
Service Level Agreement for Distributed Mutual

Exclusion in Cloud Computing

Jonathan Lejeune, Luciana Arantes, Julien Sopena, and Pierre Sens

LIP6/CNRS and INRIA

4, place Jussieu

75252 Paris Cedex 05, France email: firstname.lastname@lip6.fr

Abstract—In Cloud Computing, Service Level Agreement (SLA)
is a contract that defines a level and a type of QoS between a cloud
provider and a client. Since applications in a Cloud share resources,
we propose two tree-based distributed mutual exclusion algorithms
that support the SLA concept. The first one is a modified version
of the priority-based Kanrar-Chaki algorithm [1] while the second
one is a novel algorithm, based on Raymond algorithm [2], where
a deadline is associated with every request. In both cases, our aim
is to improve Critical Section execution rate and to reduce the
number of SLA violations, which, for the first algorithm represents
the number of priority inversions (i.e. a higher priority request is
satisfied after a lower one) and for the second one, the number of
requests whose deadline is not respected. Performance evaluation
results show that our solutions significantly reduce SLA violations
avoiding message overhead.

a) Keywords: Distributed mutual exclusion, SLA, priority-
based algorithm, EDF, Cloud.

I. INTRODUCTION

Cloud computing is a model aimed at providing ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources. Cloud services are accessible

over the Internet and hosted on a set of virtual machines

running over a grid of physical machines in a datacenter. Virtual

machines can be created, removed or migrated depending on

the workload and availability of physical machines (cloud

elasticity). In this context, Service Level Agreement (SLA) is

a contract that defines a level and a type of QoS between a

cloud provider (e.g., Amazon, Google) and a cloud client at

any cloud level (IaaS, PaaS and SaaS) [3]. According to [4],

cloud characteristics (elasticity and SLA) imply new obstacles

for computer science and modify classical hypotheses for dis-

tributed algorithmic.

Since applications in a cloud share resources, concurrent

accesses to them might be critical and should be controlled

in order to avoid inconsistencies. In other words, accesses to

such resources are considered critical sections and, therefore,

a mutual exclusion service for controlling their access must be

provided by the Cloud.

A mutual exclusion algorithm ensures that at most one pro-

cess can execute the critical section (CS) at any given time. They

can be divided into two families [5]: permission-based (e.g.

Lamport [6], Ricart-Agrawala [7], Maekawa [8]) and token-

based (Suzuki-Kazami [9], Raymond [2], Naimi-Trehel [10]).

The algorithms of the first family are based on the principle

that a node only enters a critical section after having received

permission from all the other nodes (or a majority of them [7]).

In the second group of algorithms, a system-wide unique token

is shared among all nodes, and its possession gives a node

the exclusive right to execute a critical section. Token-based

algorithms present different solutions for the transmission and

control of critical section requests of processes. Each solution

is usually expressed by a logical topology that defines the paths

followed by critical section request messages which might be

completely different from the physical network topology. With

regard to the number of nodes, token-based mutual exclusion

algorithms present an average message traffic which is lower

than that of permission-based ones. Thus, they are more suitable

for controlling concurrent accesses to shared resources in Clouds

whose number of nodes is often very large.

Nevertheless, current mutex algorithms are not suitable for

Cloud applications because they do not take into account cloud

characteristics such as SLA constraints. For instance, Google

Clouds uses an optimized version of the Chubby lock algorithm

[11] although it does not cope with the above mentioned

dynamics of SLA.

Thus we propose in this article two SLA-oriented mutex

algorithms to provide a mutex “service” for Clouds: (1) a

priority’s request-based algorithm and (2) a request response

time one. The first algorithm should be applied whenever QoS

requirements can be associated to priority, i.e., different SLA-

levels can be mapped to different priorities; in the second

algorithm, Qos requirements are expressed in terms of request

response time. Therefore, the goal for both algorithms is to min-

imize SLA violations. However, the meaning of “SLA violation”

depends on the algorithm: avoidance of priority inversion for

(1) and reduction of the number of requests which were not

satisfied before a given response time (deadline) for (2). The

two algorithms are based on the token-based approach since

the latter provides scalability. Algorithm (1) is an extension of

Kanrar-Chaki [1] algorithm (cf. Section II) while (2) is a novel

algorithm that we have conceived.

