
Distributed Mutual Exclusion Algorithms for Grid Applications:

a Hierarchical Approach

Marin Bertier, Luciana Arantes and Pierre Sens.

LIP6 - Université de Paris 6 - INRIA Rocquencourt

4, Place Jussieu 75252 Paris Cedex 05, France.

Phone: (33).1.44.27.34.23 - Fax : (33).1.44.27.74.95

email: [marin.bertier,luciana.arantes,pierre.sens]@lip6.fr

Abstract

The majority of current distributed mutual exclusion algorithms are not suited for parallel or

distributed applications on a Grid as they do not consider the heterogeneity of latency on Grids. We

propose two distributed mutual exclusion algorithms, based on Naimi-Trehel’s token-based algorithm,

which take into account latency gaps, especially those between local and remote clusters of machines.

Our first algorithm exploits cluster locality by giving higher priority to critical section requests issued

from nodes of the same cluster when compared to those from remote nodes. Our second algorithm adds

a router layer to the first algorithm, bringing it closer to Grid network topology. Viewing each cluster

as a single node, the Naimi-Trehel algorithm is applied to this router layer. Redirection of inter-cluster

messages to cluster’s nodes is then minimized.

Keywords: distributed mutual exclusion algorithms, token-based algorithm, Grid, latency hetero-

geneity, cluster locality.

1 Introduction

Distributed and parallel applications benefit from Grid infrastructure, which enables the sharing of a wide

variety of geographically distributed resources acting as a single powerful computer. However, many of

these applications may require that their processes obtain exclusive access to one or more of these shared

resources. Therefore, the principle of mutual exclusion is important in Grid computing.

Several distributed algorithms have been proposed to solve the problem of mutual exclusion in dis-

tributed systems, serializing concurrent accesses to a shared resource. They can basically be divided into

two groups: permission-based (e.g. Lamport [6], Ricart-Agrawala [12], Singhal [14], Maekawa [7]) and

token-based (Suzuki-Kazami [15], Raymond [11], Naimi-Trehel [9], Neilsen-Mizuno [10], Chang, Singhal

and Liu [4]). The first group of algorithms are based on the principle that a node gets into critical section

only after having received permission from all other nodes (or the majority of them [7]). In the second

group of algorithms, a system-wide unique token is shared among all nodes, and the possession of it gives a

node the exclusive right to enter into critical section. The latter usually have an average lower message cost

and many of them result in logarithmic message complexity O(log N) with regard to the number of nodes.

The majority of O(log N) token-based algorithms are tree-based i.e., a logical tree structure expresses the

different paths of token requests and its propagation at a given time.

Since in a Grid environment the number of nodes can be very large, scalability of a distributed mutual

exclusion algorithm is an important feature. Considering that tree-based token mutual exclusion algorithms

scale quite well, they would seem to be adequate for Grid applications. However, these algorithms do not

take into account the communication latency heterogeneity of a Grid environment. For instance, latency

between machines in different clusters can be much higher than the latency between nodes within a single

cluster. Consequently, the performance of mutual exclusion algorithms can be critical for Grid applications.

We propose in this article two distributed token-based mutual exclusion algorithms which take into

account the hierarchical network topology of Grids. Our work particularly considers the communication

latency gap between local and remote clusters of machines. Our algorithms reduce the number of inter-

cluster messages, giving higher priority to local mutual exclusion requests. Both of them are based on

Naimi-Trehel’s O(log N) token-based algorithm [9]. This algorithm maintains a dynamic logical tree, such

that the root of the tree is always the last site that will get the token among the current requesting ones.

Our choice of Naimi-Trehel’s algorithm can be justified by its dynamic property, which is strongly exploited

in our solution for tolerating higher latency.

The first algorithm adapts Naimi-Trehel’s algorithm by prioritizing critical section (CS) requests issued

from nodes of the same cluster over those from remote nodes. The second algorithm considers that messages

exchanged by nodes of different clusters always pass along routers (proxys). A proxy layer is added to the

first algorithm, bringing it closer to Grid network topology. Naimi-Trehel’s algorithm is then applied to

this proxy layer. Using this two-layer Naimi-Trehel approach, some inter-cluster messages can be managed

at the proxies’ level, without being necessary to be redirected to the other nodes inside clusters.

In the rest of this paper, we consider a general distributed model where no common shared memory is

available. Nodes have local memory, communicating by message passing. There is one process per node

and only a single shared resource. We also assume a fully connected network where message delivery is

guaranteed and message transfer delays are finite. Our Grid infrastructure is composed of nodes grouped

into clusters. We distinguish local nodes belonging to the same cluster from remote nodes belonging to

remote clusters. The words node and site are interchangeable as well as router and proxy.

The organization of this paper is as follows. Section 2 presents Naimi-Trehel’s algorithm. Our hi-

erarchical versions of Naimi-Trehel’s algorithm limiting the propagation of requests between clusters are

described in section 3. Some related work is given in section 4. Comparative performance evaluation of

the algorithms are discussed in section 5, while the last section concludes our work.

2 Naimi-Trehel algorithm

Naimi-Trehel’s algorithm [9] is a token-based algorithm, where nodes are logically arranged, by their

requests, as a rooted tree. In other words, it maintains a logical dynamic tree structure such that the

root of the tree is always the last node that will get the token among current requesting nodes. A second

structure of the algorithm is a distributed queue which keeps nodes’ Critical Section (CS) pending requests.

Naimi-Trehel’s algorithm is described in Algorithm 1.

