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Abstract

This internship offers to develop a certified implementation of Uno and Yagiura algo-
rithm for enumerating the common intervals of two permutations. This algorithm plays a
fundamental role in computational biology: we shall not only strive to prove its correct-
ness – it returns correct results – but also to mechanically check its complexity bounds –
its complexity is linear with respect to the permutation’s size. The internship will be held
at LIP6 (Université Paris 6) jointly in the Whisper and Apr team.

Uno and Yagiura [2000] have developed an efficient algorithm for computing gene clusters
across species. To the geneticists, being able to identify common gene clusters provide a wealth
of information, such as the evolution of species or their selectionmechanisms. To the computer
scientist, Uno and Yagiura’s algorithm appears to be a delicate and rather puzzling piece of
engineering: it is challenging to explain how it works and why its complexity is linear.

The original publication did not help in that respect: the algorithm’s correctness “proof” is
described in about 10 rather cryptic lines. Bui-Xuan et al. [2005] revisited the algorithm, ex-
pounding its invariant and structural properties. As part of an earlier internship, Fleury [2013]
worked toward mechanically verifying its functional correctness in the Coq proof assistant,
achieving promising results on a simplified variant of the algorithm. However, this work did
not establish the correctness of the full-blown version of the algorithm. Also, being focused on
the functional correctness, the complexity of the algorithm was not formally established.

Objectives: This internship aims to tackle these remaining roadblocks. Concretely, wewish to:
• Prove the functional correctness and complexity bounds of a naïve variant of the Uno-
Yagiura algorithm in the Coq proof assistant;

• Describe the optimized version through a series of refinements over the naïve one, thus
paving the way for a conceptually simpler presentation of the algorithm;

• Taking advantage of the various refinements, prove the functional correctness and es-
tablish the complexity bounds of each refinement in the Coq proof assistant.

Learning outcomes: First of all, this internship offers an opportunity to learn the ins and outs
of certified program development. We shall tackle the difficult task of reasoning about mutable
data-structures and formalizing some amortized complexity arguments, following the footsteps
of Charguéraud and Pottier [2015] in their work on certifying the union-find algorithm. This
internship is also an opportunity to delve into the algorithmic of texts, the combinatorics of
permutations and of generative functions over intervals.

Student’s profile: We are looking for a student at ease with algorithm design and implemen-
tation (complexity analysis, correctness reasoning) and interested in formalizing such results
in a proof assistant. Acquaintance with an interactive theorem prover (Coq, or Isabelle) is
recommended. Nonetheless, a motivated student with a strong background in functional pro-
gramming (OCaml, or Haskell) could certainly learn to use Coq along the way [Pierce et al.,
2015, Chlipala, 2013].
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