The rest of the paper is organized as follows. Section II

discusses some existing priority-based mutual exclusion dis-

tributed algorithms and gives a brief description of the Kanrar-

Chaki algorithm. Our priority request-SLA and request response

time-SLA distributed mutual exclusion solutions are presented

in section III. Performance evaluation results of both SLA-



based mutual exclusion approaches are presented in Section IV.

Finally, Section V concludes the paper.

II. RELATED WORK

In distributed systems with time constraints such as request

time deadline, critical section requests are usually ordered on

the basis of their priority rather than the time when a CS

request occurs. Several priority-based algorithms have been

proposed to cope with real-time requirements. In this section we

outline the main priority-based mutual exclusion algorithms and

mention some works which explicitly address the problem of

deadline constraints. Furthermore, as our SLA mutual exclusion

algorithms are based on the Kanrar-Chaki [1] algorithm, the

latter is described in more details.

Priority-based distributed mutex algorithms are usually an

extension of some non-prioritized algorithms.

The Goscinksi algorithm [12] is based on the non-structured

token-based Suzuki-Kasami algorithm and has a complexity of

O(N). Pending requests are stored in a global queue and are

piggybacked on token messages. Starvation is possible since

the algorithm can lose requests while the token is in transition

and thus is not held by any node.

The Mueller algorithm [13] is inspired to the Naimi-Trehel

token-passing algorithm which exploits a dynamic tree as a

logical structure for forwarding requests. Each node keeps a

local queue and records the time of requests locally. These

queues form a virtual global queue ordered by priority within

each priority level. Its implementation is quite complex and

the dynamic tree tends to become a queue because, unlike the

Naimi-Trehel algorithm, the root node is not the last requester

but the token holder. Therefore, in this case the algorithm

presents a message complexity of O(N
2

).

The Housni-Trehel algorithm [14] adopts a hierarchical ap-

proach where processes are grouped by priority. Each group is

represented by one router process. Within each group, processes

are organized in a static logical tree like Raymond’s algorithm

[2] and routers apply the Ricart-Agrawala algorithm [7]. Star-

vation is possible for lower priority processes if many higher

priority requests are pending. Moreover a process can only send

one request priority (that of his group).

Several algorithms propose to extend Raymond’s algorithm

in order to add a priority to requests.

Raymond’s algorithm [2] is a token-based mutex algorithm

where processes are organized in a static logical tree: only the

direction of links between two processes can change during the

algorithm’s execution. Nodes thus form a directed path tree to

the root. Excepting the root, every node has a father node. The

root process is the owner of the token and it is the unique

process which has the right to enter the critical section. When

a process needs the token, it sends a request message to its

father. This request will be forwarded till it reaches the root or

a node which also has a pending request. Every process saves

its own request and those received from its children in a local

FIFO queue. When the root node releases the token, it sends

the token message to the first process of its own local queue

and this node becomes its father. When a process receives the

token, it removes the first request from its local queue. If the

process’s own request is the first element of its local queue, it

executes the critical section; otherwise it forwards the token to

the first element of its local queue, and the latter becomes its

father. Moreover, if the local queue of the node is not empty, it

sends to its new father a request on behalf of the first request

of its queue.

The Kanrar-Chaki algorithm [1] is based on Raymond’s

algorithm. It introduces a priority level for every process’s token

request. The greater the level (an integer value), the higher the

priority of the request. Hence, pending requests of a process’s

local queue is ordered by decreasing priority levels. Similarly

to Raymond’s algorithm, a process that wishes the token sends

a request message to its father. However, upon reception, the

father process includes the request in its local queue according

to the request priority level and only forwards it if the request

priority level is greater than the one of the first element of the

processes’s local queue. If such is the case, such a strategy is

applied by all the nodes of the directed path till the root site. The

algorithm then behaves like Raymond’s, as described above. In

order to avoid starvation, the priority level of pending requests

of a process’s local queue can be increased: when the process

receives a request with priority p, every pending request of its

local queue whose priority level is smaller than p is increased

by 1.

