
Impact FD: An Unreliable Failure
Detector Based on Process

Relevance and Confidence in the
System

ANUBIS GRACIELA DE MORAES ROSSETTO1 , CLÁUDIO F. R. GEYER2 , LUCIANA

ARANTES3 AND PIERRE SENS3

1Federal Institute Sul-rio-grandense (IFSUL), Passo Fundo, Brasil
2Institute of Informatics, Fed. Univ. of Rio Grande do Sul (UFRGS) Porto Alegre, Brazil

3Sorbonne Université, CNRS, Inria, LIP6, Paris, France

Email: anubisrossetto@gmail.com

This paper presents a new unreliable failure detector, called the Impact failure detector (FD) that,
contrarily to the majority of traditional FDs, outputs a trust level value which expresses the degree
of confidence in the system. An impact factor is assigned to each process and the trust level is
equal to the sum of the impact factors of the processes not suspected of failure. Moreover, a
threshold parameter defines a lower bound value for the trust level, over which the confidence in
the system is ensured. In particular, we defined a f lexi bi l i t y property that denotes the capacity
of the Impact FD to tolerate a certain margin of failures or false suspicions, i.e., its capacity of
considering different sets of responses that lead the system to trusted states. The Impact FD is
suitable for systems that present node redundancy, heterogeneity of nodes, clustering feature, and
allow a margin of failures which does not degrade the confidence in the system. The paper also
includes a timer-based distributed algorithm which implements an Impact FD, as well as its proof
of correctness, for systems whose links are lossy asynchronous or for those whose all (or some) links
are eventually timely. Performance evaluation results, based on PlanetLab [1] traces, confirm the
degree of flexible applicability of our failure detector and that, due to the accepted margin of failure,
both failures and false suspicions are more tolerated when compared to traditional unreliable

failure detectors.

Keywords: Fault Tolerance; Unreliable Failure Detector; Impact Factor; Trust Level of the System;
Process Relevance; Margin of Failures

1. INTRODUCTION

In distributed systems, failures can occur and the detec-
tion of them is a crucial task in the design of fault tolerant
distributed systems or applications. On the other hand,
in asynchronous systems there exist no bounds on mes-
sage transmission neither on processes speed. Therefore,
detection of crashed processes is particularly difficult in
those systems since it is impossible to know whether a pro-
cess has really failed or if it and/or the network communi-
cation are just slow. Due to this lack of delay bounds, it is
well-known that consensus problem cannot be solved de-
terministically in an asynchronous system subject to even
a single crash failure [2].

To circumvent such an impossibility and give support
to the development of fault tolerant distributed systems,
Chandra and Toueg proposed in [3] the unreliable failure
detector(FD) abstraction. An unreliable FD can be seen
as an oracle that gives (not always correct) information
about process failures. Many current FDs are based on

a binary model, in which monitored processes are either
“trusted” or “suspected”. Thus, most of existing FDs, such
as those defined in [3] [4], output the set of processes that
is currently suspected to have crashed. According to the
type and the quality of this information, several failure
detector classes have been proposed.

This paper presents a new unreliable failure detector,
denoted the Impact failure detector. A preliminary
proposal of it was presented in [5]. Contrarily to
the majority of existing unreliable failure detectors, the
Impact FD provides an output that expresses the trust of
the FD with regard to the system (or set of processes) as
a whole and not to each process individually. A system is
considered "trusted" if it behaves correctly for a specific
purpose even in the face of failures, i.e., the system is able
to maintain the normal functionality.

The conception of the Impact FD was inspired on
systems that have the following features: (1) applications
that execute on them are interested on information

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

2 A.G.M. ROSSETTO

about the reliability of the system as a whole and can
tolerate a certain margin of failures. The latter may vary
depending on the environment, situation, or context, such
as systems that provide redundancy of software/hardware;
(2) systems that organize nodes with some common
characteristic in groups; (3) systems where the nodes can
have different importance (relevance) or roles and, thus,
their failures may have distinct impact on the system.
Systems that present node redundancy, heterogeneity of
nodes, clustering feature, and allow a margin of failures
which does not degrade the confidence in the system can,
thus, benefit from the Impact FD and its configuration
choices. They have motivated our work. In Section 2, there
are some examples of such systems and the advantages, in
these cases, of using the Impact FD instead of traditional
FDs.

The Impact FD outputs a trust level related to a given
set of processes S of the monitored system. We, thus,
denote FD (Ip

S) the Impact failure detector module of
process p that monitors the processes of S. When invoked
in p, the Impact FD (Ip

S) returns the tr ust_level value
which expresses the confidence that p has in set S. To
this end, an impact value, defined by the user, is assigned
to each process of S and the tr ust_l evel is equal to the
sum of the impact factors of the trusted nodes, i.e., those
not suspected of failure by p. Furthermore, a threshold
parameter defines a lower bound for the trust level, over
which the confidence degree on S is ensured. Hence,
by comparing the tr ust_level with the threshold, it is
possible to determine whether S is currently “trusted”
or “untrusted” by p. The impact factor indicates the
relative importance of the process in the set S, while the
thr eshol d offers a degree of flexibility for failures and
false suspicions, thus allowing a higher tolerance in case
of instability in the system. For instance, in an unstable
network, although there might be many false suspicions,
depending on the value assigned to the threshold, the
system might remain trustworthy [6]. We should also point
out that the Impact FD configuration allows nodes of S
to be grouped into subsets and threshold values can be
defined for each of these subsets. In addition, similarly
to the traditional FD, several classes of Impact FDs can be
defined depending on their capability of suspecting faulty
processes (completeness property) and of not suspecting
correct processes (accuracy property).

Arguing that traditional approaches which assume a
maximum number of failures f may lead to suboptimal
solutions, such as in replication protocols where the
number of replicas depend on f , Junqueira, Marzullo,
Herlihy and Penso proposed in [7] the survivor set
approach, i.e., the unique collection of minimal sets of
correct processes over all executions, each set containing
all correct processes of some execution. The principle
of the Impact FD also follows the authors’ argument:
the threshold expresses certain margin of failures or false
suspicions and the number of failures tolerated by the
system is not necessarily fixed but depends on sets of
correct processes, their respective impact factors, and

threshold values. Therefore, the Impact FD presents, what
we denoted, the flexibility property. The latter expresses
its capacity of considering different sets of responses that
lead S to trusted states. In this context, we also define in
this work, two properties, PR(I T)S

p and PR(♦I T)S
p , which

characterize the minimum necessary stability condition of
S that ensures p’s confidence (or eventual confidence) in
S. In other words, if PR(I T)S

p (resp., PR(♦I T)S
p) holds,

the system S is always (resp., eventually always) trusted
by the monitor process p. Note that the Impact FD
threshold/impact factor approach is strictly more powerful
than the maximum number of failures f approach since
the latter can be expressed with the former but not the
other way around.

We also present in this paper a timer-based distributed
algorithm (and its proof of correctness) which implements
a Impact FD. It uses the algorithm proposed by [8]
to estimate heartbeat message arrivals from monitored
processes. The implementation can be applied to
systems whose links are lossy asynchronous or those
whose all (or some) of them have eventually a bounded
synchronous behavior (♦−t i mel y) [6]. Then, based
on real trace files collected from nodes of PlanetLab
[1], we conducted extensive experiments in order to
evaluate the Impact FD. These trace files contained a
large amount of data related to the sending and reception
of heartbeat messages, including unstable periods of
links and message, characterizing, therefore, distributed
systems that use FDs based on heartbeat. The testbed
of the experiments comprises various configurations with
different threshold values, impact factor of nodes, and
types of links. For evaluation sake, we used three
of the QoS metrics proposed in [8]: detection time,
average mistake rate, and query accuracy probability.
The Impact FD implementation was also compared to a
tradition timer-based FD one that outputs information
about failure suspicions of each monitored process.
Performance evaluation results confirm the degree of
flexible applicability of the Impact FD, that both failures
and false suspicions are more tolerated than in traditional
FDs, and that the former presents better QoS than the
latter if the application is interested in the degree of
confidence in the system (trust level) as a whole.

The rest of this paper is structured as follows. Section 2
describes some distributed systems for which the Impact
FD is suitable. Section 3 outlines some basic concepts of
unreliable failure detectors and Section 4 describes our
system models. Section 5 presents the Impact failure
detector, its characteristics, and some of its properties
while in Section 6, we propose a timer-based algorithm
that implements the Impact FD considering different
systems, defined by the type of their links. The section
also includes the proof of correctness of the algorithm.
Section 7 presents a set of evaluation results obtained from
experiments conducted with real traces on PlanetLab [1].
Section 8 discusses some existing related work. Finally,
Section 9 concludes the paper and outlines some of our
future research directions.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 3

2. MOTIVATION SCENARIOS

Our proposed approach can be applied to different
distributed scenarios and is flexible enough to meet
different needs. It is quite suitable for environments
where there is node redundancy or nodes with different
capabilities. We should point out that both the impact
factor and the thr eshol d render the estimation of the
confidence of S more flexible. Hence, there might be
a situation where some processes in S are faulty or
suspected of being faulty but S is still considered to
be trusted. Furthermore, the Impact FD can easily be
configured and adapted to the needs of the application or
system requirements. For instance, the application may
require a stricter monitoring of nodes during the night
than during the day. For this kind of adaptation, it is only
necessary to adjust the threshold.

The following examples show some scenarios to which
the Impact FD can be applied:

Scenario 1: Ubiquitous Wireless Sensor Networks
(WSNs) are usually deployed to monitor physical condi-
tions in various places such as geographical regions, agri-
culture lands, battlefields, etc. In WSNs, there is a wide
range of sensor nodes with different battery resources and
communication or computation capabilities [9]. However,
these sensors are prone to failures (e.g., battery failure,
process failure, transceiver failure, etc.) [10]. Hence, it
is necessary to provide failure detection and adaptation
strategies to ensure that the failure of sensor nodes does
not affect the overall task of the network. The redundant
use of sensor nodes, reorganization of the sensor network,
and overlapping sensing regions are some of the tech-
niques used to increase the fault tolerance and reliability
of the network [11].

Let us take as example an ubiquitous WSN which is
used to collect environmental data from within a vineyard
and is divided into management zones in accordance with
different characteristics (e.g., soil properties).

Each zone comprises sensors of different types (e.g.,
humidity control, temperature control, etc.) and the
density of the sensors depends on the characteristics of
each zone. That is, the number of sensors can be different
for each type of sensor within a given zone. Furthermore,
the redundancy of the sensors ensures both area coverage
and connectivity in case of failure. Each management
zone can thus be viewed as a single set which has sensors
of the same type grouped into subsets. This grouping
approach allows a threshold to be defined as being equal
to the minimum number of sensors that each subset must
have to keep the connectivity and application functioning
all the time. Moreover, in some situations, there might be
a need to dynamically reconfigure the density of the zones.
In this case, the threshold value would change.

Scenario 2: In large-scale WSN environments, grouping
sensor nodes into clusters has been widely adopted
aiming the overall system scalability and reduction of
resources consumption like battery power and bandwidth.
Each clusteri is composed of a node, denoted cluster

head (CH), which performs special tasks (e.g., routing,
fusion, aggregation of messages, etc.), and several other
sensor nodes (SN). The latter periodically transmit their
data to the their corresponding CH node which aggregate
and transmit them to the base station (BS) either directly
or through the intermediate communication with other
CH nodes. In this scenario, the concept of Impact FD
can be applied considering each clusteri as a subset of
the system S whose size is initially ni . When defining
the impact factor for the processes of clusteri , two issues
should be considered: 1) the failure of CH which implies
that the cluster is inaccessible compromising, therefore,
the network connectivity and leading to untrusted states
of S; 2) When the number of alive SNs drops below
a threshold, additional resources must be deployed to
replenish the system to maintain its population density.
Taking these constraints into account, we could have:
impact factor = 1 to SNs, impact factor = ni to the
CH of clusteri , and threshold for this cluster equals to
thr eshol di = ni + (ni − fi), where fi is the maximum
number of SN’s failures of clusteri . Thus, when either
the CH fails or more than fi SNs fail, the trust level will
be below the threshold and the BS must be warned to take
some decision.