Each site Si has the following local variables:

• self : keeps the identification Si of the node

• owner: stores the probable owner of the token.

• next : indicates the node that will receive the token when the critical section is released by Si.

• token: boolean variable, whose value is true if the node owns the token, and false otherwise.

• requesting: boolean variable, whose value is true if the node has requested the token, and false

otherwise.

The constant Elected node identifies the node of the system that initially holds the token.

Messages are sent through the function Send(Type,...) where Type specifies the type of message. The

other parameters of the function vary based on the type of message. Two types of messages have been

defined:

• Request : sent by a node which does not have the token, but wants to enter into the critical sec-

tion. The identification Sj of the requesting node is included in the message. The function Re-

ceive Request CS(Sj) is called upon reception of this type of message from Sj .

• Token : represents the transmission of the token. The function Receive Token(Sj) is called upon

reception of this type of message from Sj .

Algorithm 1 Naimi-Trehel

Every node Si:

Initialization:

resquesting← false

next← ∅

if self = Elected node then

token← true

owner← ∅

else

token← false

owner← Elected node

Request CS:

requesting← true

if owner 6= ∅ then

{ The site hasn’t the token, it should request it }

Send 〈Resquest, Si〉 to owner

owner← ∅

Wait for receiving message 〈Token〉

Release CS:

requesting← false

if next 6= ∅ then

Send 〈Token〉 to next

token← false

next← ∅

Receive Request CS(Sj) :

{ Sj is the requesting node }

if owner = ∅ then

{ root node }

if resquesting = true then

{ The node asked for the Critical Section }

next← Sj

else

{ First request to the token since the last CS:

send the token directly to the requesting node }

token← false

Send 〈Token〉 to Sj

else

{ Non-root node, forward the request }

Send 〈Request, Sj〉 to owner

owner← Sj

Receive Token(Sj):

{ Receive the token from node Sj }

token← true

Initially, the root is the token holder. When requests are issued, they are guided through a chain of

owners to the current root. Each node on the propagation path sets its probable owner to the requester,

i.e. the tree is modified dynamically. At the end of the critical section, the token follows the next links.

An example of Naimi-Trehel algorithm execution with 4 nodes is shown in Figure 1. Solid lines represent

owner links, while dashed ones represent next links. The shaded node holds the token. Initially (a), node

A is the Elected Node which holds the token. The owner of all nodes points to A. In (b), node B asks for

the token by sending a request to its owner (ownerB = A). B becomes the new root (ownerB = ∅). Then,

A updates its next and owner to point to B. In (c), C asks A for the token. The request is forwarded to

B which updates its next to C (nextB = C). Both A and B update their owner to C, since the latter is

the last requester of the token (C becomes the new root of the tree). When A releases the critical section,

the token will be sent to B since nextA = B.

AC

B

D

(c)

AC

B

D

(a)

AC

B

D

(b)

Figure 1: Example of Naimi-Trehel’s algorithm execution

3 Hierarchical algorithms

Since inter-cluster latency is higher than intra-cluster latency, the adaptation of Naimi Trehel algorithm

to a cluster-based Grid platform focuses on limiting the propagation of requests between nodes of different

clusters. We first propose a one-level clustered algorithm which exploits cluster locality by giving higher

priority to intra-cluster requests as compared to remote ones. We have also modified the initializing phase

of the original Naimi Trehel algorithm in order to gather more information about CS requests issued from

nodes of the same cluster. We propose a two-level clustered algorithm, assuming that all messages between

nodes of different clusters are sent through routers (proxies). This approach is closer to the topology of

Grid platforms and has the advantage of allowing for some of the messages to be managed at the routers’

level without being forwarded to the other nodes of the clusters.

3.1 One-level clustered algorithm

Whenever possible, intra-cluster CS requests are satisfied before remote ones. To avoid starvation, a

threshold value limits the maximum number of CS that can be successively executed by nodes of the same

cluster. The algorithm then keeps track of the number of current successive CS executions within a single

cluster. This value, called the number of preemption, is passed in messages. Thus, whenever the number of

successive local requests is below that threshold, the distributed queue of CS requests pointed to by next

links is modified for serving local requests before remote ones.

Note: The last node which will enter the critical section within a cluster is named Local root. It is

identified by the fact that its owner variable is equal to ∅.

Algorithm 2 Hierarchical Algorithm - Initialization, Request and Release functions

Every node Si:

Initialization:

requesting← false

next← ∅

remote owner← ∅

if Elected node ∈ LocalClusteri then

if Elected node = self then

token← true

owner← ∅

else

token← false

owner← Elected node

else

token← false

if self = Proxyi then

owner← Elected node

else

owner← Proxyi

Request CS:

nb preempt← 0

requesting← true

if owner 6= ∅ then

{ The node hasn’t the token, it requests it }

Send 〈Request, Si〉 to owner

owner← ∅

Wait for receiving message 〈Token〉

Release CS:

requesting← false

if next 6= ∅ then

if next /∈ LocalCluster then

{ The token will be sent to a remote node }

nb preempt← 0

if owner = ∅ then

owner← remote owner

remote owner← ∅

Send 〈Token, nb preempt〉 to next

token← false

next← ∅

We consider the same local variables described in section 2 for Naimi-Trehel algorithm, adding the

following new ones:

• LocalClusteri: identifies the cluster to which node Si belongs. All nodes are aware of it.