Similarly to the Kanrar-Chaki algorithm, Chang has modified

Raymond’s algorithm in [15] aiming both at applying dynamic

priorities to requests and at reducing communication traffic. For

the priority, he added a mechanism denoted aging strategy: if

process p exits the CS or if it is a non requesting node that

holds the token and receives a request, p increases the priority

of every request in its local queue; furthermore, upon reception

of the token, which includes the number of CS executions, p
increases the priority of all its old requests (i.e., those requests

that were already pending when p releases the token for the last

time) by the number of CS that were executed since the last

time p had the token. On one hand, such a priority approach

reduces the gap in terms of average response-time between

priorities (contrarily to the Kanrar-Chaki algorithm). On the

other hand, it induces a greater number of priority inversions

(in our case, number of SLA violations) when compared to

the Kanrar-Chaki algorithm; performance evaluation discussion

of both algorithms is presented in section IV. Since a request

always follows the token from an intermediate node whose local

queue contains more than one element, Chang’s communication

traffic optimization consists in piggybacking, whenever possible,

a request on a token message

In [16], Johnson and Newman-Wolfe present three algorithms

for prioritized distributed locks. Two of the algorithms use a

path compression technique for fast access and low message

overhead. Their third algorithm extends Raymond’s algorithm.

Similarly to the Kanrar-Chaki algorithm, each node maintains a

local priority queue of requests that it has received. Only new

requests with a higher priority than the ones in the queue are

forwarded to the father.

Some algorithms explicitly address real-time constraints. In

[17], Han proposes a real-time fault-tolerant mutual exclusion



algorithm that takes into account deadlines of requests. It is a

permission based algorithm where a majority of nodes agree on

the same schedule of critical section accesses. A gossip protocol

is used to broadcast requests. Each node maintains a queue that

stores “feasible” requests ordered by their deadlines. In order to

avoid priority inversions in real-time systems, synchronization

algorithms use the Priority Ceiling Protocol (PCP), initially

conceived by Sha and Rajkumar [18]. PCP prevents deadlocks

and bounds blocking time. In [19] and [20], the authors propose

some extensions of PCP to distributed systems for multiproces-

sors and CORBA respectively.

III. SLA-BASED MUTUAL EXCLUSION

When the SLA is based on request priority, we define a SLA

violation as a priority inversion (i.e., a request that has been

satisfied after a lower priority request). When the SLA is based

on request response time, we define a SLA violation as a request

which has been satisfied after its required deadline.

Since we consider that there is one process per node (virtual

machine), the words node, process, and site are interchangeable.

A. Request Priority SLA-based mutex

Our solution is based on the Kanrar-Chaki algorithm because

it is scalable with regard to the number of messages (com-

plexity O(Log N)) and starvation does not exist thanks to the

mechanism of priority increment. Our proposal is therefore to

modify the Kanrar-Chaki algorithm to minimize the number

of SLA violations but without introducing much overhead nor

degrading the performance of the algorithm. In other words,

without increasing either the number of messages sent over the

network or the request response time.

To this end, we firstly applied Chang [15]’s message traffic

optimization (see section II) to the Kanrar-Chaki algorithm and

then two incremental heuristics: the “level” heuristic which

postpones the priority increment of pending requests and the

“level-distance” that uses in addition to “Level” heuristic the

number of intermediate nodes from the current token holder

to requesting nodes in order to decide which node will be the

next token holder. The traffic message optimization and the two

heuristics are described hereafter.

1) Communication traffic optimization: In the Kanrar-Chaki

algorithm, whenever a site whose local queue is not empty

grants the token to another process it also sends the latter a

request to signify that the token must be returned later on.

Hence, in order to lower communication traffic, this request

can be piggybacked in the token message.

2) “Level” Heuristic: We have observed in the Kanrar-Chaki

algorithm that requests, whose priority was originally low, were

satisfied quite fast since their priority reached the maximum

value due to the priority increment approach of the algorithm.

Such a behavior characterizes in fact an inversion of priorities.

Therefore, we have modified the algorithm in order to postpone

the priority increment: the priority value of a pending request

is not incremented at every insertion of a request with higher

priority but only after X request insertions with such a priority.

