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Abstract

This internship offers to design and implement a formally-verified format language in
the Coq proof assistant. The rôle of a format language is to describe the structure of binary
data. From a format description, one obtains a parser – taking binary data to high-level
data-structures – and a serializer – mapping back those data-structures to binary data.
The parser is correct if it is the left-inverse of the serializer. We shall strive to provide
a mechanically-checked proof of correctness of the parsers/serializers obtained from our
format language. This internship will be held at LIP6 (UPMC, Paris).

The foundation of our computerized civilization is built from infrastructure software: hyper-
visors, operating systems, servers, etc. Such software implements complex policies to ensure
a fair and secure access to computing resources. This access is mediated by low-level mech-
anisms directly manipulating the devices. As a result, writing infrastructure code is tedious
and error-prone. It is crucial to abstract away the low-level details by providing high-level
abstractions. Domain-specific languages (DSLs) are a means to that end [Muller et al., 2000].

A typical DSL is the Devil language for hardware access [Mérillon et al., 2000]. An OS
programmer describes the register set of a hardware device in the high-level Devil language,
which is then compiled into a library providing C functions to read and write values from the
device registers. In doing so, Devil frees the programmer from having to write extensive bit-
manipulation macros or inline functions to map between the values the OS code deals with,
and the bit-representation used by the hardware: Devil generates code to do this automatically.

This internship is concerned with the parsing of binary data. Parsing is ubiquitous in in-
frastructure code: drivers must parse the output of devices, network stacks must parse packets
to process them, applications must parse binary documents (PDF, png, etc.) to display them.
A bug in these intricate parsing codes can lead to crashes or, worse, security vulnerabilities.
A network packet sniffer might crash upon processing certain packets [CVE details, 2014c].
A PDF viewer might execute arbitrary code upon opening a carefully crafted document [CVE
details, 2014a]. A web browser might accept forged RSA signatures upon receiving a carefully
crafted certificate [CVE details, 2014b].

To tackle this issue, we propose to design and implement a format language [Burgy et al.,
2011, Levillain, 2014, Bangert and Zeldovich, 2014]: a domain-specific language, akin to a parser
generator [Johnson, 1979], offering specialized abstractions for parsing and serializing binary
data. Conceptually, the purpose of a format language is to relate an external format – a lump
of binary data – to an internal representation – a semantic object – in some programming lan-
guage. The external format may involve checksum computation, redundant information, or
even compression. The internal representation is typically a data-structure in the target pro-
gramming language, such as C, OCaml or Coq. Formally, the relation between binary data and
its semantic domain is witnessed by a parsing function that is the left-inverse of a serialization
function, which maps semantic values back to an external format. This amounts to a round-trip
property: serializing composed with parsing yields the identity function on (semantic) values.



By seamlessly integrating programs and proofs, dependently-typed languages, such as
Coq [The Coq Development Team], Agda [Norell, 2007], or Idris [Brady, 2013], enable the
development of a provably-correct and extensible format language [Morrisett et al., 2012]. Ex-
ecutable code can be obtained by extraction to OCaml, or code generation to Cminor [Leroy,
2009] or even directly to x86 [Kennedy et al., 2013] (whose semantics have all been formal-
ized in Coq). We also benefit from a rich semantic domain that amounts, at the very least, to
Martin-Löf type theory with inductive and coinductive types. While usual interpretations of
formats depend on the target language’s data-structures, we are here offered the opportunity to
develop a genuine denotational semantics. For example, we have given a compositional inter-
pretation [Kennedy et al., 2013] of the x86 binary opcodes (represented as tuples of Booleans)
into a Coq data-type (representing the instruction set, including its maze of addressing modes).

In this internship, we shall design, implement, and verify a compositional format language.
Concretely, we are aiming at:

• developing a format DSL embedded in the Coq proof assistant;
• taking as input binary data in the form of Coq tuples of Booleans;
• producing internal representations in the form of Coq types;
• illustrating stream transformations, such as checksum and offset computation;
• supporting extraction of the parser and serializer to OCaml.

The team: This internship will be held at LIP6 (UPMC, Paris) in the Whisper team (Inria)
headed by Gilles Muller. It will be supervised by Pierre-Évariste Dagand. The Whisper team
is exploring avenues for collaboration with the Agence Nationale de la Sécurité des Systèmes
d’Information (Anssi): this project could become the cornerstone of a stimulating cooperation
revolving around the compositional development of certified software.

Student’s profile: We are looking for a student with experience in an interactive theorem
prover (Coq, or Isabelle) or a dependently-typed programming language (Agda, or Idris). A
motivated student with a strong background in functional programming (OCaml, or Haskell)
could certainly learn to use Coq along the way [Pierce et al., 2014, Chlipala, 2011]. Acquain-
tance with the C programming language and the Unix environment (Gnu/Linux, or Bsd) is
recommended. Having a knack for low-level programming is highly appreciated.
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