• remote owner: the Local root node updates this variable whenever it receives a first CS request from

a remote node. Its owner variable will only be updated with the remote owner’s value when the

token is sent to a remote node or the number of preemption is greater than the threshold value.

Algorithm 3 Hierarchical Algorithm (cont.) - Receive function

Every nodeSi:

Receive Request CS(Sj):

{ Sj is the requesting process }

if owner = ∅ then

{ Si is the local root }

if resquesting = true then

{ The node asked for CS }

if next = ∅ then

next← Sj

if Sj ∈ LocalClusteri then

owner← Sj

else

remote owner← Sj

else

if Sj ∈ LocalCluster

and nb preempt < Threshold then

{ Local preemption of the token by the sender }

nb preempt← nb preempt + 1

owner← Sj

Send 〈Preempt, nb preempt,next〉 to Sj

next← Sj

else

Send 〈Request, Sj〉 to next

owner← Sj

else

token← false

Send 〈Token, nb preempt〉 to Sj

owner← Sj

else

Send 〈Request, Sj〉 to owner

if Sj ∈ LocalClusteri then

owner← Sj

Receive Token(Sj):

{ Receive the token from node Sj }

token← true

Receive Preempt(nb preemptj , remote node):

nb preempt← nb preempt + nb preemptj

if next = ∅ then

{ Si is the local root }

next← remote node

remote owner← remote node

else

Send 〈Preempt, nb preempt, remote node〉 to owner

• nb preempt : counter that keeps track of the number of successive local CS requests. It is increased

by 1 when site Si receives a request from a local node and it is updated upon receiving a Preempt

message (see below).

A third type of message, Preempt, has been defined. This message passes around the value of

nb preempt of the sender node as well as the identification of the node that should be preempted. The

function Receive Preempt is called upon reception of this message.

The type Token of message has also been modified for including the value of the local variable

nb preempt of the site which grants the token.

Algorithms 2 and 3 summarize our one-level clustered version of Naimi-Trehel algorithm.

3.1.1 Initialization Phase

The initialization phase of the algorithm maps the path of owners to the multi-cluster topology of the

network. Every cluster Ci, except the Elected Node’s cluster, designates a local node to which all the

other nodes in the cluster should point to. This node is called Proxyi. It is worth remarking that while

we named this node as Proxy, this first algorithm is not a proxy-based (router-based) one. We simply use

this terminology to simplify the description of both algorithms that we present in this article.

Initially, the owner variable of a Proxyi as well as the nodes that belong to Elected Node’s cluster

point to the Elected Node. However, the owner variable of the other nodes Si points to the Proxyi of

their respective cluster Ci.

Figure 2 shows an example of such initialization. Figure 2(a) presents two clusters, C0 and C1, where

nodes A, B, and C belong to cluster C0, and nodes D, E and F belong to C1. F is the Proxy1 of C1.

Since A has been elected to have the token, it is the Elected Node. A is in the critical section (CS). In

Figure 2(b), D, which does not belong to the same cluster as the token holder, asks for the token, sending

a request to F , which redirects the request to A. F then sets its owner to D. When the request arrives

at A, the latter updates its next and remote owner variables to D. E asks then for the token. Node F ,

the Proxy1, locally redirects the request to D which updates its next and owner variables to E. F also

updates its owner link to E. This scenario shows the advantage of our modification in the initialization

phase : E’s request was not forwarded to the remote cluster C0, as it would be in the case of the original

Naimi-Trehel’s algorithm.

E

D

C0

B

C

C1

FA

(b)D then E ask for CS

owner

next

remote_owner

token holder

C0

C

B

C1

A F E

D

(a) Initial configuration A holds the Token

Figure 2: Hierarchical execution scenarios

3.1.2 Body of the Algorithm

Similar to the original Naimi-Trehel algorithm, a request for entering a critical section follows the owner’s

path until it reaches its Local root (the last node of the cluster to have requested the CS).

When node Si receives a request from Sj , if the former is not a Local root node (owner 6= ∅), it

forwards the request to the node pointed to by its owner. If Sj and Si belong to the same cluster, Sj is

stored in Si’s owner variable. However, if Si is a Local root (owner = ∅) which is waiting for the token

(requesting = true), we distinguish two cases:

• Si’s next = ∅. This means that Sj ’s request is the first one since node Si asked for the token. In this

case, the next of Si is set to the requester Sj . Furthermore, if the request came from a node of the

same cluster, Si’s owner is set to Sj ; otherwise its remote owner variable is set to Sj .

• Si’s next is already set. Since the receiver is a Local root, next inevitably points to a remote node.

In this case, if the requester Sj is a node of Si’s cluster, and the number of preemptions is below the

pre-defined threshold, a local preemption is performed i.e., the request from Sj will be satisfied before

the remote one pointed by Si’s next. In this case, Si’s current number of preemption is incremented.

This preemption value and Si’s next value are sent to the requesting node Sj and Si’s next is updated

to Sj . Notice that Sj becomes the new Local root. Upon receiving the Prempt message, Sj updates

its next to the old next Si’s value.

3.2 Two-level clustered algorithm

We propose a second algorithm based on the first one. We add a layer of per cluster proxys (routers).

Naimi-Trehel’s algorithm is then applied to this layer too.

In each cluster Ci, a node, named Proxyi, is designated to have a second role, as a proxy responsible for

centralizing all requests issued from its cluster Ci. Thus, every message that is sent from node Sj to node

Si, belonging to different clusters, is routed to Sj ’s proxy node which forwards the message to Si’s proxy

node. The latter then sends the message to the receiving node Si. The sender’s and receiver’s proxies can

then gather information about token transfers and requests at cluster level, taking decisions based on such

information. We can say that each proxy acts as a single node at proxys’ layer.