The X value depends on an exponential level, i.e., to upgrade

its priority to p, a request of priority p − 1 must wait 2p+c

insertions of requests with higher priority. The constant c has a

sufficiently high value so as to avoid that the original priority

p− 1 of a request becomes p before the original priority p of a

second request becomes p+ 1.

3) “Level-Distance” Heuristic: In the Kanrar-Chaki algo-

rithm, requests with the same priority are not ordered. We

introduce a new parameter, denoted request distance, to take

into account request locality when ordering such requests. The

request distance from site R to site S is the number of interme-

diate nodes between R and S that the token must travel. Hence,

if two pending requests have the same highest priority, the token

will be sent to the one with the smallest request distance with

respect to the current token holder. It is worth pointing out that

the tree topology has an impact in this heuristic. Since this

heuristic is orthogonal with the previous “Level” heuristic, we

have combined them in the ”Level-Distance” heuristic.

Figure 1 illustrates the impact of the two different heuristics

with respect to the original Kanrar-Chaki algorithm. We con-

sider a tree with 12 nodes. Pending requests, stored in local

queues Qi of each node, are sorted by decreasing order of

priority. Each of them is separated by a coma and noted x(y),
where x represents the requester and y the local priority of the

request. Node n1 is the root, i.e., it owns the token and is in

critical section. Nodes n2, n3, and n4 have requested the token.

Such an initial state is shown in Figure 1(a).

Let’s now consider that nodes n11, n10, n7, n8 and n9 issue

one request each with the following respective priorities:

(1) n11 sends a request with priority 3 denoted 11(3)

(2) n10 sends a request with priority 3 denoted 10(3)

(3) n7 sends a request with priority 3 denoted 7(3)

(4) n8 sends a request with priority 2 denoted 8(2)

(5) n9 sends a request with priority 3 denoted 9(3).

Figures 1(b), 1(c), and 1(d) show the state of the tree

after the five new requests have been taken into account by

the Kanrar-Chaki algorithm, “Level” heuristic, and “Level-

Distance” heuristic respectively. Notice that, in the three al-

gorithms, all fathers of the requesting nodes have added the re-

ceived requests in their respective local queues: n6 has included

11(3) in Q6, n12 has included 9(3) in Q12, n5 has included 10(3)

in Q5, and n3 has included 7(3) and 8(2) in Q3. Furthermore,

in the case of the “Level” and “Level-Distance” heuristics,

we consider that c = 2 which implies that 8 (respectively, 16

and 32) insertions of higher requests are required to a 0-level

(respectively, 1-level and 2-level) priority request to be upgraded

to level 1 (respectively, level 2 and 3).

Each one of the new requests has the following consequences

on the state of the pending requests and local queues of the

algorithms:

• original Kanrar-Chaki (Figure 1(b)):

(1) The priority of n3’s pending request in both Q3 and

Q1 as well as the priority of n2’s pending request in Q1

are increased. Request 6(3) is included in Q3;

(2) The value 2 is assigned to the priority of n2’s and n4’s

requests of Q2. Priority of n2’s request in Q1 becomes 3;

(3) Request of n3 in Q3 is increased to 2;

(4) No consequence over priorities.



(a) Initial state (b) End state with Classical Kanrar-
Chaki algorithm

(c) End state with "Level" heuristic (d) End state with "Level-Distance"

heuristic

Figure 1. Example of execution by heuristics

(5) Request of n8 in Q8 is increased to 3. The value 3 is

assigned to the priority of n8 and n3 in Q3

• “Level” heuristic (Figure 1(c)):

(1) The priority level of the n3’s pending request in Q1

becomes 3. Request 6(3) is included in Q3;

(2) The priority of n2’s request becomes 3;

(3), (4), and (5) No consequence over priorities.

• “Level-Distance” heuristic (Figure 1(d)):

(1) (respectively, (2) and (3)) The same consequences of

“Level” heuristic but requests in Q2 (respectively, Q1

and Q3) are rescheduled according to requester’s distance.

Request 6(3) is included in Q3;

(4) and (5) No consequence over priorities.