Scenario 3: A third example might be a system
consisting of a main server that offers a certain quality of
service X (bandwidth, response time, etc.). If it fails, N
backup servers can replace it, since each backup offers the
same service but with a X /N quality of service. In this
scenario, both the impact factor of the main server and the
threshold would have the value of N ∗ I back where I back
is the impact value of each backup server, i.e., the system
becomes unreliable whenever both the primary server and
one or more of the N servers fail (or are suspected of being
faulty).

The Impact FD can be applied to all the above scenarios
which have the following features: a) the grouping
of nodes that have some common characteristics into
subgroups (subsets); b) the possibility of having nodes
with different levels of relevance and c) the flexibility of
some systems in being able to tolerate a margin of failure.

3. UNRELIABLE FAILURE DETECTORS

Proposed by Chandra and Toueg in [3], an unreliable
FD can be seen as an oracle that gives (not always
correct) information about process failures (either trusted
or suspected). It usually provides a list of processes
suspected of having crashed.

According to [12], unreliable FDs are so named because
they can make mistakes (1) by erroneously suspecting a
correct process4 (false suspicion), or (2) by not suspecting
a process that has actually crashed. If the FD detects its
mistake later, it corrects it. For instance, a FD can stop
suspecting at time t + 1, a process that it suspected at
time t . Although an unreliable FD can not accurately

4A process is denoted correct if it does not crash during the whole
execution.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

4 A.G.M. ROSSETTO

determine the real state of processes, its use increases
knowledge about them and encapsulates the uncertainty
of the communication delay between two processes [3].

Unreliable failure detectors are usually characterized
by two properties: completeness and accuracy, as defined
in [3]. Completeness characterizes the failure detector’s
capability of suspecting faulty processes, while accuracy
characterizes the failure detector’s capability of not
suspecting correct processes, i.e., restricts the mistakes
that the failure detector can make. FDs are then
classified according to two completeness properties and
four accuracy properties [3]. The combination of these
properties yields eight classes of failure detectors. This
approach allows the design of fault tolerant applications
and proof of their correctness based only on these
properties, without having to address, for example, low-
level network parameters.

In this work, we are particularly interested in the
following completeness and accuracy properties:

• Strong completeness: Eventually every process that
crashes is permanently suspected by every correct
process.

• Weak completeness: Eventually every process that
crashes is permanently suspected by some correct
process.

• Eventual strong accuracy: There is a time after which
correct processes are not suspected by any correct
process.

• Eventual weak accuracy: There is a time after which
some correct process is never suspected by any
correct process.

The class of the eventually perfect ♦P (resp., eventually
strong ♦S) failure detectors satisfies the strong complete-
ness and the eventual strong (resp., eventual weak) accu-
racy properties; the class of eventually weak failure detec-
tors (♦W) satisfies the weak completeness and the even-
tual weak accuracy properties. ♦W is the weakest class al-
lowing to solve consensus in an asynchronous distributed
system with the additional assumption that a majority of
processes are correct.

Note that the type of accuracy depends on the syn-
chrony or stability of the network. For instance, an al-
gorithm that provides eventual accuracy (strong or weak)
may rely on partially synchronous systems which eventu-
ally ensure a bound for message transmission delays and
processes speed.

From Chandra and Toueg’s work, numerous other
failure detector implementations and classes have been
proposed in the literature. They usually differ in the
system assumptions such as synchronous model, type of
node(identifiable, anonymous [13], homonymous [14]),
type of link [6] [15], [16] (lossy asynchronous, reliable,
timely, eventually timely, etc.), behavior properties [17],
[6]; type of network (static [4] [15], dynamic [18],
[19]), etc. They can also have different implementation
choices (timer-based [8],[20], message pattern [17]) and
performance or quality of service (QoS) requirements [8].

The type of problem can also define the properties of the
FD (mutual exclusion [21], k-set agreement [22], register
implementation [23], etc.).

3.1. Implementation of Failure Detectors

The literature has several proposals for implementing
unreliable failure detectors which usually exploit either a
timer-based or a message-pattern approach.

In the timer-based strategy, FD implementations make
use of timers to detect failures in processes. There
exist two mechanisms that can be used to implement
the timer-based strategy: heartbeat and pinging. In the
heartbeat mechanism every process q periodically sends
a control message ("I am alive" message) to process p that
is responsible for monitoring q . If p does not receive such
a message from q after the expiration of a timer, it adds q
to its list of suspected processes. If p later receives an "I
am alive" message from q , p then removes q from its list
of suspected processes.

An alternative approach uses the pinging mechanism
which sends a query message "Are you alive?" from
each process p to another process q periodically. Upon
reception of such messages, the monitored process replies
with an "I am alive" message. If process p times out
on process q , it adds q to its list of suspected processes.
If p later receives an "I am alive" message from q , p
then removes q from its list of suspected processes. The
heartbeat strategy have advantages over pinging since the
former sends half of the messages pinging detectors send
for providing the same detection quality. Furthermore, a
heartbeat detector estimates only the transmission delay
of "I am alive" messages, whereas the pinging detector
must estimate the transmission delay of "Are you alive?"
messages, the reaction delay, and the transmission delay
of "I am alive" messages.

The message-pattern strategy does not use any timeout
mechanism. In [17], the authors propose an implemen-
tation that uses a request-response mechanism. A pro-
cess p sends a QU ERY message to n nodes that it mon-
itors and then waits for responses (RESPON SE message)
from α processes (α ≤ n, traditionally α = n − f , where
f is the maximum number of failures). A query issued by
p ends when it has received α responses. The other re-
sponses, if any, are discarded and the respective processes
are suspected of having failed. A process sends QU ERY
messages repeatedly if it has not failed. If, on the next
request-response, p receives a response from a suspected
process q , then p removes q from its list of suspects. This
approach considers the relative order for the receiving of
messages which always (or after a time) allow some nodes
to communicate faster than the others.

4. SYSTEM MODELS

We consider a distributed system which consists of a finite
set of processes Π = {q1, . . . , qn} with |Π| = n, (n ≥ 2)
and that there is one process per node, site, or sensor.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 5

Therefore, the word process can mean a node, a sensor, or
a site. Each process is uniquely identified (i d | 1 ≤ i d ≤ n)
and identifiers are totally and consecutively ordered.

Processes can fail by crashing and they do not recover.
A process is considered correct if it does not fail during the
whole execution. We consider the existence of some global
time denoted T . A failure pattern is a function F : T → 2Π,
where F (t) is the set of processes that have failed before
or at time t . The function cor r ect (F) denotes the set of
correct processes, i.e., those that have never belonged to a
failure pattern (F), while function f aul t y(F) denotes the
set of faulty processes, i.e., the complement of cor r ect (F)
with respect toΠ.

A process p ∈Πmonitors a set S of processes ofΠ.
We note cor r ect (FS) = cor r ect (F) ∩ S and

f aul t y(FS) = f aul t y(F)∩S.
Every process in S is connected to p by a communica-

tion link and sends messages to it through this link. Notice
that other links among processes of S can exist.

Process synchrony: We consider that each process has a
local clock that can accurately measure intervals of time,
but the clocks of the processes are not synchronized.
Processes are synchronous, i.e., there is an upper bound
on the time required to execute an instruction. For
simplicity, and without loss of generality, we assume that
local processing time is negligible with respect to message
communication delays.

Links and type of systems: For the current implemen-
tation, we consider that links are directed (either unidi-
rectional or bidirectional) and there exists a link from q
(∀q ∈ S) to p.

Every link between p and q satisfies the following
integrity property: p receives a message m from q at most
once, only if q previously sent m to p. In other words,
communication links cannot create or alter messages.
Links are not assumed to be FIFO. Concerning loss
property and link synchrony, we consider the following
types of links as defined in [6]:

• loss y as ynchr onous: A link that satisfies the
integrity property and there exists no bound on
message delay. Note that, in this case, a message m
sent over the link can be lost. However, if m is not
lost, it is eventually received at its destination.

• (T y ped) f ai r loss y : Assuming that each message
has a type, link is fair lossy if, for every type
infinitely many messages are sent, then infinitely
many messages of each type are received (if the
receiver process is correct).

• ♦−t i mel y : A link that satisfies the integrity property
and the following ♦−t i mel i ness property: there
exists δ and a time t such that if q sends a message
m to p at time t ′ ≥ t and p is correct, then p receives
m from q by time t ′+δ. The maximum message delay
δ and the time t are not known. Note that messages
sent before time t can be lost.

We then define the following types of system:

• AS: denotes a lossy asynchronous system with lossy
asynchronous links;

• F-AS: denotes a fair lossy asynchronous system with
fair lossy links;

• W-ET : denotes a weak eventually timely system: a
system where some links are ♦−t i mel y while the
others are lossy asynchronous;

• S-ET : denotes a strong eventually timely system: a
system where all links are ♦−t i mel y ;

• S-ET-Π: A system which is a S-ET system such that p
in S, S = Π, every pair of processes in S is connected
either by a pair of directed links (with opposite
directions) or bidirectional links, and all processes of
Π execute the Impact FD algorithms.

• W-ET-Π: A system which is a W-ET system such
that p in S, S = Π, every pair of processes in S is
connected either by a pair of directed links (with
opposite directions) or bidirectional links, and all
processes of Π execute the Impact FD algorithms.
Moreover, there exists a correct process q1 in Π, such
that, for all process q2 in Π, q1 6= q2, q1 is connected
to q2 by a ♦−t i mel y link (similarly to the definition
of ♦− sour ce of [16]).

Note that a S-ET is also a W-ET and S-ET-Π (resp.,
W-ET-Π) is also a S-ET (resp., W-ET). Our Impact FD
implementation can be applied to all of these systems.

Figure 1 shows three types of system. The first one (a)
is an AS system where all links are l oss y as ynchr onous
while system (b) shows a W-ET where some links are
♦−t i mel y and others are lossy asynchronous. Finally, the
last one (c) is a W-ET-Πwhere site q1 is a ♦− sour ce.

FIGURE 1. Examples of system types.

5. IMPACT FAILURE DETECTOR

The Impact FD can be defined as an unreliable failure
detector that provides an output related to the trust level
with regard to a set of processes. If the trust level provided
by the detector, is equal to, or greater than, a given
threshold value, defined by the user, the confidence in
the set of processes is ensured. We can thus say that the
system is trusted. We denote FD (Ip

S) the Impact failure
detector module of process p and S is a set of processes
of Π. When invoked in p, the Impact FD (Ip

S) returns the

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

6 A.G.M. ROSSETTO

tr ust_l evelp
S value which expresses the confidence that

p has in set S.

5.1. Impact Factor and Subsets

Each process q ∈ S has an impact factor (Iq |Iq > 0 :
Iq ∈ R). Furthermore, set S can be partitioned into
m disjoint subsets (S = {S1,S2, ...Sm}). Notice that the
grouping feature of the Impact FD allows the processes
of S to be partitioned into disjoint subsets, in accordance
with a particular criterion. For instance, in a scenario
where there are different types of sensors, those of the
same type can be gathered in the same subset. Let then
S∗ = {S∗

1 ,S∗
2 , ...S∗

m} be the set S partitioned into m disjoint
subsets where each S∗

i is a set which each element is a
tuple of the form 〈i d , I 〉, where i d is a process identifier
and I is the value of the impact factor of the process in
question.