The same local variables described in section 3.1 for the one-level clustered algorithm were kept. How-

ever, the remote owner variable is used only by those nodes that serve as proxies. Each Proxyi node of

Ci needs the new following variables:

• local owner: stores the probable token’s owner belonging to Ci of which Proxyi is aware.

• remote next: stored the ID of the node in a remote cluster that will receive the token when it is

released by the local cluster.

• L Queue: queue that gathers pending requests to remote nodes issued from the nodes of Ci. This

queue is necessary as a proxy node only sends one CS request to a remote node at a time. Proxyi

forwards a message from the queue each time the that the outstanding request is satisfied.

A new type of message, Stock, has been defined. Nodes send this type of message to their local Proxy

node whenever a local request must be sent to a node of a remote cluster. The identification Sj of the

requesting node is added to the message. Upon receiving this message, the Proxy node treats it by calling

the function Receive Stock(Sj).

The basic Send function has been modified. If the receiver node belongs to a remote cluster, the function

routes the message to the local proxy node of the sender’s cluster. If the sender is a proxy itself and the

receiver is a remote node, it forwards the message to the proxy of the remote receiver’s cluster. Its code is

as follows (Send called by node i) :

Send 〈Type, . . .〉 to dest:

if dest ∈ LocalCluster then

Send 〈Type, . . .〉 to dest

else

if self = Proxyi then

Send 〈Type, . . .〉 to Proxydest

else

Send 〈Type, . . .〉 to Proxyi

Algorithm 4 Two-level hierarchical algorithm - Initialization, Request and Release functions

Every node Si:

Initialization:

Does not change from one-level hierarchical algorithm

if self = Proxyi then

remote next← ∅

if Elected node ∈ LocalClusteri then

local owner← Elected node

remote owner← ∅

else

local owner← ∅

remote owner← ProxyOf(Elected node)

L Queue← ∅

Request CS:

Does not change from one-level hierarchical algorithm

Release CS:

requesting← false

if next 6= ∅ then

Send 〈Token, nb preempt〉 to next

if owner = ∅ then

owner← Proxyi

{ local root : next points to a remote node }

token← false

next← ∅

Based on the identification dest of the receiver node, Proxyi knows if it should act as a proxy node

or as a Naimi-Trehel one i.e., if it is not the dest node itself, Proxyi must route the message to the node

which is the proxy of dest’s cluster.

Function ProxyOf(Sj) returns the proxy node of Sj ’s cluster.

Algorithms 4, 5 and 6 summarize our two-level clustered version of Naimi-Trehel’s algorithm.

3.2.1 Initialization Phase

The initialization phase is similar to the previous algorithm except for proxy nodes. Their remote owner

variables point to the proxy of Elected node’s cluster (if Elected node belongs to a remote cluster). The

local owner variable of the proxy of Elected node’s cluster points to Elected node.

3.2.2 Body of the Algorithm

We distinguish two cases : the node is acting as a non-proxy node or it is acting as a proxy node.

Non-proxy node:

The function Request CS remains as described in 3.1.

Contrary to our previous algorithm, in the function Release CS, the Local root Si does not need to

update its owner variable with remote owner’s value when granting the token to a remote node. It just

sets its owner variable to Proxyi as it knows that the last future owner of the token is a remote node.

The core of Receive Request has been slightly modified. In our previous algorithm, if there is a remote

CS request waiting to be served, the Local root of Ci forwards a new local CS request to this remote node

whenever the number of preemption is greater than a threshold value. In the current two-level algorithm,

the Local root does not forward this message, but informs the local proxy of its cluster of this new local

request by sending a message of type Stock to it.

Proxy node:

When acting as a proxy, variables remote owner and remote next have the same role as the owner

and next variables respectively, but at the proxy level.

Algorithm 5 Two-level Hierarchical Algorithm (cont.) - Receive function

Every node Si:

Receive Request CS(Sj) :

{ Sj is the requesting process }

if owner = ∅ then

{ Si is the local root }

if resquesting = true then

{ The node asked for CS }

if next = ∅ then

next← Sj

if Sj ∈ LocalClusteri then

owner← Sj

else

if nb preempt < Threshold then

{ Local preemption of the token by the sender }

nb preempt← nb preempt + 1

owner← Sj

Send 〈Preempt, next, nb preempt〉 to owner

next← Sj

else

Send 〈Stock, Sj〉 to Proxyi

owner← Sj

else

token← false

Send 〈Token, nb preempt〉 to Sj

owner← Sj

else

Send 〈Request, Sj〉 to owner

if Sj ∈ LocalClusteri then

owner← Sj

Receive Token(nb preemptj):

Does not change

from one-level hierarchical algorithm

Receive Preempt(nbpreemptj , node):

Does not change

from one-level hierarchical algorithm

Algorithm 6 Two-level Hierarchical Algorithm (cont.) - Proxys’level functions

Every Proxyi:

Proxy Receive Request CS(Sj):

{ Sj is the requesting process }

if Sj ∈ LocalCluster then

if local owner = ∅ then

{ no current request from local cluster }

if L Queue = ∅ then

Send 〈Request, Sj〉 to remote owner

remote owner← ∅

L Queue← L Queue + Sj

else

Send 〈Request, Sj〉 to local owner

local owner← Sj

else

{ remote request }

if local owner = ∅ then

{ Token is not requested by the cluster }

Send 〈Request, Sj〉 to remote owner

remote owner← ProxyOf(Sj)

else

if remote next = ∅ then

remote next← ProxyOf(Sj)

remote owner← ProxyOf(Sj)

