
Toward a Certified Firewall

Pierre-Évariste D
C/L/I – Whisper

e foundation of our computerized civilization is built from infrastructure soware: hy-
pervisors, operating systems, compilers, etc. Due to their inherent complexity, this foundation
is somewhat fragile: bad memory management (e.g. Heartbleed) or incorrect input sanitiza-
tion (e.g. Shellshock) have far-reaching, societal consequences (financial losses, identity the,
etc.). To address this issue, research and industry are moving toward correct-by-construction
infrastructure soware, be it operating systems [Klein et al., ], compilers [Leroy, ], or
even just-in-time compilers in operating systems [Wang et al., ].

Firewalls are a key example of infrastructure soware. eir role is to safeguard networks
of computers according to some security policy. Such a policy is specified through a set of
filtering rules [McCanne and Jacobson, ]. ese rules are interpreted by a packet filter,
which is part of the operating system. In fine, a firewall is thus a high-performance, domain-
specific interpreter living inside an operating system.

Being at the entry-point of networks, the correctness of packet filters is paramount. We
would like to guarantee that it cannot crash or, worse still, be vulnerable to an aack. Be-
yond mere safety, functional correctness is essential too: the security policy specified by an
administrator must be carried through as is by the filtering engine. A loophole would leave the
network open to an aack or prevent legitimate traffic from reaching its destination.

is internship aims at designing and implementing a provably-correct packet filter. is
involves three complementary deliverables:

• First, the student will implement a certified filtering engine. e engine is responsible
for accepting network packets based on compiled filtering rules. is shall result in a
bit-accurate, operational semantics [Kennedy et al., ] of the packet filter.

• Second, the student will develop a formal semantics of the filtering rules [McCanne and
Jacobson, ] that express security policies. is high-level language is strongly rem-
iniscent of regular expressions [Anderson et al.], of which we can hope to reuse many
concepts in the mechanized semantics. is deliverable aims at providing a reference
semantics for the filtering rules.

• Finally, the student will compile the filtering rules to the filtering engine while preserving
the intended semantics of the security policy. is amounts to implementing a certified
compiler. If time permits, we shall study avenues for optimizing the resulting bytecode
and formally validating such optimization passes [Tristan and Leroy, ].

is ambitious plan, which should but embolden an X, can be adapted to suit the interest and
time available to the student: the formal developments can be short-circuited by informal, yet
convincing prototypes.
e team: is internship will be held at LIP (UPMC, Jussieu campus) in the Whisper team
(I) headed by Gilles Muller. It will be supervised by Pierre-Évariste Dagand. is project
is part of an ongoing collaboration with Stormshield [sto], subsidiary of Airbus Defence and
Space CyberSecurity and European leader in the field of certified firewall solution (A
E+ [eal]). Our study will initially be based on the OpenB packet filter. e long term
objective – to be carried as part of a PhD thesis – is to release the world’s first certified packet
filter and enable our industrial partner to reach a higher certification level (A E).
Student’s profile: We are looking for a student proficient in C and Unix (G/Linux, or B).
Having some basic knowledge in computer networks and, in particular, having some passing
experience in seing up firewalls (iptables, or pf) would be a plus. Acquaintance with an
interactive theorem prover (Coq, or Isabelle) is recommended. Nonetheless, a motivated stu-
dent with a strong background in functional programming (OCaml, or Haskell) could certainly
learn to use Coq along the way [Pierce et al., , Chlipala, ].



References

Evaluation assurance level.
URL http://en.wikipedia.org/wiki/Evaluation_Assurance_Level.

Stormshield. URL http://www.stormshield.eu/.

C. J. Anderson, N. Foster, A. Guha, J. B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker.
NetKAT: Semantic foundations for networks. In POPL ’.

A. Chlipala. Certified Programming with Dependent Types. MIT Press, .
URL http://adam.chlipala.net/cpdt/.

A. Kennedy, N. Benton, J. B. Jensen, and P.-E. Dagand. Coq: e world’s best macro assembler?
In PPDP ’.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engel-
hardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL: formal verification
of an OS kernel. In SOSP’.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, .

S. McCanne and V. Jacobson. e BSD packet filter: A new architecture for user-level packet
capture. In USENIX’.

B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjoberg, and B. Yorgey.
Soware Foundations. Electronic textbook, .
URL http://www.cis.upenn.edu/~bcpierce/sf.

e Coq Development Team. e Coq Proof Assistant Reference Manual.
URL http://coq.inria.fr/coq/refman.

J.-B. Tristan and X. Leroy. Formal verification of translation validators: a case study on in-
struction scheduling optimizations. In POPL’.

X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock. Jitk: A trustworthy in-kernel
interpreter infrastructure. In OSDI’.

http://en.wikipedia.org/wiki/Evaluation_Assurance_Level
http://www.stormshield.eu/
http://adam.chlipala.net/cpdt/
http://www.cis.upenn.edu/~bcpierce/sf
http://coq.inria.fr/coq/refman