S∗ = {S∗
1 ,S∗

2 , ...S∗
m} is a set such that ∀i , j , i 6= j ,S∗

i ∩S∗
j =;

and⋃
{q |〈q,_

〉 ∈ S∗
i ;1 ≤ i ≤ m} = S.

5.2. Trust Level

We denote tr ustedp
S (t) the set of processes of S that

are not considered faulty by p at t ∈ T . The trust level
at t ∈ T of process p ∉ F (t) in relation to S is denoted
tr ust_l evelp

S∗
. We have then tr ust_levelp

S∗
(t) =

Tr ust_level (tr ustedp
S (t),S∗), where the function

Tr ust_level (tr ustedp
S (t),S∗) returns, for each subset

S∗
i , the sum of the impact factors of the elements 〈i dq , Iq 〉

of S∗
i such that i dq ∈ tr usted .

Tr ust_l evel (tr usted ,S∗) = {tr ust_l eveli | tr ust_leveli =∑
j∈(tr usted∩Si)

I j , 1 ≤ i ≤ |S∗|}

In other words, the tr ust_levelp
S∗

is a set that contains
the trust level of each subset of S∗ expressing the
confidence that p has in the processes of S. Note that if
all processes of S∗

i have failed tr ust_leveli = 0.

5.3. Margin of Failures

An acceptable margin of failures, denoted thr eshol d S∗
,

characterizes the acceptable degree of failure flexibil-
ity in relation to set S∗. The thr eshol d S∗

is adjusted
to the minimum trust level required for each subset,
i.e., it is defined as a set which contains the respec-
tive threshold of each subset of S∗: thr eshol d S∗ =
{thr eshol d1, . . . , thr eshol dm}.

The thr eshol d S∗
is used by p to check the confidence

in the processes of S. If, for each subset of S∗, the
tr ust_leveli (t) ≥ thr eshol di , S is considered to be
trusted at t by p, i.e., the confidence of p in S has not been
jeopardized; otherwise S is considered untrusted by p at t .

Three points should be highlighted: (1) both the impact
factor and thr eshol d S∗

render the estimation of the
confidence in S flexible. For instance, it is possible that

TABLE 1. Examples of sets and threshold.
S∗ thr eshol d S∗

a {{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

}} {2}
b {{

〈
q1,1

〉
}, {

〈
q2,1

〉
}, {

〈
q3,1

〉
}} {1,1,1}

c {{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

}, {
〈

q4,2
〉

,
〈

q5,2
〉

,
〈

q6,2
〉

}} {2,4}
d {{

〈
q1,1

〉
,
〈

q2,1
〉

,
〈

q3,1
〉

,
〈

q4,5
〉

,
〈

q5,5
〉

}} {7}

TABLE 2. Example of FD (Ip
S) output: S∗ has three subsets.

t F(t) tr ustedp
S (t) tr ust_levelp

S∗
(t) Status at t

1 {q2} {q1, q3, q4, q5,
q6, q7, q8, q9}

{2,6,9} Trusted

2 {q1, q2, q5} {q3, q4,
q6, q7, q8, q9}

{1,4,9} Trusted

3 {q1, q2, q5, q6} {q3, q4, q7, q8, q9} {1,2,9} Untrusted

S∗ = {{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

}, {
〈

q4,2
〉

,
〈

q5,2
〉〈

q6,2
〉

},
{
〈

q7,3
〉

,
〈

q8,3
〉

,
〈

q9,3
〉

}}

thr eshol dS∗ = {1,4,6}

some processes in S might be faulty or suspected of being
faulty but S is still trusted; (2) the Impact FD can be easily
configured to adapt to the needs of the environment;
(3) the thr eshol d S∗

can be tuned to provide a more
restricted or softer monitoring. Note that the Impact FD
can also be applied when the application needs individual
information about each process of S. In this case, each
process must be defined as a different subset of S∗.

5.4. Examples

Table 1 shows several examples of sets and their respective
thresholds. In the first example (a) there is just one
subset with three processes. Each process has impact
factor equal to 1 and the threshold defines that the sum
of impact factor of non faulty processes must be at least
equals to 2, i.e., the system is considered trusted whenever
there are two or more correct processes. Example (b)
shows a configuration where processes must be monitored
individually. Each process is the only element of a subset
and the threshold defines that if any of the processes fails,
the system is not trusted anymore. In the third example
(c), S has two sets with three processes each. The threshold
requires at least two correct processes in each subset. The
last example (d) has a single subset with five processes
with different impact factors. The threshold defines that
the set is trusted whenever the sum of impact factor of
correct processes is at least equal to seven.

In Table 2, we consider a set S∗ composed by three
subsets: S∗

1 , S∗
2 , and S∗

3 (S∗ = {{
〈

q1,1
〉

,
〈

q2,1
〉

,
〈

q3,1
〉

},
{
〈

q4,2
〉

,
〈

q5,2
〉

,
〈

q6,2
〉

}, {
〈

q7,3
〉

,
〈

q8,3
〉

,
〈

q9,3
〉

}}). The
values of thr eshol d S∗ = {1,4,6} define that the subset
S∗

1 (resp., S∗
2 and S∗

3) must have at least one (resp.,
two) correct process. The table shows several possible
outputs for FD (Ip

S) depending of process failures: the
set S∗ is considered trusted at t if, for each subset S∗

i ,
tr ust_leveli (t) ≥ thr eshol di .

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 7

5.5. Flexibility of the Impact FD

The flexibility of the Impact FD characterizes its capability
of accepting different set of responses that lead to a trusted
state of S. We define PS as the set that contains all possible
subsets of processes which satisfy a defined threshold:

PS =× Power Set (Si
∗, thr eshol di

S∗
)

where ×Si corresponds to the cartesian product of
several sets.

Initially, the PowerSet function generates the power set
5 for each subset (Si

∗) of S∗. Then, only the subsets of
Si

∗ whose sum of their parts is greater than, or equal
to, thr eshol di are selected. That is, the output is the
sets of possible trusted set that satisfy the threshold for
each subset Si

∗. Following this, the cartesian product is
applied to generate all possible combinations, i.e., all the
generated subsets of processes satisfy the thr eshol d S∗

.
Let’s consider the following example:

S∗ = {{
〈

q1,1
〉

,
〈

q2,1
〉

}, {
〈

q3,1
〉

,
〈

q4,1
〉

}, {
〈

q5,1
〉

,
〈

q6,1
〉

}}
thresholdS∗

= {1,1,1}
PS = Power Set (S∗, thr eshol d S∗

)

PowerSet(S∗
1 , thr eshol d1) = {{q1}, {q2}, {q1, q2}}

PowerSet(S∗
2 , thr eshol d2) = {{q3}, {q4}, {q3, q4}}

PowerSet(S∗
3 , thr eshol d3) = {{q5}, {q6}, {q5, q6}}

PS = PowerSet(S∗
1 , threshold1) × PowerSet(S∗

2 , threshold2)
× PowerSet(S∗

3 , threshold3)

PS = {{q1, q3, q5}, {q1, q3, q6}, {q1, q3, q5, q6},
{q1, q4, q5}, {q1, q4, q6}, {q1, q4, q5, q6},
{q1, q3, q4, q5}, {q1, q3, q4, q6}, {q1, q3, q4, q5, q6}, . . .}

For instance, if tr ustedp
S (t1) = {q1, q3, q5} and

tr ustedp
S (t2) = {q1, q3, q4, q6}, tr ustedp

S (t1) and
tr ustedp

S (t1) ∈ PS, and, therefore, p considers that the
system S is trusted at both t1 and t2.

We now define two properties, PR(I T)S
p and PR(♦I T)S

p ,
that characterize the stability condition that ensures the
confidence (or eventual confidence) of p on S.

Impact Threshold Property - PR(I T)S
p : For a failure

detector of a correct process p, the set tr ustedp
S is always

a subset of PS.

PR(I T)S
p ≡ p ∈ cor r ect (F),∀t ≥ 0, tr ustedp

S (t) ∈ PS

Eventual Impact Threshold Property - PR(♦I T)S
p : For a

failure detector of a correct process p, there is a time after
which the set tr ustedp

S is always a subset of PS.

PR(♦I T)S
p ≡∃t ∈ T, p ∈ cor r ect (F),∀t ′ ≥
t , tr ustedp

S (t ′) ∈ PS

If PR(I T)S
p (resp., PR(♦I T)S

p) holds, the system S is
always (resp., eventually always) trusted by p.

5the power set of any set S is the set of all subsets of S, including the
empty set and S itself

5.6. Classes of Impact FD

Similarly to the completeness and accuracy properties
defined in [3] (see Section 3), we define the following
properties for the Impact FD:

Impact completenessp
S : For a failure detector of a

correct process p, there is a time after which p does not
trust any crashed process of S;

∃t ∈ T, p ∈ cor r ect (F),∀q ∈ f aul t y(FS) : ∀t ′ ∈ T ≥ t , q ∉
tr ustedp

S (t ′)

Impact weak completenessp
S : For a failure detector of

a correct process p, there is a time after which some p does
not trust any crashed process of S;

∃t ∈ T,∃p ∈ cor r ect (F),∀q ∈ f aul t y(FS) : ∀t ′ ∈ T ≥ t , q ∉
tr ustedp

S (t ′)

Eventual i mpact str ong accur ac yp
S : For a failure

detector of a correct process p, there is a time after which
all correct processes of S belong to tr ustedp

S ;

∃t ∈ T,∀t ′ ∈ T ≥ t , p ∈ cor r ect (F),∀q ∈ cor r ect (FS) : q ∈
tr ustedp

S (t ′)

Eventual i mpact weak accur ac yp
S : For a failure

detector of a correct process p, there is a time after which
some correct process of S is trusted by every correct
process.

∃t ∈ T,∀t ′ ∈ T ≥ t ,∀p ∈ cor r ect (F),∃q ∈ cor r ect (FS) : q ∈
tr ustedp

S (t ′)

Lets consider that p in S and S =Π
We can then define some classes of Impact FD, similarly

to those defined in [3] and [23]:

• ♦I P (Eventually Perfect Impact Class): For S = Π,
∀p ∈ cor r ect (F),
i mpact completenessp

S and
eventual i mpact str ong accur ac yp

S proper-
ties are satisfied;

• ♦I S (Eventually Strong Impact Class): For S = Π,
∀p ∈ cor r ect (F),
i mpact completenessp

S and
eventual i mpact weak accur ac yp

S properties
are satisfied;

We point out that the trust level output of the failure
detectors of the above classes depends on S∗, i.e., the
impact factor assigned to the processes as well as how they
are grouped in subsets.

6. IMPLEMENTATION OF IMPACT FD

The Impact FD can have different implementations
according to the characteristics of the system: the
synchronization model, whether or not the process p has
knowledge about the composition of S (membership) and
the type of nodes. In this section, we present a timer-based
implementation of the Impact FD (Algorithms 2 and 3).

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

8 A.G.M. ROSSETTO

The system S consists of n processes grouped in m
subsets. The monitor process p ∉ S.

Our implementation (Algorithms 2 and 3) uses timers
to detect failures of processes in different system models.
Process q periodically sends (heartbeat) messages to
process p, that is responsible for monitoring process q .
If p does not receive such a message from q after the
expiration of the timer, it removes q from its list of trusted
processes.