Send 〈Request, Sj〉 to local owner

{ redirect request to another cluster }

else

Send 〈Request, Sj〉 to remote owner

remote owner← ProxyOf(Sj)

Proxy Receive Stock(Sj):

L Queue← L Queue + Sj

local owner← Sj

Proxy Receive Token CS(Sj):

{ Receive the Token from node Sj }

if Sj ∈ LocalCluster then

Send 〈Token, Sj〉 to remote next

remote next← ∅

if L Queue 6= ∅ then

Send 〈Request,Head(L Queue)〉 to remote owner

else

local owner← ∅

remote owner← ∅

else

Send 〈Token, Sj〉 to Head(L Queue)

L Queue← L Queue−Head(L Queue)

A proxy node receives CS Request messages as well as Token messages from both local and remote

nodes. It also receives Stock messages from local nodes of its cluster. Functions Proxy Receive Request CS,

Proxy Receive Token and Proxy Receive Stock are called appropriately by the proxy node upon reception

of these messages.

The Proxy Receive Request CS function distinguishes which treatment to give to a Request message

based on the sender’s location:

• The request came from a local node. If the token has not been requested by a node of Ci (local owner =

∅), Proxyi must store Sj at the end of L Queue to know to which node it will forward the token when

it receives it from a remote node. Furthermore, if no previous remote request is pending, Proxyi

should send the new local request to remote owner. On the other hand, when the token has already

been requested by a node of Ci (local owner 6= 0), the mentioned request is simply redirected to

local owner.

• The request came from a remote node. In the case that local owner = ∅ (no node of the local cluster

has currently requested the CS) or remote next 6= ∅ (another remote request already exists), Proxyi

forwards the receiving request directly to the remote owner node without needing to redirect it to

any of its cluster’s nodes. However, if remote next = ∅, the request is redirected to local owner.

Variable remote next is then updated to the proxy of the requesting node Sj . In both cases, the

variable remote owner is also set to this same node.

Upon receiving the token, function Proxy Receive Token is called by Proxyi. It verifies from which node

it received the token. If the granting node is a local node, the token is sent to remote node. Furthermore,

if L Queue is not ∅, Proxyi issues a new CS request, which corresponds to the request made by the node

which is at the head of the queue. On the other hand, if it is a remote node that granted the token, the

latter is forwarded to the node at the head of L Queue and this node is remove from the queue.

Function Proxy Receive Stock queues local CS requests which will later be forwarded to a remote node.

The requests are put at the tail of L Queue. It is worth remembering that a proxy node can only issue

one CS request message to a remote node at a time to avoid cycles in owner’s path.

Figure 3 shows an example of the two-level clustered algorithm execution. We suppose that the maxi-

mum number of preemption is three.

Figure 3(a) presents tree clusters, C0, C1, and C2, where nodes A, B, and C belong to cluster C0, nodes

D, E, F , G and H belong to C1 and K, I and J belong to C2. Nodes B, D and I are the Proxyi of the

C0, C1 and C2 clusters respectively. The token is held by node A of C0. Thus, the remote owner variables

of proxys D and I point to B, i.e. the proxy of the Elected Node’s cluster. The local owner of proxy B

points to the Elected Node.

In Figure 3(b), node H of C1 asks for the CS, sending a request to its owner, which is its proxy

(ownerH = D). As the L Queue of D is empty, D forwards the request to B (remote ownerD = B).

D also queues the request in order to know to which node the token should be granted when B receives

it. The local owner variable of D is then updated to H . As the token has previously been requested by

C0 (local ownerB = A and remote owner = ∅), upon receiving the request, B sends the request to A,

updating its remote owner and remote next to D (the proxy of H). When node A (Local root of C0)

receives the request, it sets its next to the requesting process H .

Figure 3(c) shows the requesting of the CS by node J of C2. It sends the request to its owner which

is its proxy (ownerJ = I). As in Figure 3(b), node I forwards the request to B (remote ownerI = B),

queues J in its L Queue and sets its local owner to J . Upon receiving the request, B directly forwards

it to its remote next, since it is 6= ∅ (remote nextB = D). B also sets its remote owner to I . When

this request messages is received by D (proxy of H ’s cluster), the latter sets both its remote next and

JK JK

JK

H

H

A A

A

= proxy = owner

= local_owner

= next

= remote_owner

= remote_next

= token holder

JK

J

H E

A

JK

J

H

C0

D

C2

E

F

GH

I

C1

BC

C0

D

C2

E

F

GH

I

C1

BC

(a) Original configuration

C0

D

C2

E

F

GH

I

C1

BC

J

(c) J asks for the CS (d) G then F then E ask for CS

(b) H asks for the CS

L_Queue

L_Queue

L_Queue

L_Queue L_Queue

L_Queue L_Queue

L_Queue

L_Queue

C0

D

C2

E

GH

I

C1

BC

F

L_Queue

L_Queue
L_Queue

(e) A releases the token

C0

D

C2

E

G

I

C1

BC

F

L_Queue

L_Queue
L_Queue

A

E

Figure 3: Sample execution of the two-level clustered algorithm

remote owner to I . It then forwards the request to H . When H (Local root of C1) receives the request,

it updates its next variable to the requesting node J .

