
Failure, Disconnection and Partition Detection in Mobile Environment

Denis Conan
Institut TELECOM, SudParis, UMR CNRS Samovar

9 rue Charles Fourier, 91011 Évry, France
Denis.Conan@it-sudparis.eu

Pierre Sens, Luciana Arantes, and Mathieu Bouillaguet
LIP6 — Université de Paris 6 — INRIA

4 Place Jussieu, 75252 Paris Cedex 05, France
Pierre.Sens,Luciana.Arantes,Mathieu.Bouillaguet@lip6.fr

Abstract

In mobile environment, nodes can move around and vol-
untarily leave or join the network. Furthermore, they can
crash or be disconnected from the network due to the ab-
sence of network signals. Therefore, failure, disconnec-
tion and mobility may create partitions in wireless networks
which should be detected for fault and disconnection toler-
ance reasons.

We present in this article an architecture of local and dis-
tributed detectors for mobile networks that detect failures,
disconnections, and partitions. It is basically composed of
three unreliable detectors: a heartbeat failure detector, a
vector-based disconnection detector, and an eventually per-
fect partition detector.

1. Introduction

Recent advancements in wireless data networking and
portable information appliances have given rise to the con-
cept of mobile computing. Users can access information
and services irrespective of their movement and physical
location. However, such an environment is extremely dy-
namic: Nodes can voluntarily disconnect themselves or
move around; absence of wireless network signals can dis-
connect nodes from the network; nodes can fail and mes-
sages can be lost. Consequently, failure, disconnection, or
mobility may cause a node or several of them to detach from
the rest of the network, creating one or more network par-
titions. Another particularity of mobile environment is the
fact that links are not bidirectional because, in practice, the
two processes cannot rely on the same physical and logi-
cal resources in both directions. For argument’s sake, small
devices like PDAs consume more power energy for emit-

ting than for receiving messages on wireless networks, thus
leading to non-uniform radio range.

As the geographic extent of the system grows or its con-
nectivity weakens, network partitions tend to be more fre-
quent. They may result in a reduction or degradation of ser-
vices but not necessarily render the application completely
unavailable. Partitions should keep working as autonomous
distributed systems offering services to their clients as far as
possible. Algorithms that should benefit from a partition de-
tector module are for instance distributed consensus in par-
titionable networks, and resources allocation and placement
in dynamic networks. Therefore, a mechanism for provid-
ing information to the application about network partition is
highly important in wireless environments, and is the focus
of this paper. We propose an eventually perfect unreliable
partition detector for wireless systems. Similarly to an un-
reliable failure detector [5], an unreliable partition detector
can be considered as a per process oracle, which periodi-
cally provides, for each process p, a list of processes sus-
pected to be unreachable, that is those processes which are
suspected of being in another partition than p’s one. A parti-
tion detector is unreliable in the sense that it can make mis-
takes. Two properties characterise a failure detector: com-
pleteness and accuracy. Roughly speaking, completeness
sets requirements in respect to crashed processes, while ac-
curacy restricts the number of false suspicions. By analogy,
these two properties also characterise our partition detector,
but with respect to reachable processes. Thus, our partition
detector assures the following completeness and accuracy
properties: A process p, which is correct, eventually detects
every process that does not take part in p’s partition; and p
eventually stops suspecting correct processes that belong to
its partition.

Our partition detector is able to detect partitions due
to disconnections as well as failures. The ultimate goal



of characterising the nature of the partition is to help the
decision-making process of applying countermeasures for
fault tolerance and disconnection tolerance: e.g, remove
a faulty participant from a vote and wait for disconnected
ones. Hence, in order to build our partition detector, a fail-
ure detector and a disconnection detector are required. Both
detectors participate in our solution and the partition detec-
tor exploits information provided by them.

In our approach, we consider that there is a local con-
nectivity module at each mobile node which is responsi-
ble for informing whether that node can send messages or
not [9]. It monitors resources such as energy power, mem-
ory space and wireless link quality by controlling one of
their attributes such that, when the raw value of the attribute
is below some threshold, the mobile node is disconnected.
The objective of a connectivity module is to establish a con-
nectivity mode (from strongly connected to disconnected)
in a stabilised manner. However, such connectivity infor-
mation needs to be spread over the network. Hence, when a
node is locally notified of its disconnection, the disconnec-
tion detector that we propose will “try” to spread the dis-
connection information over the network, through its neigh-
bours, by calling the broadcast primitive mentioned above.