Chen’s heartbeat estimation arrival: Algorithm 2 uses the
algorithm proposed by [8], denoted Chen’s algorithm in
this work, which computes the timeout value for waiting
for a heartbeat message from each monitored process.

Chen’s algorithm uses arrival times sampled in the
recent past to compute an estimation of the arrival time
of the next heartbeat. Then, timeout value is set according
to this estimation and a safety margin (β). It is recomputed
at each timer expiration.

The estimation algorithm is the following: process p
takes into account the z most recent heartbeat messages
received from q, denoted by y1, y2, . . . , yz ; A1, A2, . . . ,
Az are their actual reception times according to p’s local
clock. When at least z messages have been received, the
theoretical arrival time EA(k+1) for a heartbeat from q is
estimated by:

E A(k+1) =
1

z

k∑
i=k−z

(Ai −∆i ∗ i)+ (k +1)∆i

where ∆i is the interval between the sending of two q’s
heartbeats. The next timeout value which will be set in p’s
timer and will expire at the next freshness point τ(k+1), is
then composed by EA(k+1) and the constant safety margin
β:

τ(k+1) =β+E A(k+1) (next f r eshness poi nt)

In Algorithm 2, Chen’s algorithm is executed by the
T i meout function (Algorithm 1) which calculates the
arrival estimation of the next heartbeat for process q .
Furthermore, if the system is eventually timely in order
to ensure accuracy of the impact FD a η value is added
to the q’s timeout. The η has an initial zero value
and is incremented whenever p falsely suspects q (line
8 of Algorithm 2). Such an increment ensures that, if
the link is ♦−t i mel y and stable, i.e., the delay bound
δ verifies forever, the heartbeat arrival estimation time
will be always equal or greater than the actual arrival
time for every heartbeat and, therefore, there will be no
more estimation mistakes and, therefore no more false
suspicions and the accuracy property is hold.

Algorithm 2 is executed by the monitor process p while
Algorithm 3 by all processes of S.

The following local variables are used by the algorithm:

• trusted: set of processes considered not faulty by p;
• η[]: keeps the timeout increment of each process in S;

Algorithm 1 Timeout Function.

1: function TIMEOUT(q,η,model)
2: if model =∗− AS then . AS or F-AS system
3: τq =β+E Aq

4: else
5: τq =β+E Aq +η
6: end if
7: return τq

8: end function

• t i mer []: is set to the timeout value at each timer
expiration.

Algorithm 2 Timer-based Impact FD Algorithm for p.

1: Begin
Input

2: S∗, model , η
Init

3: tr usted = S
4: ∀q 6= p : r eset t i mer [q] =

T i meout (q,0,model); η[q] = 0

Task T1 - Upon reception of ALIVE from q
5: if q ∉ tr usted then
6: tr usted = tr usted ∪ {q}
7: if model =∗−ET then .W-ET or S-ET system
8: η[q] = η[q]+η
9: end if

10: end if
11: r eset t i mer [q] = T i meout (q,η[q],model)

Task T2 - When timer[q] expires
12: tr usted = tr usted \ {q}
13: r eset t i mer [q] = T i meout (q,η[q],model)

Task T3
14: Upon invocation of Impact () do
15: return Tr ust_level (tr usted ,S∗)
16: end
17: End

In Algorithm 2, p receives as input the set S∗, the
increment time η for the timeout estimation (used when
occurs false suspicions in W-ET or S-ET systems), and the
model of the system (AS, F-AS, W-ET or S-ET). Note that
by receiving S∗, the algorithm knows S, the impact factor
of all processes of S, the number of subgroups m, and how
processes are grouped.

At the initialization, tr usted is equal to the set of
processes. Then, for each process q in S (q 6= p),
p initializes the timer that will control the arrival of
heartbeat messages from q (line 4).

Upon the reception of an ALIVE message from q (Task
T1), q is added to the tr usted set (line 6) and the timeout
related to q is recomputed (line 11).

In task T2, q is considered faulty by p and, therefore,

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 9

Algorithm 3 Timer-based Impact FD Algorithm for q in S.

1: Begin
Input

2: p, ∆
Task T1 - Repeat forever every ∆ time unit

3: send(ALIV E) to p

4: End

removed from trusted (line 12). The timeout related to q
is then recomputed (line 13).

Task T3 handles the invocation of the Impact() function,
which computes the trust_level of each subset and returns
the trust level related to the current trusted processes
which are trusted by p.

In Algorithm 3, every monitored process q of S sends
periodically, every∆ units of time, an ALIVE message to its
input observer p in order to inform the latter that it is alive
(Task T1).

Note that if p ∈ S, like in S-ET-Π or W-ET-Π, all processes
of Π execute the two algorithms behaving, thus, as both
a monitor and a monitored process. In this case, the
primitive send in line 3 of Algorithm 3 is replaced by the
primitive br oadcast , i.e., every process periodically sends
a heartbeat to all processes of S.

6.1. Proof

In this section, we prove the correctness of some
properties of Algorithm 2 and 3.

LEMMA 6.1. If p is correct, Algorithms 2 and 3 satisfy the
impact completeness property for p in relation to S.

Proof. Let’s consider that at t , S f = f aul t y(FS) (i.e., all
failures of processes in S already took place) and that
all the ALIV E messages (heartbeats) sent by these faulty
processes before they crashed were delivered to p. Thus,
after t , p will receive no more ALIV E messages from
processes of S f . Then, ∀q ∈ S f , in the next expiration
of the timer[q] after t , q will be removed from tr usted
(line 12). Moreover, since p will receive no more ALIV E
messages from q , line 6 will never be executed for q
anymore and, thus, q will nevermore be included in
tr usted . Therefore, ∃t ′ > t ,∀t ′′ ≥ t ′,∀q ∈ f aul t y(FS) : q ∉
tr ustedp (t ′′).

LEMMA 6.2. If S is a W-ET, if p is correct, Algorithms 2 and
3 satisfy the eventual impact weak accuracy property for p
in relation to S.

Proof. In a W-ET system S, there exists q ∈ cor r ect (FS)
linked to p by a ♦−t i mel y .

Let’s denote Tq the stabilization time of the link q from
p, i.e., ∀t ≥ Tq , if q sends a message m to p, then q receives
m by time t +δ. Then, when q sends a message to p at
t ≥ Tq , and p receives the message at t1 > t , two cases may
happen:

• the next timer of q expires after t1 (Task T1). In this
case, q will be added to tr usted (line 6). Then, the
timeout value of q is incremented (line 8) and the
timer of q restarted;

• the current timer of q expires before t1: p removes q
from tr usted (line 12) and the timer is restarted.

Since q keeps on sending ALIV E messages to p and
t i mer [q] increases at false suspicion of q , there exists a
time t2 > Tq such that t i mer [q] ≥ δ and then Task 2 will
nevermore be executed by p for q and, ∀t3 ≥ t2, upon
every q ’s message reception by p, task T1 will be executed
for q . Therefore, q will remain forever in tr ustedp and
Eventual impact weak accur ac yp

S is satisfied.

LEMMA 6.3. If S is a S-ET, if p is correct, Algorithms 2 and
3 satisfy the eventual impact strong accuracy property for p
in relation to S.

Proof. In a S-ET system S, every q ∈ cor r ect (FS) is linked
to p by a ♦−t i mel y . Then, following the same proof
scheme of Lemma 6.2, q will remain forever in tr ustedp

and Eventual impact strong accur ac yp
S is satisfied.

THEOREM 6.1. In W-ET-Π systems, Algorithms 2 and 3
implement a FD of class ♦I S.

Proof. If the system is W-ET-Π, S = Π, from Lemma
6.1 and 6.2, ∀p ∈ cor r ect (F), Impact compl etennessΠp
and Eventual impact weak accur ac yp

Π are satisfied.
Therefore, the algorithms implement a FD of class ♦I S.

THEOREM 6.2. In S-ET-Π systems, Algorithms 2 and 3
implement a FD of class ♦I P.

Proof. If the system is S-ET-Π, S = Π, from Lemma
6.1 and 6.3, ∀p ∈ cor r ect (F), Impact compl etennessΠp
and Eventual impact strong accur ac yp

Π are satisfied.
Therefore, the algorithms implement a FD of class ♦I P .

THEOREM 6.3. If PR(I T)S
p (resp., PR(♦I T)S

p) holds, the
system S is always (resp., eventually always) trusted by p.

Proof. if PR(I T)S
p (resp., PR(♦I T)S

p) holds, ∀t ≥ 0 (resp.,
∃t1,∀t ≥ t1), tr usted ∈ PS and, therefore, S is trusted by
p.

7. PERFORMANCE EVALUATION

In this section, we first describe the environment in which
the experiments were conducted and the QoS metrics
used for evaluating the results. Then, we discuss some
of the results in different systems and configurations of
node sets with regard to both the impact factor and the
threshold.

Our goal is to evaluate the QoS of the Impact FD:
how fast it detects failures and how well it avoids false
suspicions. With this purpose, we exploit a set of metrics

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

10 A.G.M. ROSSETTO

TABLE 3. Sites of Experiments.
ID Site Local

0 planetlab1.jhu.edu USA East Coast
1 ple4.ipv6.lip6.fr France
2 planetlab2.csuohio.edu USA, Ohio
3 75-130-96-12.static.oxfr.ma.charter.com USA, Massachusetts
4 planetlab1.cnis.nyit.edu USA, New York
5 saturn.planetlab.carleton.ca Canada, Ontario
6 PlanetLab-03.cs.princeton.edu USA, New Jersey
7 prata.mimuw.edu.pl Poland
8 planetlab3.upc.es Spain
9 pl1.eng.monash.edu.au Australia

that have been proposed by [8] and we compare the results
of Impact FD with an approach that monitors processes
individually using Chen’s FD [8]. We conducted a set of
experiments, considering two different systems: 1)AS: a
system where all links are lossy asynchronous; (b) W-ET :
a system where some links are ♦−t i mel y and the others
are lossy asynchronous.

7.1. Environment

Our experiments are based on real trace files, collected
from ten nodes of PlanetLab [1], as summarized in Table
3. The PlanetLab experiment started on July 16, 2014
at 15:06 UTC, and ended exactly a week later. Each
site sent heartbeat messages to other sites at a rate of
one heartbeat every 100 ms (the sending interval). We
should point out that these traces of PlanetLab contain
a large amount of data concerning the sending and
reception of heartbeats, including unstable periods of
links and message loss which induce false suspicions.
Thus, such traces characterize any distributed system
that uses FDs based on heartbeat. Furthermore, since
our experiments were conducted using the PlanetLab
traces, all of them reproduce exactly the same scenarios
of sending and receiving of heartbeats by the processes.
Furthermore, provided that the same trace is available, the
test conditions and results are reproducible.

For the evaluation of Impact FD, we defined S =
{1,2,3,4,5,6,7,8,9} and site 0 as the monitor node (p ∉ S).

Table 4 gives some information about the heartbeat
messages received by site 0 (the monitor node). We
observe that the mean inter-arrival times of received
heartbeats is very close to 100 ms. However, for some sites,
the standard deviation is very high, like for site 5 which the
standard deviation was 310.958 ms with a minimum inter-
arrival time of 0.006 ms, and a maximum of 657,900.226
ms. Such deviation probably indicates that, for a certain
time interval during execution, the site stopped sending
heartbeats and started again afterwards. Note also that site
2 stopped sending messages after approximately 48 hours
and, therefore, there are just 1,759,990 received messages.