If we consider that no other request is issued until every pend-

ing request is satisfied, the order of node request satisfactions

are the following:

• Kanrar-Chaki algorithm: n11 - n7 - n9 - n8 - n3 -n10 - n4

- n2

• “Level” heuristic: n11 - n7 - n9 - n10 - n8 -n4 - n2 - n3

• “Level-Distance” heuristic: n7 - n11 - n9 - n10 - n8 -n2 -

n4 - n3

This execution example clearly shows that the different

heuristics change the order in which requests are satisfied,

particularly for node n3: its request is the fifth one to be satisfied

when the original algorithm is applied and the last one in the

case of the “Level” heuristic and “Level-Distance” heuristic.

We can also observe that both heuristics keep the original

priority order. Furthermore, there are two SLA violations (n8

and n3) in the Kanrar-Chaki algorithm but none when either of

the heuristics is applied.

B. Response time SLA-based mutex

We now consider that requests are satisfied according to the

response time deadline associated to each request and propose

a new algorithm. To this end, when a process issues a request,

it informs two values: the maximum delay for the response and

the duration of the critical section which it needs to execute.

However, similarly to Cloud services whose QoS is defined

by a SLA, before accepting the request, the mutual exclusion

“service” must ensure that, taking into account the system’s

state, the request constraints can be satisfied. In the case of

mutual exclusion, such constraints refer to the satisfaction of

the request before its deadline. Therefore, a request must be

submitted to an admission control before being accepted. If the

admission control considers that the acceptance is not possible,

the request is rejected and the process should issue, a less

restrictive new request for instance. Otherwise, the request

is accepted by the system and will be satisfied, with great

probability, before its deadline. If the deadline of an accepted

request is not respected (SLA violation), the request will fail

and, therefore, the process will not have the right to execute

the critical section. The aim of our proposed algorithm is

thus to minimize SLA violations, i.e., deadline violations, and

maximize critical section execution throughput.

Our algorithm is based on Raymond’s algorithm: nodes are

organized in a logical static tree whose links always form a

directed path to the root. Requests are sorted at a process’s local

queue by their response time deadline, similarly to the real-time

scheduling policy Earliest Deadline First (EDF). Notice that we

consider that all nodes clocks are synchronized. Therefore, the

deadline of the request in the head of the queue will be the first

to expire.

1) Admission control: The feasibility of a request satisfaction

should be checked before including the request in the system.

Based on the requests already presented in the process’s local

queue, the admission control should firstly verify if a process

request can be locally satisfied. If such is the case, a global

admission policy is performed.

Local validation decision policy: As previously explained,

requests of a process’s local queue Q are sorted by their

response time deadline. Upon reception of a new request R, the

process computes the potential position P of R in its queue.

It then evaluates if the satisfaction of R is feasible or not.

R is feasible if: (1) requests before P in Q will respect R’s

constraints after its insertion; (2) R will respect the constraints

of the next requests after position P in Q which have already

been validated by the site.

In order to respect these two conditions, it is necessary to

consider the scenario where all requests are satisfied at their

deadline. Therefore, in order to ensure (1), the deadline of the

request before P (denoted P−1) plus its CS execution duration

plus the latency to send the token from P −1’s requesting node

to R’s should not violate R’s deadline. Analogously, in order

to ensure (2), the deadline of R plus its CS execution duration

plus the latency to send the token between R’s requesting node

and P + 1’s (i.e. the requesting node just after P ) in Q should

not violate P + 1’s deadline.

Global validation decision policy: If a request is locally



satisfied according to the local decision policy then the process

sends a request message to its father (same principle as Ray-

mond’s algorithm) which includes the maximum deadline for the

response and the duration of the CS. Similarly, the father also

submits the request to the admission control. Such a mechanism

is recursively applied till the root node. Consequently, the root

node will be aware of all the pending requests in the system.

