
Certified Parsing of Binary Data

Pierre-Évariste Dagand
Cnrs/Lip6/Inria – Whisper

Abstract

This internship offers to design and implement a formally-verified format language in
the Coq proof assistant. The rôle of a format language is to describe the structure of binary
data. From a format description, one obtains a parser – taking binary data to high-level
data-structures – and a serializer – mapping back those data-structures to binary data.
The parser is correct if it is the left-inverse of the serializer. We shall strive to provide
a mechanically-checked proof of correctness of the parsers/serializers obtained from our
format language. This internship will be held at LIP6 (UPMC, Paris).

The foundation of our computerized civilization is built from infrastructure software: hyper-
visors, operating systems, servers, etc. Such software implements complex policies to ensure
a fair and secure access to computing resources. This access is mediated by low-level mech-
anisms directly manipulating the devices. As a result, writing infrastructure code is tedious
and error-prone. It is crucial to abstract away the low-level details by providing high-level
abstractions. Domain-specific languages (DSLs) are a means to that end [Muller et al., 2000].

A typical DSL is the Devil language for hardware access [Mérillon et al., 2000]. An OS
programmer describes the register set of a hardware device in the high-level Devil language,
which is then compiled into a library providing C functions to read and write values from the
device registers. In doing so, Devil frees the programmer from having to write extensive bit-
manipulation macros or inline functions to map between the values the OS code deals with,
and the bit-representation used by the hardware: Devil generates code to do this automatically.

This internship is concerned with the parsing of binary data. Parsing is ubiquitous in in-
frastructure code: drivers must parse the output of devices, network stacks must parse packets
to process them, applications must parse binary documents (PDF, png, etc.) to display them.
A bug in these intricate parsing codes can lead to crashes or, worse, security vulnerabilities.
A network packet sniffer might crash upon processing certain packets [CVE details, 2014c].
A PDF viewer might execute arbitrary code upon opening a carefully crafted document [CVE
details, 2014a]. A web browser might accept forged RSA signatures upon receiving a carefully
crafted certificate [CVE details, 2014b].

To tackle this issue, we propose to design and implement a format language [Burgy et al.,
2011, Levillain, 2014, Bangert and Zeldovich, 2014]: a domain-specific language, akin to a parser
generator [Johnson, 1979], offering specialized abstractions for parsing and serializing binary
data. Conceptually, the purpose of a format language is to relate an external format – a lump
of binary data – to an internal representation – a semantic object – in some programming lan-
guage. The external format may involve checksum computation, redundant information, or
even compression. The internal representation is typically a data-structure in the target pro-
gramming language, such as C, OCaml or Coq. Formally, the relation between binary data and
its semantic domain is witnessed by a parsing function that is the left-inverse of a serialization
function, which maps semantic values back to an external format. This amounts to a round-trip
property: serializing composed with parsing yields the identity function on (semantic) values.



By seamlessly integrating programs and proofs, dependently-typed languages, such as
Coq [The Coq Development Team], Agda [Norell, 2007], or Idris [Brady, 2013], enable the
development of a provably-correct and extensible format language [Morrisett et al., 2012]. Ex-
ecutable code can be obtained by extraction to OCaml, or code generation to Cminor [Leroy,
2009] or even directly to x86 [Kennedy et al., 2013] (whose semantics have all been formal-
ized in Coq). We also benefit from a rich semantic domain that amounts, at the very least, to
Martin-Löf type theory with inductive and coinductive types. While usual interpretations of
formats depend on the target language’s data-structures, we are here offered the opportunity to
develop a genuine denotational semantics. For example, we have given a compositional inter-
pretation [Kennedy et al., 2013] of the x86 binary opcodes (represented as tuples of Booleans)
into a Coq data-type (representing the instruction set, including its maze of addressing modes).

In this internship, we shall design, implement, and verify a compositional format language.
Concretely, we are aiming at:

• developing a format DSL embedded in the Coq proof assistant;
• taking as input binary data in the form of Coq tuples of Booleans;
• producing internal representations in the form of Coq types;
• illustrating stream transformations, such as checksum and offset computation;
• supporting extraction of the parser and serializer to OCaml.

The team: This internship will be held at LIP6 (UPMC, Paris) in the Whisper team (Inria)
headed by Gilles Muller. It will be supervised by Pierre-Évariste Dagand. The Whisper team
is exploring avenues for collaboration with the Agence Nationale de la Sécurité des Systèmes
d’Information (Anssi): this project could become the cornerstone of a stimulating cooperation
revolving around the compositional development of certified software.

Student’s profile: We are looking for a student with experience in an interactive theorem
prover (Coq, or Isabelle) or a dependently-typed programming language (Agda, or Idris). A
motivated student with a strong background in functional programming (OCaml, or Haskell)
could certainly learn to use Coq along the way [Pierce et al., 2014, Chlipala, 2011]. Acquain-
tance with the C programming language and the Unix environment (Gnu/Linux, or Bsd) is
recommended. Having a knack for low-level programming is highly appreciated.



References

J. Bangert and N. Zeldovich. Nail: A practical tool for parsing and generating data formats. In
OSDI, pages 615–628, Oct. 2014.

E. Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 2013.

L. Burgy, L. Réveillère, J. L. Lawall, and G. Muller. Zebu: A language-based approach for
network protocol message processing. IEEE Trans. Software Eng., 37(4):575–591, 2011.

A. Chlipala. Certified Programming with Dependent Types. MIT Press, 2011.
URL http://adam.chlipala.net/cpdt/.

CVE details. Acrobat vulnerabilities, 2014a. URL http://www.cvedetails.com/
vulnerability-list/vendor_id-53/product_id-497/.

CVE details. Mozilla NSS vulnerability, 2014b.
URL http://www.cvedetails.com/cve/CVE-2014-1568/.

CVE details. Wireshark dissectors vulnerabilities, 2014c. URL http://www.cvedetails.
com/vulnerability-list/vendor_id-4861/Wireshark.html.

S. C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s Manual, volume 2,
pages 353–387. 1979.

A. Kennedy, N. Benton, J. B. Jensen, and P.-E. Dagand. Coq: The world’s best macro assembler?
In PPDP, pages 13–24, 2013.

X. Leroy. A formally verified compiler back-end. J. Autom. Reasoning, 43(4):363–446, 2009.

O. Levillain. Parsifal: a pragmatic solution to the binary parsing problem. In LangSec Workshop
at IEEE Security & Privacy, May 2014.

F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller. Devil: An IDL for hardware
programming. In OSDI, pages 17–30, Oct. 2000.

G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. RockSalt: better, faster, stronger
SFI for the x86. In PLDI, pages 395–404, 2012.

G. Muller, C. Consel, R. Marlet, L. P. Barreto, F. Mérillon, and L. Réveillère. Towards robust OSes
for appliances: A new approach based on domain-specific languages. In SIGOPS European
Workshop, pages 19–24, 2000.

U. Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjoberg, and B. Yorgey.
Software Foundations. Electronic textbook, 2014.
URL http://www.cis.upenn.edu/~bcpierce/sf.

The Coq Development Team. The Coq Proof Assistant Reference Manual.
URL http://coq.inria.fr/coq/refman.

http://adam.chlipala.net/cpdt/
http://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-497/
http://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-497/
http://www.cvedetails.com/cve/CVE-2014-1568/
http://www.cvedetails.com/vulnerability-list/vendor_id-4861/Wireshark.html
http://www.cvedetails.com/vulnerability-list/vendor_id-4861/Wireshark.html
http://www.cis.upenn.edu/~bcpierce/sf
http://coq.inria.fr/coq/refman

