
Verified correctness and complexity analysis
of the Uno-Yagiura algorithm

Binh-Minh Bui-Xuan Pierre-Évariste Dagand

Abstract

This internship offers to develop a certified implementation of Uno and Yagiura algo-
rithm for enumerating the common intervals of two permutations. This algorithm plays a
fundamental role in computational biology: we shall not only strive to prove its correct-
ness – it returns correct results – but also to mechanically check its complexity bounds –
its complexity is linear with respect to the permutation’s size. The internship will be held
at LIP6 (Université Paris 6) jointly in the Whisper and Apr team.

Uno and Yagiura [2000] have developed an efficient algorithm for computing gene clusters
across species. To the geneticists, being able to identify common gene clusters provide a wealth
of information, such as the evolution of species or their selectionmechanisms. To the computer
scientist, Uno and Yagiura’s algorithm appears to be a delicate and rather puzzling piece of
engineering: it is challenging to explain how it works and why its complexity is linear.

The original publication did not help in that respect: the algorithm’s correctness “proof” is
described in about 10 rather cryptic lines. Bui-Xuan et al. [2005] revisited the algorithm, ex-
pounding its invariant and structural properties. As part of an earlier internship, Fleury [2013]
worked toward mechanically verifying its functional correctness in the Coq proof assistant,
achieving promising results on a simplified variant of the algorithm. However, this work did
not establish the correctness of the full-blown version of the algorithm. Also, being focused on
the functional correctness, the complexity of the algorithm was not formally established.

Objectives: This internship aims to tackle these remaining roadblocks. Concretely, wewish to:
• Prove the functional correctness and complexity bounds of a naïve variant of the Uno-
Yagiura algorithm in the Coq proof assistant;

• Describe the optimized version through a series of refinements over the naïve one, thus
paving the way for a conceptually simpler presentation of the algorithm;

• Taking advantage of the various refinements, prove the functional correctness and es-
tablish the complexity bounds of each refinement in the Coq proof assistant.

Learning outcomes: First of all, this internship offers an opportunity to learn the ins and outs
of certified program development. We shall tackle the difficult task of reasoning about mutable
data-structures and formalizing some amortized complexity arguments, following the footsteps
of Charguéraud and Pottier [2015] in their work on certifying the union-find algorithm. This
internship is also an opportunity to delve into the algorithmic of texts, the combinatorics of
permutations and of generative functions over intervals.

Student’s profile: We are looking for a student at ease with algorithm design and implemen-
tation (complexity analysis, correctness reasoning) and interested in formalizing such results
in a proof assistant. Acquaintance with an interactive theorem prover (Coq, or Isabelle) is
recommended. Nonetheless, a motivated student with a strong background in functional pro-
gramming (OCaml, or Haskell) could certainly learn to use Coq along the way [Pierce et al.,
2015, Chlipala, 2013].



References

B.-M. Bui-Xuan, M. Habib, and C. Paul. Revisiting T. Uno and M. Yagiura’s algorithm. In
X. Deng and D.-Z. Du, editors, Algorithms and Computation, volume 3827 of Lecture Notes in
Computer Science, pages 146–155. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-30935-2.
doi:10.1007/11602613_16.

A. Charguéraud and F. Pottier. Machine-checked verification of the correctness and amortized
complexity of an efficient union-find implementation. In C. Urban and X. Zhang, editors,
Interactive Theorem Proving, volume 9236 of Lecture Notes in Computer Science, pages 137–
153. Springer International Publishing, 2015. ISBN 978-3-319-22101-4. doi:10.1007/978-3-
319-22102-1_9.

A. Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq
Proof Assistant. MIT Press, 2013. ISBN 978-0-262-02665-9. URL http://mitpress.mit.
edu/books/certified-programming-dependent-types.

M. Fleury. Formal proof of Uno and Yagiura’s algorithm. Technical report, ENS Cachan Bre-
tagne, 2013.

B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjoberg, and B. Yorgey.
Software Foundations. Electronic textbook, 2015. URL http://www.cis.upenn.edu/
~bcpierce/sf.

T. Uno andM. Yagiura. Fast algorithms to enumerate all common intervals of two permutations.
Algorithmica, 26(2):290–309, 2000. ISSN 0178-4617. doi:10.1007/s004539910014.

http://dx.doi.org/10.1007/11602613_16
http://dx.doi.org/10.1007/978-3-319-22102-1_9
http://dx.doi.org/10.1007/978-3-319-22102-1_9
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
http://dx.doi.org/10.1007/s004539910014

