishes before the schedulers have
agreed on its position, the transaction wait for the agreement
process to finish before being commit or killed. In the next
experiment we have measured, for increasing incoming rates,
the cumulative time spent by transactions waiting for the out-
come of the agreement. Figure 11 shows the cumulative time
spent by transaction waiting for the outcome of the agree-
ment as the incoming rate increases. The cumulative waiting
time is between 100 and 200 milliseconds for all the runs.
The workload of a run is composed by 10k transactions, con-
sequently in average the transaction commitment is delayed
by a time between 0.001 and 0.002 milliseconds. Consider-
ing that in this setting (slow in-disk database) the average
transaction execution time is between 60 and 90 milliseconds,
the delay on the commit time is negligible. The delay is so
small because most of the transactions do not wait at all: at
the time the transaction is executed the agreement protocol
is done and the transaction can commit right away; and as
showed before, cases in which the transaction cannot commit
and should be killed are rare.

6. CONCLUSION
A transaction reordering mechanism is proposed by Pedone

et al. [8]. Their system reorder transaction commitment order
to reduce aborts. Differently from Gargamel they don’t avoid
aborts, but they alleviate their impact.
Multi-site Gargamel allows several geo-replicated sites, each

composed by a scheduler and a set of nodes, to proceed in
parallel. Each site receives transactions from local clients and
executes them at local nodes. Synchronization among sites on
the execution order is done optimistically, off of the critical
path. Multi-site Gargamel is suitable to lower client perceived
latency by putting schedulers closer to them, to improve avail-
ability spreading schedulers in multiple geographical locations
and to expand the system when the workload exceeds the ca-
pacity of a single site.

We have described the system architecture, the distributed
scheduling and collision resolution algorithm and outlined the
fault tolerance.

We evaluated its performances and benefits using a proto-
type running on top multiple Amazon data-centers.

7. REFERENCES
[1] Memcachedb http://memcachedb.org/.
[2] J. E. Armendáriz-Iñigo, A. Mauch-Goya, J. R. G.

de Mend́ıvil, and F. D. Muñoz Escóı. Sipre: A partial
database replication protocol with si replicas. In
Proceedings of the 2008 ACM Symposium on Applied
Computing, SAC ’08, pages 2181–2185, New York, NY,
USA, 2008. ACM.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. SIGMOD Rec., 24:1–10, May 1995.

[4] P. Cincilla, S. Monnet, and M. Shapiro. Gargamel:
boosting DBMS performance by parallelising write
transactions. In Parallel and Dist. Sys. (ICPADS),
pages 572–579, Singapore, Dec. 2012.

[5] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, 2007.

[6] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. Reliable
Distributed Systems, IEEE Symposium on, 0:73–84,
2005.

[7] A. Montresor, R. Davoli, and O. Babaoğlu. Middleware
for dependable network services in partitionable
distributed systems. SIGOPS Oper. Syst. Rev.,
35(1):73–96, Jan. 2001.

[8] F. Pedone, R. Guerraoui, and A. Schiper. Transaction
reordering in replicated databases. In Symposium on
Reliable Distributed Systems, pages 175–182, 1997.

[9] F. Pedone, R. Guerraoui, and A. Schiper. The Database
State Machine approach. Distributed and Parallel
Databases, 14(1):71–98, 2003.

[10] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In In
Proceedings of the 5th ACM/IFIP/Usenix International
Middleware Conference, pages 155–174, 2004.

[11] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso.
Database engines on multicores, why parallelize when
you can distribute? In Proceedings of the sixth
conference on Computer systems, EuroSys ’11, pages
17–30, New York, NY, USA, 2011. ACM.

[12] F. B. Schneider. Byzantine generals in action:
Implementing fail-stop processors. ACM Trans.
Comput. Syst., 2(2):145–154, May 1984.

[13] J. Sobel. Scaling out. Engineering @ Facebook Notes
https://www.facebook.com/note.php?note_id=23844338919,
Aug. 2008.

[14] A. Sousa, R. Oliveira, F. Moura, and F. Pedone. Partial
replication in the database state machine. In
Proceedings of the IEEE International Symposium on
Network Computing and Applications (NCA’01), NCA
’01, pages 298–309, Washington, DC, USA, 2001. IEEE
Computer Society.

[15] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB ’07,
pages 1150–1160. VLDB Endowment, 2007.

[16] M. Stonebraker and L. A. Rowe. The design of
POSTGRES. In ACM Sigmod Record, volume 15, pages
340–355. ACM, 1986.