The implementation of the Impact FD used in our
evaluation experiments is based on Algorithms 2 and 3,
presented in Section 6. For the estimation of the timeout
value of Chen’s estimation algorithm, the authors suggest
that the safety margin β should range from 0 to 2500

TABLE 4. Sites and heartbeat sampling.
Site Messages Min (ms) Max (ms) Mean (ms) Stand. Dev.(ms)

1 5,424,326 0.025 26,494.168 100.058 19.525
2 1,759,989 0.031 509.093 100.415 9.275
3 5,426,843 0.027 1,227.349 100.012 1.709
4 5,414,122 0.003 1,193.276 100.247 18.595
5 5,413,542 0.006 657,900.226 100.258 310.958
6 5,426,700 0.003 3,787.643 100.015 2.557
7 5,424,117 0.006 59,603.188 100.062 31.229
8 5,424,560 0.027 11,443.359 100.054 100.714
9 5,422,043 0.004 30,600.076 100.100 18.798

ms. For all experiments, we set the window size to 100
samples, which means that the FD only relies on the
last 100 heartbeat message samples for computing the
estimation of the next heartbeat arrival time. Several
works aim at improving the QoS of failure detectors which
estimate the arrival time of the next heartbeat by varying
some parameters such as window size [24] [25] [26]. The
latter emphasize that Chen FD has better performance
with smaller window sizes. Based on these studies and
our experiments, we used the window size of 100 samples,
which induces Chen FD to take less time to adapt to the
dynamics of the network.

7.1.1. Evaluation of sites’ stability
We evaluated the stability of sites, considering that the
traces could correspond to either an AS system or W-ET
system. For the first case, the value AS was assigned to
the model parameter of Algorithm 2 while for the second
case, the same parameter was set to W-ET. Each of the sites
of S is considered individually and not as a whole system.
The impact value of sites and the threshold values are not
concerned for the experiments.

The β value of Chen’s algorithm was set to 400ms. We
chose such a value because it is an acceptable safety
margin for detection time and is not too aggressive;
otherwise the failure detector would be prone to too many
mistakes. The stability of sites and the corresponding
links to the monitor were evaluated during the whole trace
period for the AS system and during just the first 24 hours
of the trace period for the W-ET system.

AS system: Figure 2 shows the cumulative number of
mistakes, i.e., false suspicions, made by the monitor site
0 for each site of S. We can observe that site or link periods
of instability entail late arrivals or loss of heartbeats and,
therefore, mistakes by the monitor site. For example,
site 9 had a large number of cumulative mistakes at hour
48. After that, there is a stable period with regard to this
site. On the other hand, around this time, site 2 stopped
sending messages since it crashed and, consequently, the
monitor node made no more mistakes about it after this
time. Finally, we can say that, considering the whole
period, sites 3 and 6 (resp., 8 and 9) are, in average, the
most stable (resp., unstable) sites.

W-ET system: In Algorithm 1 (Task T1), when the
system is W-ET, Chen’s heartbeat arrival estimation
value is incremented by η, whenever a false suspicion

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 11

FIGURE 2. AS System: Cumulative number of mistakes of each
site.

occurs. However, in order to prevent this estimation
from increasing too fast when there is a period of
high instability, which could increase the detection time
considerably, we considered that the value of the timer
(line 8) will be incremented by η at every µ heartbeat
arrivals, provided that during the period of these µ

heartbeat arrivals, one or more false suspicions took place.
For the experiment, we considered µ equals to 10 and
η= 1ms .

Note that when the heartbeat arrival estimation reaches
a value which is greater than the transmission delay
limit for links with ♦−t i mel y behavior, the monitor site
does not make anymore mistakes for the related sites.
Moreover, for unstable sites, as the heartbeat arrival
estimation value will also be incremented by η in case of
false suspicions, such an increment will be responsible for
decreasing the number of mistakes for these sites when
compared to an AS system. However, such a reduction
induces a higher false suspicion detection time.

Figure 3 shows the cumulative number of mistakes
that the monitor process made for each site in the first
24 hours of the traces. We can observe that there
are links which behave ♦−t i mel y while the others are
lossy asynchronous. The failure detector did not make
mistakes related to site 4. For sites 2 and 3, it did only
1 and 2 mistakes, respectively, while for site 6, it did 99
mistakes during the first hour, and then no more mistakes.
Although some sites have had some periods of stability
(1, 5, 8 and 9), site 0 made mistakes related to them until
almost the end of these execution. On the other hand, it
did no mistakes for site 7 after hour 9. In summary, we
can consider that site 0, the monitor site, is connected
by ♦−t i mel y links to sites 2, 3, 4 and 6, and by lossy
asynchronous links to 1, 5, 7, 8, and 9.

7.1.2. Evaluation of heartbeat arrival times
The goal of this section is to show the behavior of the
arrival times when the timer expires and the failure
detector does not receive the heartbeat message. For
the first 24 hours, we evaluated the behavior of the three
arrival times at si te 0 related to heartbeat messages of

FIGURE 3. W-ET System: Cumulative number of mistakes of
each site.

si te 1 with two different values to β (100 and 400 ms). We
chose si te 1 because it has many periods of instability. We
consider that si te 1 and si te 0 are alternately connected
by lossy asynchronous or ♦−t i mel y links.

We evaluated three arrival times: 1) arrival of the
heartbeat; 2) the estimated arrival time considering that
the link is lossy asynchronous; 3) the estimated arrival
time considering that the link is ♦−t i mel y . In order
to compute the latter, we set η = 1ms and the number
of heartbeats before incrementing the heartbeat arrival
estimation value, in case of false suspicions, to 100 (µ =
100). Figures 4 and 5 show the time difference between the
arrival time of the previous heartbeat and the above three
arrival ones for site 1: 1) the difference in milliseconds
between the arrival time of the last heartbeat and the
previous one (Arrival); 2) the difference in milliseconds
between the estimated arrival time (τq = β+ E Aq) and
the arrival time of the previous heartbeat, considering the
link lossy asynchronous (Estimation LA); 3) the number of
milliseconds elapsed between the estimated arrival time
(τq = β+ E Aq + η) and the arrival time of the previous
heartbeat, considering the link ♦−t i mel y (Estimation
ET).

Figures 4 and 5 show the behavior of times when the
timeout expires for β= 100ms and β= 400ms respectively
till hour 24. In order to simplify the figures, the points
correspond only to the times where mistakes took place.
Figure 5 has fewer points than Figure 4 because the
number of mistakes drops considerably due to a higher β
value.

Figure 4 summarizes the time differences forβ= 100ms.
The monitor si te 0 made 807 (resp., 592) mistakes when
the link is lossy asynchronous (resp. ♦−t i mel y). Note
that at several points, the estimated arrival time for the ET
estimation is higher than the arrival time of the heartbeat
while, in the LA estimation, the difference between them
is very small (1 or 2 ms), specially from time 6 to 21. Thus,
both lines in the figure overlap but the estimation arrival
time is often below the arrival one which explains the high
number of mistakes. At times 1, 4, 6, 21, and 23, which
correspond to periods of instability, the arrival time of the

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

12 A.G.M. ROSSETTO

heartbeat is much higher than the estimation one for the
LA estimation.

Contrarily to Figure 4, the number of mistakes drops
to 168 and 166 mistakes, for ET and LA estimations
respectively as shown in Figure 5. Therefore, since they
are almost equal, the estimated arrival times for the
lossy asynchronous and ♦−t i mel y are also quite close.
Similarly to Figure 4, the mistakes are concentrated in
periods of great instability (1, 4, 6, 21, and 23).

7.1.3. Discussion about the choice of parameters
Below we describe the criteria used to set the parameter
values β, µ and η:

• β: for the estimation of the timeout value of Chen’s
estimation algorithm, the authors [8] suggest that
the safety margin should range from 0 to 2500ms.
The β value of Chen’s algorithm was set to 400ms in
experiments of sections 7.1.1, 7.1.2, and 7.3.1. We
chose such a value because it is an acceptable safety
margin for detection time and is not too aggressive;
otherwise the failure detector would be prone to too
many mistakes. In experiments of section 7.4, we
used β = 50ms and β = 100ms. These safety margin
values are quite aggressive, which, consequently, lead
the failure detector prone to make mistakes. We
choose these values because our aim was to check
the behavior of the failure detector in a scenario more
vulnerable to failures.

• η : this is increment time for the timeout estima-
tion (used when false suspicions take place). We con-
ducted experiments with two values: 500µs and 1ms.
We defined these values taking into account that each
site sends heartbeat messages to other sites at a rate
of one heartbeat every 100ms (the sending interval).
A value greater than 1ms greatly increases the detec-
tion time. On the other hand, a value smaller than
500µs generates many mistakes. Thus, these values
guarantee a better tradeoff between detection time
and accuracy of the Impact FD.

• µ: we conducted experiments with different values
for µ (1, 10, and 100). On the one hand, we observed
that for µ = 1, a smaller number of errors occurred,
however, the detection time increased. On the other
hand, when we used µ = 100, the number of errors
increased. Considering these two trade-offs, we set Îij
= 10 in the experiment of section 7.1.1 (Evaluation of
sites’ stability).

7.2. QoS Metrics

First, let’s remember that the goal of the Impact FD is
to inform if a system is “trusted” or “untrusted”. This
information can be deduced by comparing the output
tr ust_l evel of the Impact FD with the thr eshol d . Thus,
we say that the output of the Impact FD of p is correct if
either, for each subset of S∗ (1 ≤ i ≤ m), tr ust_leveli ≥
thr eshol di and S is actually trusted, or ∃ i such that

tr ust_leveli < thr eshol di and S is actually untrusted.
Otherwise, the FD made a mistake.

For evaluating the Impact FD, we used three of the QoS
metrics proposed in [8]: detection time, average mistake
rate, and query accuracy probability. Considering that p
monitors S, the QoS of the Impact FD at p must take into
account the transitions between “trusted” to “ untrusted”
states of S.

• Detection Time (TD): In [8], the TD is defined as the
time elapsed from the moment process q crashes
until the FD at p starts suspecting q permanently.
In the case of the Impact FD, the detection time
(TD) of p in relation to S is the time elapsed till the
monitor process reports a suspicion that leads to a
status transition in S from trusted to untrusted. To
this end, for each freshness point of a process q in
S, it is necessary to check which process failures
would lead to a state transition of S from trusted to
untrusted and then compute the detection time TD

for each of these processes. The latter is the time
elapsed between the current freshness (τi+1) and
the last heartbeat arrival (Ai) with respect to the
previous freshness point, i.e., τi+1 − Ai , from each of
these processes. If there is more than one process
q ∈ S which could lead to the transition, i.e., S f =
q ∈ tr ustedi |(tr ust_leveli − Impact (q)) < thr eshol di ,
the TD in relation to S is the greatest of them:
TD = max(τi+1 − Ai), ∀q ∈ S f .
Figure 6 shows an example where S∗ has just one
subset with three processes whose impact factor is 1.
The thr eshol d S defines that at least two processes
must be correct. Note that at τi+3, process p did not
receive the heartbeat message from q1 and, therefore,
p removes it from its trusted set (tr ustedp = {q2, q3}).
However, S remains trusted for p because the trust
level satisfies the threshold. At freshness point τi+5,
FD verifies if the failure of any of the processes
of tr ustedp (q2 and q3) can lead to S transition
(tr ust_l evel1 < thr eshol d1). For this purpose, p
computes the TD for each of the two processes. The
TD in relation to S is the greatest among TD of q2 and
TD of q3. Since p did not receive a heartbeat from q2,
S becomes untrusted.
Transitions between “trusted” and “untrusted” states
for 3 processes with impact factor 1 within a single
subset. At least two processes must be correct.

• Average Mistake Rate (λR): represents the number of
mistakes that the FD makes per unit of time, i.e., the
rate at each the FD makes mistakes.