The contribution of our paper is then threefold: (1) a
modified version of the HB failure detector of [1, 2] which
besides offering information about failure suspicions and
the possibility of building a quiescent stubborn reliable
broadcast primitive, provides information about the reacha-
bility of nodes; (2) an unreliable disconnection detector that
broadcasts disconnection information through the network;
and (3) an eventually perfect partition detector that, based
on the information given by the two previous detectors, de-
tects network partitions.

The remainder of this paper is organised as follows. In
Section 2, we set out the distributed system model. Sec-
tion 3 presents our global architecture and the basic prim-
itives used throughout the paper. Section 4 describes the
heartbeat failure detector for partitionable networks with
terminal mobility and explains how the original algorithm
was modified. The disconnection detector is presented in
Section 5, and the partition detector in Section 6. We com-
pare our contribution with related work in section 7 while
section 8 concludes our work.

2. Distributed System Model

We consider a partially synchronous distributed system
in which there are bounds on process speeds and on mes-
sage transmission delays, these bounds are unknown, but
they hold after some unknown time, which is called GST
for Global Stabilisation Time [5]. The system consists of
a set of n processes Π = {p1, p2 ..., pn}. The network of
processes is a directed graph G = (Π, Λ) where Λ ⊂ Π×Π.

The topology of the graph changes due to node movements
and node failures, but the set of participants Π to the dis-
tributed application is known. Without lack of generality,
we assume that there is one process per mobile terminal.
Process q is a neighbour of process p if and only if there is
an unidirectional link from p to q.

Failure model Processes and links can fail by crashing,
that is by prematurely halting and then stopping performing
any further action for ever. During the execution, by defi-
nition, processes and links that have not crashed are said to
be correct. In addition, correct links are fair lossy. A fair
(lossy) link may lose messages, but if a process p repeatedly
sends a message m to process q, then q eventually receives
m.

Disconnection model Processes can disconnect1 and re-
connect. In connected mode, a process may send a mes-
sage to its neighbours, while in disconnected mode, the re-
sources of the process terminal are too low to send any ap-
plication message but control messages may be transmitted
for a while. We assume that every process ends its execu-
tion while being connected and does not crash while being
disconnected. In practice, the assumption means that the
disconnected, and then terminating or faulty process does
not succeed in leaving the set of participants Π. Then, a
mechanism of leases at the application level will make the
incriminated process leaving the set of participants. In the
sequel, this translates into the assumption that a terminal
that disconnects eventually reconnects. A moving node first
disconnects from the network then it moves to a new loca-
tion and finally reconnect to the network. We assume that
mobile terminals eventually stop moving.

Partition model Following the terminology given in [1,
2], the network is said to be partitionable, that is a network
in which some links may be unidirectional and may crash.
By definition, a fair path between processes p and q is a
path containing only fair links and correct processes, and
a simple fair path is a fair path in which no process ap-
pears more than once. In addition, process q is said to be
reachable from process p if there exists a fair path between
p and q, otherwise it is unreachable. p and q are mutually
reachable if there exists a fair path between p and q, and a
fair path between q and p. Then, the p’s partition, denoted
partition(p), is the set of correct processes mutually reach-
able by process p.

1Note that we consider that when a node disconnects, it disconnects
from all the nodes, not only from a particular node. The topology changes
are gathered in the concept of neighbourhood.



3. Unreliable detection modules and basic com-
munication primitives

On each node, we provide a basic layer (BL). The func-
tion of this layer is twofold. Firstly, it establishes a con-
nectivity mode (from strongly connected to disconnected)
in a stabilised manner. Secondly, it provides a list of current
neighbours (nghset) by periodically calling the networking
layer. By analogy with the participant detector of [4], the
neighbourhood detector does not make any mistake: It is
perfect. The very reason is that we can’t verify whether log-
ical connections are correctly managed, or whether network
configuration data are correct. For instance, if the underly-
ing operating system makes a mistake, the mobile termi-
nal will find the links faulty (false positive) or will not use
opened connections (false negative). Each change in mode
and nghset is notified to the upper layers.

On each node p, two detectors are plugged onto BL: The
heartbeat failure detector (HBFD) and the vector-based
disconnection detector (VBDD). HBFD outputs a vec-
tor HB of heartbeat counters, one entry per process, and a
set of mutually reachable processes mreachable. VBDD
outputs a vector dv of disconnection counters, one entry
per process. Disconnections and (re-)connections are num-
bered: Disconnection events are odd-numbered and recon-
nection events are even-numbered.

