
Structured diff of C programs

Pierre-Évariste Dagand
pierre-evariste.dagand@lip6.fr

Cnrs – Inria Paris – Lip6

Abstract

This internship offers to design and implement a structure-aware diff tool for C pro-
grams. It will take place in the Whisper team of Inria Paris – LIP6, located at University
Paris 6, and will be supervised by Pierre-Évariste Dagand (Cnrs).

The diff and patch programs figure predominantly in the programmer’s toolbox. Given
two text files, diff computes their line-by-line difference, i.e. it identifies the lines which were
inserted, deleted or modified. Formally, it amounts to computing the longest common sub-
sequence of two lists of strings [1, 2] or, dually, computing the edit distance [3, 4, 5]. Given
a difference between two files, the patch program replicates its effect on the source input.
Abiding by the Unix philosophy, these programs work on unstructured text files. As a result,
they are efficient and widely applicable. However, on source code for instance, these tools
cannot exploit the syntactic structure of programs to compute fine-grained changes, such as
variable renaming or reordering of conditional statements.

With the advent of distributed version control systems (such as Git or Mercurial), the role
of patch has been extended to encompass line-based merging of differences: in this context,
developer Alice records her changes, which she sends to developer Bob who may have made
local changes to the same file. patch must therefore apply the difference to a slightly different
origin. Such an operation may fail if changes are conflicting. The granularity of the difference
is crucial here: for example, if the unit of change is the whole line then independent edits
on the same line will induce a (spurious) conflict. Distributed version control systems also
had an influence on the programmers’ workflow. For instance, it becomes humanly feasible to
concurrently maintain several branches of the same software, each evolving at different pace.
The Linux kernel thus have a main branch (-next) and a “long term” branch (-stable) to
which only bug fixes are back-ported [6, 7]. However, these bug fixes may not apply directly:
one then needs to modify them. In effect, the kernel developers end up programming in patches.

It thus becomes particularly tempting do compute differences on structured data [8] rather
than mere lines of text. This idea has been applied in several tools, with some interesting
large-scale applications [9, 10].

Internship objectives: Recently, colleagues at Utrecht University set out to develop a math-
ematical theory of differences and their merging semantics [11]. The goal of this project is to
provide a canonical representation for differences and an abstract specification of the patch
operation. This internship aims at exploring the impact of these early theoretical results on a
concrete use-case: performing structured diff on C code. Our objective is two-fold: first, we
wish to strengthen our confidence in the theoretical model by applying it on a non trivial ex-
ample; second, we wish to guide the development of the theory through the constraints that
arise in practice. In particular, we are interested in developing a theory that scales by construc-
tion. To this end, we should apply our methodology at the Linux kernel scale. We should also
precisely characterize the complexity of our underlying algorithms. Depending on time and
the student’s interest, we would like to apply such a tool to implement a structured blame [12]
and/or provide an interactive tool for programming in patches [13, 14].

Student’s profile: We are looking for a student interested in algorithms, language design and
mathematical abstractions (in particular, curiosity toward category theory). Acquaintancewith
a functional programming language (Scheme, OCaml, or Haskell) is strongly recommended.
This work is funded by the Émergence(s) program of the City of Paris, thanks to which we can
offer a stipend ( “gratification”) for the duration of the internship.

pierre-evariste.dagand@lip6.fr


References

[1] James Wayne Hunt and Malcolm Douglas MacIlroy. An algorithm for differential file com-
parison. 1976. URL http://www.cs.dartmouth.edu/~doug/diff.pdf.

[2] Eugene W Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1
(1-4):251–266, 1986. doi:10.1007/BF01840446.

[3] Robert A.Wagner andMichael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, January 1974. doi:10.1145/321796.321811.

[4] Esko Ukkonen. Algorithms for approximate string matching. Information and Control, 64
(1):100 – 118, 1985. doi:10.1016/S0019-9958(85)80046-2.

[5] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33
(1):31–88, March 2001. doi:10.1145/375360.375365.

[6] Linux development team. linux-stable. URL https://www.kernel.org/doc/
Documentation/stable_kernel_rules.txt.

[7] Jonathan Corbet. A discussion on stable kernel workflow issues, November 2016. URL
https://lwn.net/Articles/705220/.

[8] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change detection in hierarchically structured information. SIGMOD ’96, pages 493–504,
1996. doi:10.1145/233269.233366.

[9] Masatomo Hashimoto and Akira Mori. Diff/ts: A tool for fine-grained structural change
analysis. WCRE ’08, pages 279–288, 2008. doi:10.1109/WCRE.2008.44.

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monper-
rus. Fine-grained and accurate source code differencing. ASE ’14, pages 313–324, 2014.
doi:10.1145/2642937.2642982.

[11] Victor Cacciari Miraldo and Wouter Swierstra. Structure-aware version control. IFL
’16, 2016. URL http://www.staff.science.uu.nl/~swier004/Publications/
structure-aware-version-control.pdf.

[12] Jake Edge. Token-based authorship information from git, August 2016. URL https:
//lwn.net/Articles/698425/.

[13] Andreas Grünbacher. How to survive with many patches or introduction to quilt, Febru-
ary 2012. URL http://www.suse.de/~agruen/quilt.pdf.

[14] Greg Kroah-Hartman. kernel maintainer’s HOWTO for quilt and -mm, April 2005. URL
https://lwn.net/Articles/134072/.

http://www.cs.dartmouth.edu/~doug/diff.pdf
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1016/S0019-9958(85)80046-2
http://dx.doi.org/10.1145/375360.375365
https://www.kernel.org/doc/Documentation/stable_kernel_rules.txt
https://www.kernel.org/doc/Documentation/stable_kernel_rules.txt
https://lwn.net/Articles/705220/
http://dx.doi.org/10.1145/233269.233366
http://dx.doi.org/10.1109/WCRE.2008.44
http://dx.doi.org/10.1145/2642937.2642982
http://www.staff.science.uu.nl/~swier004/Publications/structure-aware-version-control.pdf
http://www.staff.science.uu.nl/~swier004/Publications/structure-aware-version-control.pdf
https://lwn.net/Articles/698425/
https://lwn.net/Articles/698425/
http://www.suse.de/~agruen/quilt.pdf
https://lwn.net/Articles/134072/