In Figure 3(d), node G, F , and E request the CS in this order. The requests of G and F will pass

before the remote request of J as the number of current preemption of C1 is under the maximum threshold

(Threshold = 3). However, the request of E, the fourth successive local request, can not be satisfied before

J ’s request. Thus, when receiving the request, F (the current Local root of C1) will send a Stock message

to its proxy D, indicating that the latter must forward the request to the remote node J . F updates its

owner variable to E. Notice that at this point nextF = J . Upon receiving the Stock message from F ,

node D will not forward it since a previous request from a node of its cluster (H ’s request) has not yet

been satisfied. D will then queue E in L Queue and will update is local owner to E.

When node A releases the token, Figure 3(e), it will send it to H (nextA = H) through the respective

proxy nodes. It will also update its owner to B, the proxy node of its own cluster, as it knows that the

owner of the token is now a remote node. When proxy B receives the message with the token, it will

forward it to its remote owner (remote ownerB = D). It will also reset its remote next variable and its

local owner variables (as B’s L Queue = ∅). When the Token message arrives at D, it will be forwarded

to H , the node at the head of D’s L Queue. H will be then removed from D’s L Queue.

4 Related Work

Besides Naimi and Trehel, other authors proposed O(log N) token-based algorithms exploiting tree struc-

tures. Raymond’s algorithm [11] organizes nodes in a static logical tree structure. This tree remains

unchanged, but the direction of its edges can change dynamically as the token propagates. Consequently,

the edges always point to the possible token holder. Neilsen and Mizuno [10] extended this algorithm by

passing the token directly to the requesting node instead of through intermediate nodes. Chang Singhal

and Liu [4] improved Naimi-Trehel’s algorithm, aiming at reducing the number of messages to find the last

requesting node in the logical tree.

Mueller [8] has proposed an extension to Naimi-Trehel’s algorithm, introducing the concept of priority

in it. A token request is associated with a priority and the algorithm first satisfies the requests with higher

priority. We can say that we adopt a similar strategy when satisfying intra-cluster requests before inter-

cluster ones. However, in our algorithms, the number of assignment is limited by a pre-defined threshold

value.

Housni et al. [5] and Chang et al. [3]’s mutual exclusion algorithms gather nodes into groups. Both

articles basically propose hybrid approaches where the algorithm for intra-group requests is different from

the inter-group one. In Housni et al. [5], sites with the same priority are gathered at the same group. Ray-

mond’s tree-based token algorithm [11] is used inside a group, while Ricart-Agrawala [12] diffusion-based

algorithm is used between groups. Chang et al.’s [3] hybrid algorithm applies diffusion-based algorithms

at both levels: Singhal’s algorithm [14] locally, and Maekawa’s algorithm [7] between groups. The former

uses a dynamic information structure while the latter is based on a voting approach. Our work is related

to these articles in the gathering of machines into groups (clusters in our case) influences the conception

of the algorithm. However, the authors do not consider differences in communication latency as the main

reason for grouping machines.

In [1], the authors propose to adapt the mutual exclusion mechanism of a DSM system to the latency

hierarchy of an interconnection of clusters. Contrary to our proposal, their solution is based on a centralized

token-based mutual exclusion protocol.

We have presented in a previous work [2] a hierarchical token-based algorithm for multi-cluster platforms

which is also based on Naimi-Trehel algorithms. However, this algorithm is not a router-based one and a

global queue is used for aggregating remote requests. This approach reduces the number of inter-cluster

messages but introduces some lack of fairness to the algorithm.

5 Performance evaluation

This section describes a set of performance evaluation experiments aimed at comparing the efficiency of our

mutual exclusion algorithms with the original Naimi-Trehel algorithm. The three algorithms considered

are:

• NaimiTrehel algorithm, which implements Naimi-Trehel token-based algorithm presented in section

2.
• one− level algorithm, which implements the one-level clustered algorithm presented in section 3.1.
• two − level algorithm, which implements the two-level clustered algorithm presented in section 3.2

5.1 Experimental testbed and configuration

The experiments described in this section were performed on a dedicated cluster of sixteen Pentium IV

2.66 GHz computers linked by a 1 Gbits/s Ethernet switch. The algorithms were implemented in Java

(Sun’s JDK 1.4) on top of the Linux 2.4 kernel.

To emulate a Grid environment with multilevel network latencies, we have used a specific distributed

test platform that allows injection of network delays. We establish a virtual router by using DUMMYNET

[13] and IPNAT. The latter is an IP masquerading application that divides the network into virtual LANs

(clusters). DUMMYNET is a flexible tool originally designed for testing network protocols. It simulates

bandwidth limitations, delays, and packet losses. Based on addresses and ports of both destination and

source nodes, DUMMYNET intercepts packets, passing them through one or more queues and pipes,

which simulate different message transmission configurations. In our experiment, every message exchanged

between two different clusters passes through a dedicated machine which runs DUMMYNET.

Each machine runs three ”virtual nodes”, emulating a platform with 48 nodes grouped in 3 clusters of 16

nodes. However, each ”virtual node” of a machine belongs to a different cluster. Therefore, communication

between each other is performed through network, always passing by the dedicated machine that runs

DUMMYNET. In the rest of this section, we called node a “virtual node” and not a physical machine.

The topology of the platform is known at the outset by every node as well as the initial holder of the

token (Elected node). In each experiment, every node issues 10 critical section.