At the upper level of node p, the eventually perfect par-
tition detector EPPD uses information provided by both
HBFD and VBDD to compute the set out, that is the set
of processes not in p’s partition. Based on HBFD, we pro-
vide a quiescent stubborn broadcast primitive QSB used
by VBDD to broadcast disconnection and reconnection in-
formation.

HBFD, VBDD and EPPD are characterised by both
completeness and accuracy properties defined as follows:

• HB-Completeness: At each correct process p, the
heartbeat counter of every process not in partition(p)
is bounded.

• HB-Accuracy: At each correct process p, the heart-
beat counter of every process is nondecreasing. The
heartbeat counter of every process in partition(p) is
unbounded.

• VBDD-Completeness: Eventually all disconnections
and reconnections of correct process p are seen by ev-
ery correct process in partition(p).

• VBDD-Accuracy: No process sees a disconnection
(resp. reconnection) before the disconnection (resp.
reconnection) effectively occurs.

• EPPD-Completeness (Strong partition complete-
ness): If some process q remains unreachable from a

correct process p, then eventually p will always sus-
pect q of not belonging to partition(p).

• EPPD-Accuracy (Eventual strong partition accu-
racy): If some process q remains reachable from a cor-
rect process p, then eventually p will no longer suspect
q of not belonging to partition(p).

Each process can use the following primitives to com-
municate:

• send(dest,m)/receive(from, m) : Two basic point-
to-point communication functions to send (resp. re-
ceive) message m to (resp. from) its neighbour dest
(resp. from). When information is locally exchanged
between local detectors, local_send(dest, m) and
local_receive(from,m) functions are used where
from and dest are the name of the component
(HBFD, VBDD, or BL).

• broadcast(m): This function called QSB broadcasts
message m over fair links to all the correct processes in
the partition of the correct sender. This primitive pro-
vides the abstraction of stubborn links hiding the re-
transmission mechanisms used to make somewhat re-
liable the transmission of messages. A formulation of
the stubborn delivery property is as follows [7]: If the
sender p, which does not crash, sends a message m
to q that is correct, and p is able to indefinitely delay
the sending of any further message, then q eventually
receives m. An important practical consideration is
that stubborn links require only a bounded buffer space
(minimum of one message). The quiescence property
ensures that only a finite number of messages are sent
when broadcast is invoked a finite number of times,
even if processes involved in broadcasting move to
other partitions (only a finite number of messages are
sent in the latter partitions). QSB uses HBFD. Due
to the lack of space, we do not present the broadcast al-
gorithm in this paper; the algorithm is a direct modifi-
cation of the quiescent broadcast primitive given in [2]
(Figure 3) in order to add the stubborn property as pre-
sented in [7].

4. Failure detection

Our failure detector HBFD is based on the class of
heartbeat failure detectors proposed by [1, 2]. Such a choice
is firstly explained by the need to build quiescent algo-
rithms, that is algorithms that eventually stop sending mes-
sages in partitionable networks. In [2], the authors prove
that quiescent reliable communication are impossible with
classical failure detectors whose implementation provides
output of bounded size (e.g., the list of suspects has bounded



size). Hence, they propose in the paper the class of heart-
beat failure detectors which can be used to circumvent this
impossibility result. Another reason that justifies our choice
is that heartbeat failure detectors are not time-out-based.

Heartbeat failure detectors provide for each process p a
vector of counters HB = [n1, n2, ..., nk] where each nj

is a positive integer corresponding to the number of heart-
beats received by process p from process pj . Thus, nj is the
“heartbeat value of pj at p”. Intuitively, nj increases as long
as pj is correct, not disconnected, and in partition(p). No-
tice that heartbeat failure detectors provide the vector HB
without any treatment or interpretation. Then, other detec-
tors, as our partition detector EPPD, can periodically ob-
tain the current value of HB vector from HBFD in order
to deduce lists of suspected processes.