If the request is rejected by a node N (a node in the

path between the requesting node and the root, both of them

included), it sends a reject message to its child that belongs

to the path towards the requesting node. Such a message is

forwarded until the requesting process which will finally discard

it. On the other hand, in the case of a request acceptance, we

propose two approaches for notification:

• Acknowledgement approach: The requesting process

should wait for an acknowledgement message from its

father which then confirms that its request has been

accepted by the system. Hence, when the request is locally

accepted, it is not immediately included in the process’s

local queue but in a temporary one. A request is added to

the definitive local queue of the requesting node only after

the reception of an acknowledgement message from its

father. Since the root node knows all the requests in the

system, it is the only one that can initiate the shipment

of an acknowledgement message which is then forwarded

to the requesting process. An accepted request will be

removed from the process’s local queue after the execution

of the critical section or after a deadline violation detection.

• Token approach: In this case, the requesting processes

and intermediate nodes directly add the request in their

respective local queues. Consequently, they do not wait for

any acknowledgement message. The request is removed

from the process’s local queue after the critical section

execution, upon reception of a reject message, or a deadline

violation detection.

2) Token scheduling: Basically, our algorithm follows the

same principle of the Kanrar-Chaki algorithm for the token

scheduling: upon reception of the token, a node N has the

right to execute the critical section (CS) if its own request is in

the head of its local queue (sorted by response time deadline);

otherwise it sends the token to the node which corresponds to

the first element of the queue. Moreover, N piggybacks its local

queue in the token message to ensure that the new root node

is aware of all the pending requests. When the new root node

receives the token message, it merges the token’s queue with

its own local queue. However, in order to improve the critical

section throughput, we introduce a preemption mechanism that

takes into account requests’ locality. We denote NextHolder
the next node that should get the token, according to the EDF

policy. NextHolder can be preempted by another node p,

i.e., p executes a critical section before NextHolder, if the

duration of p’s critical section does not prevent the satisfaction

of NextHolder’s deadline. In other words, it is possible to grant

the token to other nodes if the duration of their critical section

plus token transmission delay do not exceed NextHolder’s

deadline. We denote such a condition preemption condition.

Therefore, node p, that receives the token and must forward

it to the first element of its queue, might enter the critical

section if the preemption condition is satisfied. Furthermore,

if such a local preemption is not possible, p might grant the

token to one of its 1-hop neighbors (not necessarily on the

directed path to NextHolder), provided that the latter also

ensures the preemption condition. If none of p’s neighbors can

satisfy the condition, p applies the same approach to its 2-hop

neighbors and so forth (preemption distance size) till a threshold

B, bounded by the diameter of the logical tree. If no preemption

is possible at all, the token is forwarded to the first element of

p’s queue.

Let NextHolder be the first requesting site of p’s local queue

Q and n a n-hop neighbor (1 ≤ n ≤ Neighborhood_size). Site

n can preempt NextHolder if the cost in time of the token’s

rerouting to n does not induce the violation of NextHolder’s

deadline.

IV. PERFORMANCE EVALUATION

A. Experimental testbed and configuration

The experiments were conducted on a 20-nodes cluster (one

process per node). Each node is equipped with two 2.8GHz

Xeon processors and 2GB of RAM, running Linux 2.6. Nodes

are linked by a 1 Gbit/s Ethernet switch. The algorithms were

implemented using C++ and OpenMPI.

The following metrics were considered in our experiments:

• Number of messages per request: This metric depends both

on the algorithm and the type of message. Priority-based

algorithm: for a given type of message, it is the quotient

between the total number of messages of this type and the

total number of messages. It is similarly defined for the

response time SLA-based algorithm, except for the token

message which is defined as the number of token messages

sent over the network divided by the number of accepted

requests by the admission control (i.e., rejected requests

are not considered for this type of message).

• Number of SLA violations: For the priority-based algorithm

it expresses the number of requests satisfied after requests

with lower priority; for the response time SLA-based

algorithm it denotes the number of requests whose response

time deadline was not respected.

• Response time: the time between the moment a node

requests the CS and the moment it gets it.

• CS execution rate: ratio of critical section duration over

token transmission time.

An application is characterized by:

• α: time to execute the critical section (CS).

• β: mean time interval between the release of the CS by a

node and its request by this same node.

• ρ: the ratio β/α, which expresses the frequency with which

the critical section is requested.