Experiments are characterized by:

• α: time taken by a node to execute the critical section,

• β: mean time interval between the release of the CS by a node and the request of it by this same

node.

• ε: preemption threshold (only for the hierarchical algorithm),

• γ: delay introduced in inter-cluster communication.

For each experiment, the following metrics are considered:

• number of messages, divided in two categories: local messages, exchanged between two nodes

within the same cluster and global messages, exchanged between two nodes of different clusters. The

ratio of local message per global message is also calculated.

• obtaining time: time between the moment a node requests the critical section and the moment it

gets it. We measure the average as well as the standard deviation (ST DEV) of the obtaining time.

• number of preemptions: number of preemptions during an evaluation test.

5.2 Results and Discussion

The influence of the application behavior, number of preemption and latency between clusters have been

studied in our performance measures.

5.2.1 Application behavior influence

The aim of the current experiments is to observe the behavior of each algorithm when β and α vary. We

called that “application behavior influence” as the ratio β/α expresses the frequency with which the critical

section is requested. Table 1 summarizes performance measures as function of the ratio β/α. Basically, for

all measurements, except the last one, the mean time in the CS, α, is fixed to 0.5, while the time interval

between the execution of two successive CS by a node, β, varies. The different configurations are (in s):

10/0.5, 5/0.5, 2/0.5, 0.5/0.5 and 0.5/1.

Type Ratio Obtaining time (s) number of Nb of messages

β/α average ST DEV preemption local global %

20 15.21 2.46 - 1032 782 1.32

10 19.34 3.28 - 1073 750 1.43

Naimi-Trehel 4 22.55 4.14 - 1087 770 1.41

1 24.19 4.63 - 1067 785 1.36

0.5 45.71 8.51 - 1089 728 1.5

20 14.29 2.35 1 1826 74 24.68

10 18.4 8.83 96 1952 62 24.68

One-level 4 21.19 9.03 96 1963 62 31.48

1 22.64 9.18 98 1965 62 31.66

0.5 44.45 18.03 99 1960 60 31.69

20 14.22 2.37 2 1873 72 26.01

10 18.43 11.5 146 1997 51 39.16

Two-level 4 20.91 11.58 147 2006 50 40.12

1 22.57 11.67 146 2015 50 40.3

0.5 44.87 22.88 146 2015 50 40.3

Table 1: Application behavior influence

For all algorithms, when the ratio β/α decreases, the obtaining time increases. This can easily be

explained as the probability that other nodes have also requested the CS increases as well. In the case of

our algorithms, when the ratio β/α is equal to 20, the preemption mechanism is rarely exploited (just one

or two preemptions). This happens because there are not many simultaneous requests within a cluster.

However, when the ratio β/α is equal or smaller than 10, the preemption mechanism becomes effective.

At the same time, we observe that the standard deviation increases and messages are more concentrated

inside clusters. For ratios equal 10 → 1, the behavior of the algorithms does not change very much because

these ratios are relative low: when a node requests the token, almost all others have requested it too. As

in these cases only token transmission time can be reduced; the variation of the obtaining time is not very

significant. When the ratio β/α is smaller that 1, the obtaining time and the standard deviation almost

double since all nodes stay twice longer in the critical section than in non critical section.

5.2.2 Preemption influence

The set of the current experiments allows us to evaluate the influence of the preemption threshold on our

algorithms’ behavior. They are characterized by: α = β = 500 ms, and γ = 100 ms. Figure 4.(a) presents

the obtaining time and the Figure 4.(b) the ratio local messages / global messages when the preemption

threshold increases. Table 2 also summarizes these experiments.

A first comment about these results is that even when the preemption threshold ε is equal to 0, the ob-

taining time of our algorithms is reduced when compared to Naimi-Trehel algorithm. In fact, the Local root

approach that we introduced in our algorithms informs a node that another node of the same cluster has

already requested the CS, thus avoiding remote requests. Local token transmission is then prioritized.

Naturally, when increasing ε, the number of preemption increases too. However, the obtaining time

decreases while its standard deviation increases significantly. The former goes down because there are

fewer remote token transmission while the latter goes up because preemption speeds up local requests,

(a)

20

20,5

21

21,5

22

22,5

23

23,5

24

24,5

0 2 4 6 8 10 12 14 16

Preemption threshold

O
b

ta
in

in
g

 t
im

e
(s

)

one-level
two-level
Naimi-Trehel

(b)

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

Preemption threshold

R
at

io
 lo

ca
l m

sg
 /g

lo
b

al
 m

sg

one-level
two-level
Naimi-Trehel

Figure 4: Evolution of preemption

Type Preemption Obtaining time (s) number of Nb of messages

threshold average ST DEV preemption local global %

0 23.36 4.363 0 1868 137 13.64

2 22.61 5.86 27 2106 72 29.25

4 22.76 7.01 50 1892 67 28.24

6 22.58 8.14 73 1932 66 29.27

one-level 8 22.64 9.17 98 1965 62 31.69

10 22.48 9.76 105 1947 57 34.16

12 22.42 10.61 121 1970 57 34.56

14 22.44 11.32 140 1970 52 37.88

16 22.49 11.84 146 1982 52 38.12

0 22.76 4.22 0 1909 77 24.79

2 22.71 6.98 50 1949 65 29.98

4 22.46 9.1 96 1994 62 32.16

6 22.4 10.52 124 1998 57 35.05

Two-level 8 22.57 11.67 146 2015 50 40.3

10 22.27 13.1 180 2047 50 40.94

12 22.28 14.01 190 2022 42 48.14

14 22.12 14.97 210 2090 42 49.76

16 21.7 16.15 240 2066 40 51.65

Table 2: Summarize preemption influence

slowing down remote ones. This happens since our algorithms adopts a token transmission strategy that

relaxes fairness for token obtaining time, but preserves fairness based on the time that a single cluster keeps

the token.