Beside the heartbeat vector HB, our failure detector
HBFD gives information about the topology of the net-
work since each process keeps information about which
processes can be reachable through its neighbours. For each
neighbour r of process p, HBFD builds the set of processes
mutually reachable from p through r. This set is called the
reachablility set of p through r and the vector mreachable
gathers the set of reachability sets of all the neighbours of
p. The property of mutual reachability can be expressed as
follows: At each correct process p, for each neighbour r, the
reachability set for r (mreachable[r]) eventually contains
all the correct processes (e.g., q), such that there is a simple
fair path from p to q through r and a simple fair path from
q to p. Furthermore, HBFD can also accept requests for
emptying some of the reachability sets in order to restart an
accumulation phase of topology discovery. This function-
ality is used by our partition detection EPPD, described in
Section 6, when a failure or a disconnection is detected.

HBFD which runs on each node p is presented in Al-
gorithm 1. It is based on the algorithm for partitionable
networks described in [1]. The changes we have made are
related to the addition of nodes mobility and the discovery
of the network topology through neighbours. The variables
HB and mreachable respectively store the per process
heartbeat counters and the per process mutual reachability
sets, as previously described. The set nghbrs controls the
current neighbours of p, while the set paths gathers all the
paths of which p is aware since its last heartbeat sending.
Algorithm 1 is executed by process p (p ∈ Π), and it is di-
vided into five parallel tasks. It provides to the upper client,
e.g. the partition detector EPPD, the heartbeat vector HB
and the reachability sets (sets of mreacheable) (line 16).
The principle of the algorithm is the piggy-backing of fair
paths in heartbeat messages.

The first task (lines 1–5) corresponds to the code block
executed at the creation of the heartbeat failure detector.
The second task (lines 6–9) is triggered when the neigh-
bourhood changes. Such an information, nghset, is pro-

vided by BL (cf. Section 3). This task controls the mobility
of nodes and therefore the current set nghbrs of neighbours
of p (line 9). Furthermore, the entries of mreachable corre-
sponding to those processes that are no longer neighbours of
p are set to empty (line 7) since they cannot be reached any-
more from p through old neighbours. However, new neigh-
bours of p are seen as reachable (line 8).

Algorithm 1: Heartbeat Failure Detector HBFD
1 upon initialisation do
2 nghbrs← ∅ {neighbourhood at p}
3 HB[1..|Π|]← {0, ..., 0} {heartbeat vector at p}
4 mreachable[1..|Π|]← {∅, ..., ∅} {p reach. through neigh. from p}
5 paths← ∅ {set of paths received in heartbeats during last period of time}
6 upon local_receive(BL,nghset) do
7 for all q ∈ nghbrs \ nghset do mreachable[q]← ∅
8 for all q ∈ nghset \ nghbrs do mreachable[q]← {q}
9 nghbrs← nghset
10 periodically do
11 HB[p]← HB[p] + 1
12 paths← paths ∪ {{p}}
13 for all path ∈ paths : (∃r ∈ path : r appears more than twice in path)

do paths← paths \ path
14 for all q ∈ nghbrs do send(q,〈HBFD, paths〉)
15 paths← ∅
16 local_send(EPPD, 〈HBFD, HB, mreachable〉)
17 upon receive(q,〈HBFD, pathsq〉) do
18 for all path ∈ pathsq do
19 for all r ∈ Π : r appears after p in path do HB[r]← HB[r] + 1
20 if ∃r ∈ Π : r appears right next to p in path then
21 for all s ∈ Π : s appears after r in path do mreachable[r] ←

mreachable[r] ∪ {s}
22 endif
23 paths← paths ∪ {(path · p)}
24 endfor
25 upon local_receive(EPPD,〈EPPD, procset〉) do
26 for all s ∈ procset do mreachable[s]← ∅

In the third task (lines 10–16), process p periodically in-
crements its own heartbeat and adds itself to paths, which
already contains all paths received in heartbeat messages
during the last period of time. However, before sending to
all its neighbours a new heartbeat message which includes
such a variable (line 14), p verifies in line 13 if its pre-
vious heartbeat messages have not already completed two
cycles. In this case, such a path will be removed from
paths (line 13). As shown in the example of the execution
of the algorithm described below, some topology requires
that heartbeat messages complete two cycles in order to en-
sure that processes correctly update their mutually reach-
able sets. At the end of the third task, the heartbeat failure
detector notifies its clients, EPPD in our case, about new
updated information concerning the heartbeat vectors and
reachability sets (line 16).