• Query Accuracy Probability (P A): the probability that
the FD output is correct at a random time.

7.3. Asynchronous System (AS)

For this evaluation we consider an AS, i.e., links are lossy
asynchronous. Table 5 shows five configurations with
regard to impact factor values that have been considered
for S∗ in the experiments. The sum of the impact factor of

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 13

FIGURE 4. The behavior of the arrival times when the timeout expires in Site 1 for β = 100ms and µ = 100 for 24 hours. The points
correspond to the times where mistakes took place.

FIGURE 5. The behavior of the arrival times when the timeout expires in Site 1 for β = 400ms and µ = 100 for 24 hours. The points
correspond to the times where mistakes took place.

the processes is 90 for all configurations.

7.3.1. Experiment 1 - Query Accuracy Probability
The aim of this experiment is to evaluate the Query
Accuracy Probability (P A) with different threshold values
(64, 70, 74, 80, and 83) and different impact factor
configurations (Table 5). The safety margin was set to
400ms (β=400ms).

Figure 7 shows that in most cases the P A decreases
when the threshold increases. It should be remembered
that the threshold is a limit value defined by the user
and if the FD trust level output value is equal to, or
greater than, the threshold, the confidence on the set of
processes is ensured. Hence, the results confirm that when

the threshold is lower, the Query Accuracy Probability is
higher.

On the one hand, except for threshold 83, “S∗ 0”
configuration has the highest P A for most of the thresholds
due to the assignment of high (resp., low) impact factors
for the most stable (resp., unstable) sites. On the other
hand, “S∗ 2” and “S∗ 4” have the lowest P A since unstable
sites have high impact factor values assignment. For
instance, in “S∗ 2” the high impact factor value of unstable
sites 8 and 9 with standard deviation of 100 and 18 ms
respectively degrades the P A of this set.

“S∗ 4” shows a sharp decline of the P A curve when the
threshold = 83. This behavior can be explained since,
in this set configuration, all sites have the same impact

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

14 A.G.M. ROSSETTO

TABLE 5. Set Configurations (S∗).
ConfigurationImpact Factor of each site

S∗ 0 {{
〈

q1,7
〉

,
〈

q2,3
〉

,
〈

q3,20
〉

,
〈

q4,20
〉

,
〈

q5,3
〉

,
〈

q6,20
〉

,
〈

q7,3
〉

,
〈

q8,7
〉

,
〈

q9,7
〉

}}
S∗ 1 {{

〈
q1,7

〉
,
〈

q2,20
〉

,
〈

q3,20
〉

,
〈

q4,3
〉

,
〈

q5,3
〉

,
〈

q6,20
〉

,
〈

q7,3
〉

,
〈

q8,7
〉

,
〈

q9,7
〉

}}
S∗ 2 {{

〈
q1,20

〉
,
〈

q2,7
〉

,
〈

q3,3
〉

,
〈

q4,3
〉

,
〈

q5,7
〉

,
〈

q6,3
〉

,
〈

q7,7
〉

,
〈

q8,20
〉

,
〈

q9,20
〉

}}
S∗ 3 {{

〈
q1,7

〉
,
〈

q2,3
〉

,
〈

q3,20
〉

,
〈

q4,3
〉

,
〈

q5,3
〉

,
〈

q6,20
〉

,
〈

q7,7
〉

,
〈

q8,20
〉

,
〈

q9,7
〉

}}
S∗ 4 {{

〈
q1,10

〉
,
〈

q2,10
〉

,
〈

q3,10
〉

,
〈

q4,10
〉

,
〈

q5,10
〉

,
〈

q6,10
〉

,
〈

q7,10
〉

,
〈

q8,10
〉

,
〈

q9,10
〉

}}

FIGURE 6. Transitions between “trusted” and “untrusted” states
for 3 processes with impact factor 1 within a single subset. At
least two processes must be correct.

factor (10) which implies that every false suspicion renders
the trust_level smaller than the threshold (83), increasing
the mistake duration. Therefore, the Query Accuracy
Probability decreases.

Notice that site 2 failed after approximately 48 hours.
Thus, after its crash, the FD output, which indicates
trust_level smaller than the threshold, is not a mistake, i.e.
it is not a false suspicion. Hence, in “S∗ 1”, where the
impact factor of site 2 is 20 (high), the P A is constant for
a threshold greater than 70: after the crash of site 2, the
FD output is always smaller than the threshold and false
suspicions related to other sites do not alter it. The average
mistake duration in the experiment is thus smaller after
the crash, which improves the P A .

Finally, we compared the P A of the Impact FD and
a FD approach that monitors processes individually by
applying Chen’s algorithm considering the 100 most
recent heartbeats (WS=100) and β=400ms. For the latter,
the metric is the average of the P A value of all sites of

S: PA =
∑n

x=1 PAx

n , for n = 9 and x equals to the index

of each site in S. Thus, the obtained mean P A (PA) is
equal to 0,979788. This result shows that, regardless of
the set (S∗) configuration, the Impact FD has a higher P A

than Chen’s FD since the former has enough flexibility to
tolerate failures, i.e., the mistake duration only starts to
be computed when the trust_level provided by Impact FD
is smaller than the threshold, in contrast with individual
monitoring, such as that by Chen FD, where every false
suspicion increases the mistake duration.

The results of this experiment highlight the fact that the

assignment of heterogeneous impact factors to nodes can
degrade the performance of the failure detector, especially
when unstable sites have a high impact factor.

FIGURE 7. AS System: P A vs. threshold with different set
configurations (S∗).

7.3.2. Experiment 2 - Query Accuracy Probability vs.
Detection time

In the second experiment, we evaluated the average Query
Accuracy Probability (PA) regarding the average detection
time (TD) for different threshold values (64, 70, 80, and
83). In order to obtain different values for the detection
time, we varied the safety margin (Chen’s estimation) with
intervals of 100 ms, starting at 100 ms. For this experiment,
we chose the “S∗ 0” configuration since it presented the
best P A in Experiment 1. We also evaluated the PA and TD

for Chen’s algorithm, which outputs the set of suspected
nodes. For the latter, the TD is computed as the average of

the individual TD of all sites of S: T D =
∑n

x=1 T Dx

n .
Figure 8 shows that for a high threshold and detection

time close to 200 ms, the PA of the Impact FD is quite
small, independently of the threshold, because the safety
margin (used to compute the expected arrival times)
is, in this case, equal to 100 ms, which increases both
the number of false suspicions and mistake duration.
However, when TD is greater than 230 ms, the PA of Impact
FD is considerably higher than that of Chen. After a
detection time of approximately 400 ms, the PA of Impact
FD becomes constant regardless of the detection time
and threshold, and gets close to 1. Such a behavior
can be explained since the higher the safety margin, the
smaller the number of false suspicions, and the shorter the
mistake duration which confirms that when the timeout
is short, failures are detected faster but the probability of

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 15

having false detections increases [27].

FIGURE 8. AS System: PA vs. TD with different thresholds.

7.3.3. Experiment 3 - Average mistake rate
In this experiment, we evaluated the average detection
time (TD) vs. the mistake rate (λR) (mistakes per second).
For Chen’s algorithm, the λR is computed as the average

of the individual λR of all sites of S: λR =
∑n

x=1λR

n .We
considered the “S∗ 0” configuration and the mistake rate
is expressed in a logarithmic scale.

We can observe in Figure 9 that the mistake rate of
the Impact FD is high when the detection time is low
(i.e., smaller than 400 ms) and the threshold is high (i.e.,
from 80 to 83). Such a result is in accordance with
Experiment 2: whenever the safety margin is small and
threshold tolerates fewer failures, the Impact FD makes
mistakes more frequently. In other words, the mistake rate
decreases when the threshold is low or the detection time
increases.

7.3.4. Experiment 4 - Cumulative number of mistakes
Figure 10 shows the cumulative number of mistakes
for “S∗ 0” during the whole trace period, considering
β=400ms and threshold value equals either to 80 or 83.

We can observe in the figure that the cumulative
number of mistakes is greater when the threshold value
is equal to 83 (2754 mistakes) when compared to the
threshold value equals to 80 (179 mistakes). The former
makes few mistakes until approximately the hour 48
(when the site 2 crashed). After that, the number of
cumulative mistakes significantly increases because, since
the threshold is high (83) and the failure of site 2 was
detected, false suspicions of any other site induce a
trust_level value smaller than 83 in most cases. For
instance, site 8 is highly unstable and has impact factor
value of 7. Whenever there is a false suspicion about
it, after the crash of site 2, the trust_level value is 80.
On the other hand, for the threshold 80, there are fewer
instability periods since the crash of site 2 does not have
much impact on the confidence of the system. At hour 48,
there is an increase in the cumulative number of mistakes
due to the unstable period of site 9, as shown in Figure
2. From hour 50 to 100, the FD makes fewer mistakes.

FIGURE 9. AS System: λR vs. TD with different thresholds.

Such a behavior can be explained since, as observed in the
same figure, all sites, with exception of site 8, also have this
same period of stability. After hour 108, there is a greater
number of mistakes which is related to the instability of
sites 1, 7, and 8 (see Figure 2).

FIGURE 10. AS System: Cumulative number of mistakes for “S∗
0” configuration.

7.3.5. Experiment 5 - Query Accuracy Probability vs. Time
In this experiment, we divided the execution trace
duration by fixed intervals of time and computed the
average Query Accuracy Probability (PA) for each of them.
We chose the “S∗ 0” configuration, β=400ms, and the
threshold values of 80 and 83. Similarly to the cumulative
number of mistakes (Experiment 4), we observe in Figure
11 that instability periods have an impact in the PA .
For instance, for the threshold = 80, from hour 108,
the cumulative number of mistakes increases very fast.
Consequently, the PA decreases. The period of instability
of site 9 is the responsible for the important reduction of
the PA at hour 60 (i.e., from hour 48 to 60) when threshold
= 83. A new degradation of the PA happens at hour 120
(i.e., from hour 108 to 120), due to unstable periods of the
sites 1, 7, and 8.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

16 A.G.M. ROSSETTO

FIGURE 11. AS System: P A vs. Time.

7.4. Weak ♦−t i mel y System (W-ET)

In this section, we consider the W-ET system described
in Section 7.1.1: site 0, the monitor site, is connected
by ♦−t i mel y links to sites 2, 3, 4 and 6 and by lossy
asynchronous links to 1, 5, 7, 8, and 9.

We defined the set S∗ with three subsets and all sites
have the same impact factor (1) :

S∗ = {{
〈

q1,1
〉

,
〈

q3,1
〉

,
〈

q4,1
〉

}, {
〈

q2,1
〉

,
〈

q5,1
〉

,
〈

q6,1
〉

},
{
〈

q7,1
〉

,
〈

q8,1
〉

,
〈

q9,1
〉

}}

The thr eshol d S was defined as follows:

thr eshol d S = {2,2,2}

The thr eshol d S defines that the subsets S1, S2 and
S3 must have at least two correct processes. As this
experiment assigns W-ET to model parameter, it uses
the η value and the heartbeat arrival estimation value is
incremented by η at every µ heartbeat arrivals, if false
suspicions occurred during this period.

The experiments were carried out just for the first 24
hours of the traces, because after this time the failure
detector does not make more mistakes for the set S∗.

7.4.1. Experiment 6 - Eventually Timely Links vs Asyn-
chronous Links

In this experiment, we compare the results obtained
taking into account the above S∗ configuration and both
systems W-ET and AS. The evaluation metrics are shown
in Table 6. We set the value of safety margin β to 50ms and
η to 500µs. This safety margin value is quite aggressive,
which, consequently, leads the failure detector prone to
make mistakes. For the W-ET system, we also varied µ:
1, 10, and 100.