We also observe that the preemption mechanism is more effective for the two-level algorithm than for

the one-level algorithm. The reason for this can be justified as follows. In the two-level algorithm only the

first remote request is delivered directly. Subsequent requests are handled at the proxy level. Therefore,

the remote request is less redirected, arriving faster at a Local root node of the final cluster. This increases

the probability for this message to be preempted by a local request of this cluster.

A last worth remark is that the impressive concentration of messages per cluster of our algorithms.

With Naimi-Trehel’s algorithm, there are 1.36 local per global message. On the other hand, for ε = 16,

there are 38.12 and 51.65 local per global message for the one-level algorithm and two-level one respectively.

5.2.3 Platform influence

Figure 5 illustrates the evolution of the obtaining time when inter-cluster delay increases. For these exper-

iments, we consider α = β = 500 ms and ε = 8. Inter-cluster delay (γ) varies from 0 ms to 200 ms.

20

21

22

23

24

25

26

27

0 50 100 200

inter-cluster delay

O
p

ta
in

in
g

 t
im

e
(s

)

Naimi-Trehel
One-level
Two-level

Figure 5: Preemption influence

Results show that our algorithms scale better than Naimi-Trehel’s. We observe that the gap between

our algorithms’s obtaining time and Naimi-Trehel algorithm’s obtaining time increases when inter-cluster

delay increases too. We can explain this behavior since our algorithms concentrate communication inside

clusters. Thus, distance between clusters has less influence in our algorithms than in Naimi-Trehel’s.

6 Conclusion

We have presented in this paper a new approach to optimize mutual exclusion algorithms for Grid environ-

ment. The main idea of our work is to adapt Naimi-Trehel algorithm to the network topology, minimizing

inter-cluster messages. Two different hierarchical algorithms were proposed. Both exploit the same mech-

anisms such as per cluster Local root node and preemption of local requests, but the second algorithm has

an extra layer of proxy nodes.

Performance evaluation results, discussed in section 5, conclude that our algorithms minimize the time

that a node waits for the token compared to Naimi-Trehel algorithm. Between our two algorithms, the

two-level clustered one shows to be more efficient. Furthermore, the latter could be easily generalized

to a n-level hierarchical organization. However, we must point out that our algorithms suffer from some

unfairness due to the higher priority given to local CS requests. In fact, our algorithms consider token

possession time by a single cluster as a factor for fairness instead of the time to obtain a token.

References

[1] G. Antoniu, L. Bouge, and S. Lacour. Making a DSM consistency protocol hierarchy-aware: an efficient

synchronization scheme. In Proceedings of the Workshop on Distributed Shared Memory on Clusters,

pages 516–521, 2003.

[2] M. Bertier, L. Arantes, and P. Sens. Hierarchical token based mutual exclusion algorithms. In 4th

IEEE/ACM International Symposium on Cluster Computing and the Grid, 10 April 2004.

[3] I. Chang, M. Singhal, and M. T. Liu. A hybrid approach to mutual exclusion for distributed system. In

Proceedings of the 14th IEEE Annual International Computer Software and Applications Conference,

pages 289–294, 1990.

[4] I. Chang, M. Singhal, and M. T. Liu. An improved O(log N) mutual exclusion algorithm. In Proceedings

of the 1990 International Conference on Parallel Processing, pages 295–302, August 1990.

[5] A. Housni and M. Trehel. Distributed mutual exclusion by groups based on token and permission.

In Proceedings of the ACS/IEEE International Conference on Computer Systems and Applications,

pages 26–29, June 2001.

[6] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the

ACM, 21(7):558–564, July 1978.

[7] M. Maekawa. A
√

N algorithm for mutual exclusion in decentralized systems. ACM Transactions on

Computer Systems, 3(2):145–159, May 1985.

[8] F. Mueller. Prioritized token-based mutual exclusion for distributed systems. In Proceedings of 12th

Intern. Parallel Proc. Symposium & 9th Symp. on Parallel and Distr. Processing, pages 791–795,

March 1998.

[9] M. Naimi, M. Trehel, and A. Arnold. A log (N) distributed mutual exclusion algorithm based on path

reversal. Journal of Parallel and Distributed Computing, 34(1):1–13, 10 April 1996.

[10] M. L. Neilsen and M. Mizuno. A dag-based algorithm for distributed mutual exclusion. In Proceedings

of the 11th International Conference on Distributed Computing Systems (ICDCS), pages 354–360,

Washington, DC, 1991.

[11] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions on Com-

puter Systems (TOCS), 7(1):61–77, 1989.

[12] G. Ricart and A. Agrawala. An optimal algorithm for mutual exclusion in computer networks. CACM:

Communications of the ACM, 24, 1981.

[13] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols. ACM Computer

Communication Review, 27(1):31–41, 1997.

[14] M. Singhal. A dynamic information structure for mutual exclusion algorithm for distributed systems.

IEEE Transactions on Parallel Distributed Systems, 3(1):121–125, 1992.

[15] I. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM Transactions on Computer

Systems (TOCS), 3(4):344–349, 1985.