The fourth task (lines 17–24) handles the reception of
messages by p of the form 〈HBFD, paths〉. Upon receiving
it from process q, for each path ∈ paths with path =
(p1 ·...·pi ·p·r·pj ·...·pk ·q), p adds the processes (pj ·...·pk ·
q), which appears after its neighbour r, to mreachable[r]
(lines 20–21). Therefore, mreachable[r] contains a list of
processes that can be mutually reached from p through r.
In addition, process p increases the heartbeat counters of



all the processes that appear after p in path, that is all the
processes of the sequence (r · pj · ... · pk · q) (line 19), since
they are not suspected by p. Process p appends then itself to
path and stores the new path in paths (line 23). Notice that
in this case, p is also reachable from (pj · ... · pk · q) through
their respective neighbours.

Finally, the fifth task (lines 25–26) empties some entries
of mreachable. As previously explained, this functionality
is used by the partition detector EPPD, described in sec-
tion 6.

Example of execution of HBFD In order to explain
how nodes dynamically discover which are the other nodes
reachable through their respective neighbours, we show in
Figure 1 the scenario of an execution of Algorithm 1, con-
sidering a topology with five nodes.

Node 1 starts by sending to its neighbour node 2 a heart-
beat message that contains the variable paths1 which, in
this case, includes just itself, as shown in Figure 1.(a)
(line 12). Upon receiving it (cf. Figure 1.(b)), node 2 ap-
pends itself to all the received paths, adding the latter to its
variable paths2 (line 23). Notice that it does not update its
variable mreachable2 since it is not included in any of the
received paths. Next, the set {2} is being added to paths2

(line 12) and a new heartbeat message is sent to its neigh-
bours. Both nodes 1 and 3, outgoing neighbours of 2, re-
ceive it.

In Figure 1.(c), both nodes 1 and 3 receive the above
heartbeat message, while in Figures 1.(d) and 1.(e), node 4
receives the heartbeat messages sent by node 3, and node 5
receives the heartbeat messages sent by node 4, respec-
tively. Next, when node 2 receives the heartbeat message
from node 5 (cf. Figure 1.(f)), it finds itself in some of the
received paths. Therefore, line 21 of the algorithm is exe-
cuted and node 2 adds nodes 4 and 5 to mreachable2[3],
that is these nodes are mutually reachable from node 2
through its neighbour node 3.

Finally, Figure 1.(g) shows that the content of variable
paths1 of node 1 after having received the second heartbeat
message from node 2. In the scenario, we consider that
node 1 has not sent any new heartbeat message after the
reception of the first heartbeat message from node 2. Node 1
then updates its variable mreachable (mreachable1[2] =
{2, 3, 4, 5}) since these nodes appear after its neighbour 2
in path {1, 2, 3, 4, 5, 2, 1}.

Sketch of proof HB-completeness: The proof is by con-
tradiction. Let q be a process that is not in the parti-
tion of p (p �= q). Assumes that HB[q] is not bounded.
Then, p receives an infinite number of times messages
〈HBFD, paths〉, where there exists a path P in paths which
contains q after p. This path is of the form P = (p1 · . . . ·
p · . . . · q · . . . · pk). Since p receives an infinite number

of messages from pk, the link pk → p is fair. By repeated
application, for each j = k − 1, . . . , 1, the link pj → pj+1

is fair. Thus, in P , (p · . . . · q) is a fair path from p to q and
(q · . . . · pk · p) is a fair path from q to p. Therefore, p and q
are in the same partition —a contradiction.

HB-accuracy: The first part (the heartbeat counter of ev-
ery process is nondecreasing) is obvious since HB[q] can
only be changed in lines 11 and 19. For the second part
(the heartbeat counter of every process in the partition of p
is unbounded), two cases are possible. Let q be a process
in the partition of p. If q = p, then line 11 is executed
infinitely often (since p is correct) and HB[p] at p is un-
bounded. Now, assume q �= p and let (p1 · . . . · pi) be a
simple fair path from p to q, and (pi · . . . · pk) be a simple
fair path from q to p, so that p1 = pk = p and pi = q.
For j = 1, . . . , k − 1, let Pj = (p1 · . . . · pj). By induc-
tion on j, we can show that, for each j = 1, . . . , k − 1,
pj sends messages 〈HBFD, paths〉 to pj+1 an infinite num-
ber of times, where there is a path P in paths such that
P = subpath · Pj . For j = k − 1, this claim shows that
a neighbour of p sends messages M = 〈HBFD, paths〉 to
p an infinite number of times, where there is a path P

′
in

paths such that P
′

= subpath · Pk−1. Since p is correct
and by the fairness property of the links, p receives mes-
sages of the form of M an infinite number of times. Since
q appears after p in Pk−1, HB[q] is incremented an infinite
number of times (line 19). Therefore, HB[q] is unbounded.