The first three rows of the table show the results for
the W-ET system and the last row for the AS system.
We can observe that the number of mistakes increases
for different values of µ in the W-ET, but it is much
smaller when compared to the AS (4689 mistakes). As
a consequence, in the AS, the mi st ake r ate is higher
and P A is lower. In contrast, the average mistake
duration in the AS (27.70 ms) is smaller than in the W-
ET (around 43 ms). Such a difference occurs because

the AS system has a lower timeout which induces false
suspicions more often. Nevertheless, a heartbeat message
may arrive immediately after the expiration of the timeout,
generating a short mistake time. On the other hand, in
the W-ET, the timeout value increases when there are
false suspicions in periods of greater instability where
messages take longer to arrive. For the W-ET system, we
can observe that the time of the last mistake was at 64
minutes (heartbeat number 349,341) whereas in the AS
system mistake occurrences are observable until the last
hour (24h, heartbeat number 7749909). This happens
because in the W-ET the heartbeat arrival estimation
value is incremented by η when p falsely suspects the
process within a period of µ heartbeats, which allows
p to eventually get every heartbeat message from a site
before the timeout expires. It is worth remarking that the
number of mistakes reduces drastically, but the TD does
not increase at the same rate.

Table 7 summarizes the results of the experiments
considering β = 100ms and η = 500µs. When comparing
the two tables, we observe that with a less aggressive safety
margin β, the number of mistakes reduces, especially
in the AS system (231). Accordingly, the mi st ake r ate
decreases and P A increases in both systems. The last
mistake is around 64 minutes in the W-ET while AS made
mistakes until hour 24. The TD of the AS reduces because it
has a higher safety margin and makes fewer mistakes. For
instance, with β= 50ms, two processes, whose maximum
TD is 300ms, that has the timeout expired, leads the set S∗
to a state untrusted. However, with β = 100 only one of
them is suspected which does not lead a transition of state
from trusted to untrusted.

We also conducted the same experiment with β =
100ms and η= 1ms for the W-ET system (Table 8). We can
note that the number of mistakes is reduced. On the other
hand, with few mistakes, especially with µ = 1ms, both
the average mistake duration and TD increase. Based on
these results, we can conclude that setting µ with a value
greater than 1 is more suitable for this scenario, achieving,
therefore, a better trade-off between detection time and
accuracy of the Impact FD.

8. RELATED WORK

We can divide related work into two groups: (1) unreli-
able failure detectors, and (2) heartbeat arrival estimation
strategies.

Unreliable failure detectors: Most of the unreliable failure
detectors in the literature are based on a binary model and
provide as output a set of process identifiers, which usually
informs the set of processes currently suspected of having
failed ([3] [4]). However, in some detectors, such as class Σ
(resp.,Ω) [23], the output is the set of processes (resp., one
process) which are (resp., is) not suspected of being faulty,
i.e., tr usted .

The Accrual failure detector [24] proposes an approach
where the output is a suspicion level on a continuous

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 17

TABLE 6. W-ET vs AS - β= 50ms,η= 500µs.

µ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number TD (ms)

1 152 0.0017 0.99992 43.36 64 (1h) 349341 234.0
10 324 0.0037 0.99983 43.69 64 (1h) 349341 182.0
100 383 0.0044 0.99979 45.18 64 (1h) 349341 173.0

AS 4689 0.0542 0.99849 27.70 1438 (24h) 7749909 151.0

TABLE 7. W-ET vs AS - β= 100ms,η= 500µs.

µ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number TD (ms)

1 84 0.00097 0.99995 48.35 64 (1h) 349341 273.8
10 121 0.00140 0.99993 48.28 64 (1h) 349341 224.0
100 135 0.00156 0.99993 44.53 64 (1h) 349341 219.6

AS 231 0.00267 0.99989 37,56 1431 (24h) 7708057 208.0

scale, rather than providing information of a binary nature
(trusted or suspected). The suspicion level captures
the degree of confidence with which a given process is
believed to have crashed. If the process actually crashes,
the value is guaranteed to accrue over time and tends
toward infinity. Like the Accrual FD, Impact FD provides
a non-binary output, however, the latter is related to the
system as a whole and not to each process individually. On
the other hand, some important features advocated by the
authors in [28] for Accrual FD, can also be extended to our
proposal. The authors argue that the aim of Accrual failure
detectors is to decouple monitoring from interpretation.
Hence, the accrual failure detectors provide a lower level
abstraction that avoids having to interpret monitoring
information. For instance, by setting an appropriate
threshold, applications can trigger suspicions and take
appropriate action, similarly to the Impact FD.

Starting from the premise that applications should have
information about failures to take specific and suitable
recovery actions, the work in [29] proposes a service to
report faults to applications. The latter also encapsulates
uncertainty which allows applications to proceed safely
in the presence of doubt. The service provides status
reports related to fault detection with an abstraction that
describes the degree of uncertainty.

Considering that each node has a probability of
being byzantine, a voting node redundancy approach
is presented in [30] in order to improve reliability of
distributed systems. Based on such probability values,
the authors estimate the minimum number of machines
that the system should have in order to provide a degree
of reliability which is equal to or greater than a threshold
value.

In [31], the authors propose the use of a reputation
mechanism to implement a failure detector for large and
dynamic networks. The reputation mechanism allows
node cooperation through the sharing of views about
other nodes. The proposed approach exploits informa-
tion about the behavior of nodes to increase its quality
in terms of detection. When classifying the behavior of
the nodes, the FD includes a reputation service where the
nodes periodically exchange heartbeat messages.

Heartbeat arrival estimation strategies: In the timer-
based FD algorithms presented in section 6, we used the
heartbeat arrival estimation proposed by [8]. With the
same aim of Chen’s algorithm, i.e., minimize false suspi-
cions and failure detection time, several other estimation
approaches have been proposed in the literature. They
dynamically predict new heartbeat arrivals based on ob-
served communication delays of the past heartbeat his-
tory.

In [4], Bertier, Marin and Sens introduced a failure
detector that was mainly intended for LAN environments.
Their heartbeat arrival estimation approach combines of
Chen’s estimation with a dynamic estimation based on
Jacobson’s estimation [32]. The latter is used in the
protocol TCP to estimate the delay after which a node
retransmits its last message. Basically, the estimation
of the next heartbeat arrival is calculated by adding
Chen’s estimation to a safety margin given by Jacobson’s
algorithm. Their approach provides a shorter detection
time, but generates more false suspicions than Chen’s
estimation, according to the authors’ measurements on a
LAN.

The φ Accrual failure detector is based [24] on inter-
arrival estimation time, assuming that the latter follow a
normal distribution. The Accrual FD dynamically adapts
current network conditions based on the suspicion level.
Similarly to the above FD [4] and [8], the estimation
protocol samples the arrival time of heartbeats and
maintains a sliding window of the most recent samples.
The distribution of past samples is then used as an
approximation for the probabilistic distribution of future
heartbeat messages. With this information, it is possible to
compute a value ϕ with a scale that changes dynamically
to match recent network conditions.

In [27], the authors extended the Accrual FD by
exploiting the histogram density estimation. Taking into
account a sampled inter-arrival time and the time of
the last received heartbeat, the algorithm estimates the
probability that no further heartbeat messages will arrive
from a given process, i.e., it has failed.

The ANNFD presented in [33] is a failure detector based

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

18 A.G.M. ROSSETTO

TABLE 8. W-ET vs AS - β= 100ms,η= 1ms.

µ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number TD (ms)

1 6 0.000069 0.999990 140.00 64 (1h) 349339 689.5
10 45 0.000520 0.999972 53.07 64 (1h) 349341 383.9
100 98 0.001133 0.999945 47.99 64 (1h) 349341 243.9

AS 231 0.002672 0.999899 37.56 1431 (24h) 7708057 226.8

on artificial neural networks. It uses as input parameters
variables collected by the Simple Network Management
Protocol (SMNP) that characterize the network traffic at
each time instant. After training the neural network, it
must compute the message arrival time estimation E Ak+1,
which is used to define the freshness point.

By observing the changes in the computing environ-
ment and exploiting both the feedback control theory and
user-defined QoS constraints, the autonomic failure de-
tector (AFD) proposed in [34] dynamically configures the
monitoring period and detection timeout value. A new
metric, denoted failure detector availability (AV), is also
defined. It suggests a safety margin (α) in such a way to de-
crease failure detector mistakes and to achieve the desired
detection availability. If the detection service is inaccurate
(i.e., AV is low), then the safety margin is increased to im-
prove detection accuracy; otherwise, if AV is high, then α

is decreased to improve the detection speed.

Related work concerning FD’s implementations
presents different approaches to estimate the timeout.
The QoS of failure detectors depends on the choice of
heartbeat arrival estimation strategy: a short timeout
leads a FD to detect failures quickly, but may increase the
number of false suspicions decreasing, consequently, its
accuracy. We propose a new unreliable failure detector
and its focus is not in heartbeat arrival estimation strate-
gies. However, implementations of Impact FD may use
different approaches to estimate the timeout. In the case
of the timer-based Impact FD implementation of Section
6 (Algorithm 2), we use the heartbeat arrival estimation
proposed by [8]. The reason for Chen’s algorithm choice is
that it is a comparison reference for all FD performance
studies. We should emphasize that to use another one, it
is just necessary to change the code of the function Time-
out () (Algorithm 1) called by Algorithm 2. For the Chen’s
estimation algorithm, we consider the safety margin sug-
gested by the authors, adding a dynamic increment for
eventual timely links. Note that although the estimation
solutions proposed by Chen’s and Accrual FDs [24] [27]
have similar performance (mistake rate X detection time)
over a wide-area network (environment of our experi-
ments), the Accrual FD estimation requires tuning of the
threshold parameter for each process and depends on ap-
plication characteristics. It is important also to point out
that Bertier, AFD, and ANNFD estimations were designed
to local area networks where messages are rarely lost while
the 2W-FD [25] has been tailored for unstable network
scenarios such as latency jitter or switch contention.

9. CONCLUSION AND FUTURE WORK

This paper introduced the Impact failure detector that
provides an output that expresses the trust of the FD with
regard to the system (or set of processes) as a whole.

It is configured by the impact factor and the threshold
which enable the user to define the importance (e.g.,
degree of reliability) of each node and an acceptable
margin of failures respectively. It is thus suitable for
environments where there is node redundancy or nodes
with different capabilities. Both the impact factor and the
threshold render the estimation of the confidence in the
system (or a set of processes S) more flexible. In some
scenarios, the failure of low impact or redundant nodes
does not jeopardize the confidence in S, while the crash
of a high impact factor one may seriously affect it. Either a
softer or a stricter monitoring is, therefore, possible.

We have defined two properties, PR(I T)S
p and

PR(♦I T)S
p , which denote the capacity of the Impact

FD of accepting different set of trusted processes that lead
to the confidence in S. Then, we presented a timer-based
implementation of the Impact FD, which can be applied
to systems whose links are lossy asynchronous or those
whose all (or some) are ♦−t i mel y . Performance eval-
uation results, based on real PlanetLab traces, showed
that the assignment of a high (resp. low) impact factor to
more stable (resp. unstable) nodes increases the Query
Accuracy Probability of the failure detector. Furthermore,
we observed that the Impact FD might weaken the rate
of false suspicions when compared with the traditional
Chen’s unreliable failure detector. Additionally, in the ex-
periments carried out considering a W-ET system, it was
observed that the number of mistakes reduces drastically
when compared with the AS system, however the detec-
tion time does not increase in the same rate. Therefore,
such results confirm the degree of flexible applicability of
the Impact FD, that both failures and false suspicions are
more tolerated than in traditional FDs, and that the for-
mer presents better QoS than the latter if the application
is interested in the degree of confidence in the system
(trust level) as a whole.