For all experiments, by calibrating ρ, the average number

of pending requests is around 50 %, i.e., in average 10 nodes

always wait for the token.
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Figure 2. Performances of priority-based algorithm

B. Request Prioirity SLA-based mutex

We considered a logical binary tree topology and 8 different

priority levels. Every process chooses a priority randomly and

issues as many requests as possible during the duration of the

experiment. Hence, we experience a stationary request rate: all

processes issue requests during the whole experiment.

In the figures, Our_solution corresponds to

the modified Kanrar-Chaki algorithm with the

piggybacking mechanism while Our_solution_Level and

Our_solution_LevelDistance correspond to this message

traffic optimized algorithm when the “Level”, and “Level-

Distance”’ heuristics are respectively applied to it. We have

also included Chang’s algorithm (see section II) in our

performance evaluation experiments.

The number of priority violations and number of messages per

request are shown in Figures 2(a) and 2(b) respectively. We can

observe that the original Kanrar-Chaki algorithm and Chang’s

algorithm generate a lot of priority violations (around 60 % and

around 75 % respectively). On the contrary, the “Level” heuristic

strongly reduces such a number (around 10 %) but, according to

Figure 2(b), at the expense of the number of messages which in-

creases when compared to the original Kanrar-Chaki algorithm

combined with the piggybacking mechanism. Consequently, the

“Level” heuristic is very effective in reducing the numbers of

violations but increases the number of messages. Notice that

such an increase is mostly due to request messages because

a site reaches the maximum priority more slowly and thus it

is likely to forward more requests to its father. On the other

hand, we observe in the same figures that Chang’s algorithm

reduces the number of messages in relation to the Kanrar-Chaki

algorithm thanks to the piggybacking mechanism. The inclusion

of the latter in the Kanrar-Chaki algorithm (Our_solution) does

not induce much more message traffic overhead when compared

to Chang’s algorithm. However, in terms of the number of

priority violations, its reduction is not very expressive, contrarily

to the “Level” heuristic whose number of priority violations is

much smaller than Chang’s. Therefore, applying request locality

to the “Level” heuristic, i.e., the “Level-Distance” heuristic,

seems to be a good tradeoff for these metrics: the two figures

confirm that the postponement of priority increment is essential

for respecting the priority order while request locality is useful

in reducing the number of messages generated by the algorithm.

Figure 2(c) shows the number of requests, grouped by prior-

ity, which have been violated by a lower priority request. The

“Level” heuristic and the “Level-Distance” heuristic consider-

ably reduce the number of violations of low and intermediate

priorities. Hence, respect for priorities is improved with the

“Level” heuristic.

Concerning request response time, we can observe in Figure

2(d) that in the original Kanrar-Chaki algorithm such a time

has a regular behavior (shape of stairs), i.e., when the priority

increases, response time decreases. However, postponement of

priority increment strongly degrades response time of the lowest

priority requests while the response time for higher priorities

request is reduced when compared to the original algorithm.

This happens because the former is in best-effort and thus rarely

satisfied. The same figure shows that request locality (“Level-

Distance” heuristic) has no impact on the response time.

As we can observe in Figure 2(e), the different heuristics

have no impact (around 90 %) over the CS execution rate. Con-

trarily to the Response time SLA-based mutex, every request is

accepted because there is no admission control.
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Figure 3. Performances of response time-based algorithm

C. Response time SLA-based mutex

For the experiments, we considered four different SLA levels.

Each level is related to a given response time. Before each

request, processes randomly choose a SLA level and a critical

section duration (within an interval of bounded values) and

issues as many as requests as possible during the duration of an

experiment (to obtain a stationary request rate along the same

principle as the previous benchmark).

We have defined the following parameters:

• T_min: the lowest response time corresponding to the

highest SLA level (600 milliseconds);

• diff_SLA: the difference in response time between two

SLA levels (300 milliseconds);

• min_CS: the smallest duration for a CS (25 milliseconds);

• max_CS: the highest duration for a CS (50 milliseconds);

• T_exp: duration of the experiment (60 seconds);

• lat_net: transmission delay of a message between two

neighbor nodes (30 milliseconds).