5. Disconnection detection

The connectivity information provided by BL (cf. Sec-
tion 3) remains local to the mobile node. Hence, as we want
in our approach to make the difference between a discon-
nection and a failure, the disconnection/reconnection infor-
mation of nodes should be spread over the network.

We consider that when a node is disconnected from the
network, its does not send application messages anymore.
However, this does not mean that control messages sent by
fair links cannot be transmitted; in other words, physical
transmission may be still possible for a while. Contrary
to failures which are unexpected, there is a lapse of time
between the connectivity detection of the mode “discon-
nected” and the effective physical disconnection. Such a
lapse of time can be used for alerting remote processes of
a node disconnection. Clearly, in the case of a sudden dis-
connection, no disconnection message can be sent and the
disconnection will be detected as a failure by the failure de-
tector that runs on correct and connected processes. This
false suspicion will last for the duration of the disconnec-
tion and will be corrected when the disconnected process
reconnects. On the other hand, in the case in which the end-
user disconnects their-self voluntarily, we consider that the
middleware service responsible for isolating the user’s node



1

4

3 5

2

1

3

2

4

5

paths  = {{1}}
1

paths  = {{1,2},{2}}
2

1

4

3

2

1

3 5

2

4

1

4

3 5

2

1

4

3 5

2

paths  = {{1,2,3}{2,3},{3}}

(c)

(g)

{3,4,5,2,1},{4,5,2,1},{5,2,1},{2,1}}
paths  = {{1,2,1},{2,1},{1,2,3,4,5,2,1},{2,3,4,5,2,1},

(a) (b) (d)

5 3

paths  = {{1,2,1},{2,1}} paths  = {{1,2,1},{2,1}}
11

paths  = {{1,2,3,4}{2,3,4},{3,4},{4}}
4

1

paths  = {{1,2,1},{2,1}}
1

(f)

paths  = {{1,2,1},{2,1}}
1

1

4

3 5

2

(e)

paths  = {{1,2,3,4,5}{2,3,4,5},
{3,4,5},{4,5},{5}}5

paths  = {{1,2,3,4,5,2},{2,3,5,2},
2 {2,3,4,5,2},{4,5,2},{5,2},{2}}

mreachable  [3] ={2,4,5}
2

mreachable  [2] ={1,2,3,4,5}
1

Figure 1. Example of reachability set dynamic construction

waits for a short while before actually performing the dis-
connection, thus allowing the transmission of control mes-
sages before the interruption of communication.

Then, we introduce the concept of unreliable vector-
based disconnection detector, VBDD, similar to the one of
unreliable failure detection. When a process is notified of a
disconnection either by BL or voluntarily by the end-user,
VBDD “tries” to transmit the disconnection information to
all the processes by calling QSB. VBDD builds thus a co-
herent distributed view of disconnection events.

By analogy with heartbeat failure detectors, the discon-
nection detector does not output a list of disconnected pro-
cesses, but provides a per process vector, named dv, of dis-
connection/reconnection event counters. If dv[q] of pro-
cess p contains an even value, q is considered to be seen
as connected by p, otherwise it is considered to be discon-
nected. Notice that such an interpretation of the discon-
nection vector’s entries is done afterwards by the partition
detector EPPD. It is worth mentioning that VBDD consid-
ers only disconnection/reconnection of correct processes.
Indeed, by construction, the disconnection detector is not
able to suspect processes of being faulty. So, as mentioned
in Section 2, we assume that every process does not crash
while being disconnected.

The algorithm for process p of our disconnection detec-
tor VBDD for partitionable networks which supports node
mobility is presented in Algorithm 2. It has four tasks. The
principle of the algorithm is to broadcast via QSB the dis-
connection vector dv into VBDD messages when one of
the following events is triggered: New neighbourhood, vol-

untary disconnection, connectivity mode change, or deliv-
ery of a VBDD message with new information. The lo-
cal vector dv keeps information about process disconnec-
tion/reconnection, as previously described. The local vari-
able voluntaryDisc indicates whether the end-user has
requested a voluntary disconnection, and mode is a vari-
able which is updated with the information provided by BL
about the connectivity of node p itself, the latter information
being inferred from raw data from the execution context.
Thus, by considering the information about both voluntary
disconnection and local connectivity, VBDD infers the log-
ical connectivity of p, which it stores in dv[p].