In the near future, we intend to generalize the trust level
calculation as well as its comparison with the threshold.
To this end, the Tr ust_l evel (tr usted ,S∗) function can
perform an operation over the impact factor of the
trusted processes other than the sum (e.g., multiplication,
average, etc.) and the threshold will not necessary
be a lower bound (e.g., upper bound, equality, etc.).
For instance, suppose that the impact factor of a node
corresponds to the probability that it behaves maliciously.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

IMPACT FD: AN UNRELIABLE FAILURE DETECTOR BASED ON PROCESS RELEVANCE AND CONFIDENCE IN THE SYSTEM 19

The trust level, in this case, would express the probability
that all nodes of the system behave maliciously. Thus,
the tr ust_l evel sum operation would be replaced by
multiplication operation and should be smaller than a
reliability threshold value.

Another research direction is to render the impact factor
dynamic, i.e., the impact factor of a node can vary during
execution, depending on the current degree of reliability
of the node or its current reputation, its past history
of stable/unstable periods, etc. Finally, we also aim at
extending performance experiments to other networks
such as MANET or LAN, comparing the performance of
Impact FD with other well-known failure detectors.

10. ACKNOWLEDGMENT

This work was partially supported by grant 012909/2013-
00 from the Brazilian Research Agency (CNPq).

REFERENCES

[1] PlanetLab (2014). Planetlab. http://www.planet-lab.org.
"Online. Access date: September 16, 2016".

[2] Fischer, M., Lynch, N., and Paterson, M. (1985) Impossibility
of distributed consensus with one faulty process. Journal of
the ACM (JACM), 32, 374–382.

[3] Chandra, T. D. and Toueg, S. (1996) Unreliable failure
detectors for reliable distributed systems. Journal of the
ACM (JACM), 43, 225–267.

[4] Bertier, M., Marin, O., and Sens, P. (2003) Performance
analysis of a hierarchical failure detector. 2003 International
Conference on Dependable Systems and Networks (DSN), San
Francisco, CA, USA, 22-25 June, pp. 635–644. IEEE Computer
Society.

[5] Rossetto, A., Geyer, C., Arantes, L., and Sens, P. (2015) A
failure detector that gives information on the degree of
confidence in the system. Symposium on Computers and
Communication, Larnaca, Cyprus, 6-9 July, pp. 532–537.
IEEE Computer Society.

[6] Aguilera, M., Delporte-Gallet, C., Fauconnier, H., and
Toueg, S. (2004) Communication-efficient leader election
and consensus with limited link synchrony. Proceedings
of the Twenty-Third Annual ACM Symposium on Principles
of Distributed Computing, PODC, St. John’s, Newfoundland,
Canada, 25-28 July, pp. 328–337. ACM.

[7] Junqueira, J., Marzullo, K., Herlihy, M., and Penso, L. (2010)
Threshold protocols in survivor set systems. Distributed
Computing, 23, 135–149.

[8] Chen, W., Toueg, S., and Aguilera, M. (2002) On the quality
of service of failure detectors. IEEE Transactions on
Computers, 51, 561–580.

[9] Ishibashi, K. and Yano, M. (2005) A proposal of forwarding
method for urgent messages on an ubiquitous wireless
sensor network. 6th Asia-Pacific Symposium on Information
and Telecommunication Technologies, Yangon, Myanmar, 9-
10 Nov, pp. 293–298. IEEE.

[10] Geeta, D., Nalini, N., and Biradar, R. (2013) Fault tolerance in
wireless sensor network using hand-off and dynamic power
adjustment approach. Journal of Network and Computer
Applications, 36, 1174–1185.

[11] Rehman, A., Abbasi, A., Islam, N., and Shaikh, Z. (2014)
A review of wireless sensors and networks’ applications in
agriculture. Computer Standards & Interfaces, 36, 263–270.

[12] Hayashibara, N., Défago, X., and Katayama, T. (2003) Two-
ways adaptive failure detection with the φ-failure detector.
Workshop on Adaptive Distributed Systems (WADiS03),
Sorrento, Italy, Oct, pp. 22–27. Citeseer.

[13] Bonnet, F. and Raynal, M. (2013) Anonymous asynchronous
systems: the case of failure detectors. Distributed
Computing, 26, 141–158.

[14] Arévalo, S., Fernández Anta, A., Imbs, D., Jiménez, E.,
and Raynal, M. (2012) Failure detectors in homonymous
distributed systems (with an application to consensus).
2012 IEEE 32nd International Conference on Distributed
Computing Systems, Macau, China, 18-21 June, pp. 275–284.
IEEE Computer Society.

[15] Larrea, M., Anta, A. F., and Arévalo, S. (2013) Implementing
the weakest failure detector for solving the consensus
problem. IJPEDS, 28, 537–555.

[16] Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and
Toueg, S. (2003) On implementing omega with weak

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

20 A.G.M. ROSSETTO

reliability and synchrony assumptions. Proceedings of the
Twenty-Second ACM Symposium on Principles of Distributed
Computing PODC, Boston, Massachusetts, USA, July 13-16,
pp. 306–314. ACM.

[17] Mostéfaoui, A., Mourgaya, E., and Raynal, M. (2003) Asyn-
chronous implementation of failure detectors. Interna-
tional Conference on Dependable Systems and Networks
(DSN), San Francisco, CA, USA, 22-25 June, pp. 351–360.
IEEE Computer Society.

[18] Arantes, L., Greve, F., Sens, P., and Simon, V. (2013)
Eventual leader election in evolving mobile networks. 17th
International Conference Principles of Distributed Systems,
OPODIS, Nice, France, 16-18 December, pp. 23–37. Springer.

[19] Gómez-Calzado, C., Lafuente, A., Larrea, M., and Raynal,
M. (2013) Fault-tolerant leader election in mobile dynamic
distributed systems. IEEE 19th Pacific Rim International
Symposium on Dependable Computing, PRDC, Vancouver,
BC, Canada, 2-4 December, pp. 78–87. IEEE Computer
Society.

[20] Larrea, M., Fernández, A., and Arévalo, S. (2004) On the
implementation of unreliable failure detectors in partially
synchronous systems. IEEE Transactions on Computers, 53,
815–828.

[21] Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., and
Kouznetsov, P. (2005) Mutual exclusion in asynchronous
systems with failure detectors. J. Parallel Distrib. Comput.,
65, 492–505.

[22] Bonnet, F. and Raynal, M. (2011) On the road to the weakest
failure detector for k-set agreement in message-passing
systems. Theor. Comput. Sci., 412, 4273–4284.

[23] Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzi-
lacos, V., Kouznetsov, P., and Toueg, S. (2004) The weakest
failure detectors to solve certain fundamental problems in
distributed computing. Proceedings of the Twenty-Third An-
nual ACM Symposium on Principles of Distributed Comput-
ing, PODC, St. John’s, Newfoundland, Canada, 25-28 July, pp.
338–346. ACM.

[24] Hayashibara, N., Defago, X., Yared, R., and Katayama, T.
(2004) The ϕ accrual failure detector. 23rd International
Symposium on Reliable Distributed Systems SRDS, Floria-
nopolis, Brazil, 18-20 October, pp. 66–78. IEEE Computer
Society.

[25] Tomsic, A., Sens, P., Garcia, J., Arantes, L., and Sopena, J.
(2015) 2w-fd: A failure detector algorithm with qos. IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), Hyderabad, India, 25-29 May, pp. 885–893. IEEE.

[26] Xiong, N., Vasilakos, A. V., Wu, J., Yang, Y. R., Rindos,
A., Zhou, Y., Song, W.-Z., and Pan, Y. (2012) A self-tuning
failure detection scheme for cloud computing service. 26th
International Parallel & Distributed Processing Symposium
(IPDPS), Shanghai, China, 21-25 May, pp. 668–679. IEEE.

[27] Satzger, B., Pietzowski, A., Trumler, W., and Ungerer,
T. (2007) A new adaptive accrual failure detector for
dependable distributed systems. ACM Symposium on
Applied Computing (SAC), Seoul, Korea, 11-15 March, pp.
551–555. ACM.

[28] Défago, X., Urbán, P., Hayashibara, N., and Katayama,
T. (2005) Definition and specification of accrual failure
detectors. International Conference on Dependable Systems
and Networks (DSN), Yokohama, Japan, 28 June - 1 July, pp.
206–215. IEEE Computer Society.

[29] Leners, J. B., Gupta, T., Aguilera, M. K., and Walfish, M.
(2013) Improving availability in distributed systems with
failure informers. 10th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, Lombard, IL,
USA, 2-5 April, pp. 427–441. USENIX Association.

[30] Brun, Y., Edwards, G., Bang, J. Y., and Medvidovic, N.
(2011) Smart redundancy for distributed computation.
International Conference on Distributed Computing Systems,
ICDCS, Minneapolis, Minnesota, USA, 20-24 June, pp. 665–
676. IEEE Computer Society.

[31] Véron, M., Marin, O., Monnet, S., and Sens, P. (2015)
Repfd-using reputation systems to detect failures in large
dynamic networks. 44th International Conference on
Parallel Processing, ICPP, Beijing, China, 1-4 September, pp.
91–100. IEEE Computer Society.

[32] Jacobson, V. (1988) Congestion avoidance and control.
Symposium Proceedings on Communications Architectures
and Protocols, SIGCOMM, Stanford, California, USA, 16-18
August, pp. 314–329. ACM.

[33] Macêdo, R. A. and Lima, F. R. L. (2004) Improving the quality
of service of failure detectors with snmp and artificial neural
networks. Simpósio Brasileiro de Redes de Computadores,
SBRC, Gramado - RS, Brazil, 10-14 May, pp. 583–586. SBC.

[34] de Sá, A. S. and Macêdo, R. J. A. (2010) Qos self-configuring
failure detectors for distributed systems. IFIP International
Conference on Distributed Applications and Interoperable
Systems, Amsterdam, The Netherlands, 7-9 June, pp. 126–
140. Springer Berlin Heidelberg.

[35] Delporte-Gallet, C., Fauconnier, H., and Guerraoui, R.
(2003) Shared memory vs message passing. Technical
report. EPFL Lausanne, 200377.

[36] Chandra, T. D., Hadzilacos, V., and Toueg, S. (1996) The
weakest failure detector for solving consensus. Journal of
the ACM (JACM), 43, 685–722.

[37] Chu, F. (1998) Reducing ω to ♦W . Information Processing
Letters, 67, 289–293.

[38] Mostéfaoui, A., Rajsbaum, S., Raynal, M., and Travers, C.
(2007) From W to omega: A simple bounded quiescent
reliable broadcast-based transformation. J. Parallel Distrib.
Comput., 67, 125–129.

[39] Jiménez, E., Arévalo, S., and Fernández, A. (2006) Imple-
menting unreliable failure detectors with unknown mem-
bership. Inf. Process. Lett., 100, 60–63.

[40] Bonnet, F. and Raynal, M. (2011) The price of anonymity:
Optimal consensus despite asynchrony, crash, and
anonymity. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 6, 23:1–23:28.

[41] Xiong, N., Vasilakos, A. V., Yang, L. T., Song, L., Pan, Y.,
Kannan, R., and Li, Y. (2009) Comparative analysis of quality
of service and memory usage for adaptive failure detectors
in healthcare systems. IEEE Journal on Selected Areas in
Communications, 27.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