Since there is no distributed token-based mutual exclusion

algorithm in the literature that takes into account the concept

of SLA based on response time, we compared our two ap-

proaches of the algorithm (Acknowledgment and Token) to both

Raymond’s algorithm and our “Level-Distance” Kanrar-Chaki

algorithm presented in section III-A3. Furthermore, as Kanrar-

Chaki does not consider any time parameter when issuing a

request, we mapped priority levels to SLA levels: the higher

the time constraint, i.e. the smaller the maximum waiting

response delay parameter, the higher the priority. We added

a deadline missed detector for Raymond’s and the Kanrar-

Chaki algorithms. Hence, when a site detects that its request

has missed its deadline, it removes the request from its local

queue. This request is definitively lost. This site will issue a

new request. Upon reception of the latter, all sites that still keep

the old request will erase the latter replacing it by the new one

respecting the queue order.

Figures 3(a) and 3(b) show the violation and CS execution



rate respectively when no preemption takes place. In Figures

3(d) and 3(e) we can observe the impact of the neighborhood’s

bound preemption distance over SLA violation and CS exe-

cution rate respectively. Finally, Figure 3(c) and 3(f) show the

average number of messages per request grouped by type when,

respectively, there is no preemption and preemption is bounded

to 4-hop neighbors.

In terms of SLA violation, we observe in Figure 3(a) that the

direct mapping of priorities to time constraints is not a suitable

approach (around 65 % of requests miss their respective dead-

line). Contrarily, in the case of our token approach algorithm, all

requests have been satisfied before their deadline. Furthermore,

according to Figure 3(d) the size of neighborhood’s bound pre-

emption distance has no influence on the number of violations.

Figure 3(e) confirms that some preemptions took place and the

corresponding critical sections were executed.

In Figure 3(b), we observe that the CS execution rate for Ray-

mond’s algorithm is more effective when there is no preemption.

We can thus deduce that Raymond’s algorithm promotes request

locality when network latencies are non negligible. When the

token is preempted and the preemption distance size increases,

the CS execution rate of the two response time algorithm

approaches increases up to a value which is limited by the

neighborhood (equal to 1-hop). However beyond this value, the

CS execution rate decreases. Such a behavior can be explained:

when the preemption distance increases, the token is likely to

follow a longer deviation path of the tree. On the other hand,

when network latencies are high, a long deviation path may

be disadvantageous because it prevents the use of the token

by a greater number of processes on the directed path to the

NextHolder node.

In Figure 3(c), we can observe that the acknowledgement

approach generates much more messages than token approach

due to the ACK messages in response to the accepted requests.

Contrarily to the priority-based algorithm, Raymond’s algorithm

and “Level-Distance” present more token messages. Such a

difference can be explained since, in these algorithms, the

token is sent to the requesting node even if it has missed

its deadline which implies useless token transmissions and,

therefore, an increase in the average number of messages per

request. Figure 3(f) shows that preemption reduces the number

of token messages.

V. CONCLUSION

Our contribution is twofold: a heuristic-based version of the

Kanrar-Chaki algorithm aimed at Cloud environments, and a

novel algorithm that provides a mutual exclusion service which

imposes predefined request response times and is thus also

suitable for Clouds.

In the first algorithm, request priorities are dynamic in order

to avoid starvation and thus ensure that requests with the lowest

priorities are satisfied in a bounded time. However, dynamic

priorities induce priority inversion (in our case, SLA violation).

Therefore, it is necessary to find a tradeoff between starvation

and priority inversion.

The second algorithm is based on Raymond’s algorithm be-

cause it is scalable. Our approach is innovative and customized

for clouds since it provides both an admission request control

and a deadline-based request scheduling.

The evaluation results of section IV confirm that request

locality improves the performance of the two algorithms: it

reduces the number of messages sent in the network and in

case of response time SLA-based, it increases the CS execution

rate by diverting the token to the neighborhood of the token

holder. They also show that our heuristics and novel algorithm

reduce SLA violation.

As future work, we intend both to conduct our experiments in

a real cloud environment and to extend our response time SLA-

based algorithm to take into account node migration, which

requires dynamic reconfiguration of the tree topology as in the

Naimi-Trehel [10] algorithm.
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