The first task (lines 1–4) corresponds to the code block
executed at the creation of the disconnection detector. Ev-
ery process is considered to be connected at the beginning
of the execution (lines 2–4). The next task (lines 5–10)
allows the end-user to voluntarily disconnect or reconnect
(by opposition to involuntary disconnections or reconnec-
tions detected by BL). The assignment of the variable
voluntaryDisc (line 6) is followed by the propagation of
this new disconnection event to every neighbour (line 9).
Naturally, voluntary disconnections outdo involuntary dis-
connections/reconnections. Thus, when p is not already dis-
connected, either voluntarily or involuntarily (mode �=‘d’),
a voluntary disconnection effectively disconnects the pro-
cess. Similarly, when p is currently voluntarily discon-
nected and involuntarily connected (mode �=‘d’), a volun-
tary reconnection effectively reconnects the process. The
third task (lines 12–18) is executed when there is a change
in the connectivity mode which is detected by BL. If the



node becomes disconnected or connected, and the end-user
did not ask for a voluntary disconnection (condition of the
if at line 13), p broadcasts the new disconnection event
(line 15).

The last task (lines 19–24) is responsible for the updat-
ing of the disconnection vector as a result of the delivery
of a newly-received disconnection vector (dvq), contained
in a VBDD message. At line 20, dv is compared with
dvq. If one or more of the values of dv entries are smaller
than the dvq’s ones, dv is updated with the maximum of
the entries of the two vectors (line 21) and dv is broadcast
(line 22). This new disconnection message is going to up-
date the disconnection vector of other processes that might
not be aware of some disconnection/reconnection events.
At p, VBDD then provides to the upper detector EPPD,
which runs on p, the disconnection vector dv (line 23).

Algorithm 2: Vector-based disconnection detector VBDD
1 upon initialisation do
2 dv[1..|Π|]← {0, ..., 0} {Vector of disc. sequence numbers at p}
3 voluntaryDisc← false {true if voluntary disconnection of p}
4 mode← ‘c’ {connectivity mode at p}
5 upon voluntary disconnection/reconnection by the end user do
6 voluntaryDisc = ¬voluntaryDisc
7 if mode �= ‘d’ then
8 dv[p]← dv[p] + 1
9 broadcast(〈VBDD, dv〉)
10 local_send(EPPD,〈VBDD, dv〉)
11 endif
12 upon local_receive(BL,newMode) do
13 if newMode �= mode ∧ ¬voluntaryDisc then
14 dv[p]← dv[p] + 1
15 broadcast(〈VBDD, dv〉)
16 local_send(EPPD,〈VBDD, dv〉)
17 endif
18 mode← newMmode
19 upon receive(q,〈VBDD, dvq〉) do
20 if ¬(∀r ∈ Π : dv[r] ≥ dvq[r]) then {¬(dv ≥ dvq)}
21 for all r ∈ Π do dv[r]← max(dv[r], dvq[r])
22 broadcast(〈VBDD, dv〉)
23 local_send(EPPD,〈VBDD, dv〉)
24 endif

Sketch of proof VBDD-completeness: In the following,
the generic expression “disconnection event” is used to re-
fer to all VBDD messages. There are four possible cases:
(1) p successfully sends a VBDD message to all its neigh-
bours; (2) p is physically disconnected just before sending
a VBDD message; (3) p successfully sends the disconnec-
tion event to at least one correct and connected process q;
and (4) p moves. In the first case, by the stubborn deliv-
ery property (Section 3 page 3), all the correct processes
in partition(p) eventually deliver a VBDD message con-
taining a disconnection vector greater than or equal to dv.
In the second case, the VBDD message is sent whenever p
reconnects. This is because of the properties of the stub-
born primitive: Messages are saved in the mobile terminal’s
buffer and are sent when the terminal reconnects. p then
successfully disseminates this message or a newer one as
done in the first case. In the third case, if q is not physically

disconnected after delivering the disconnection event of p,
then it successfully disseminates this event as done in the
first case. But, if q is physically disconnected right after the
delivery of the VBDD message of p, again, the disconnec-
tion event or a newer one is disseminated whenever process
p or q reconnects to the network, as in the second case. Fi-
nally, if q successfully transmits the disconnection event to
at least one of its neighbours, this is again the third case
by recursion. Clearly, by the stubborn delivery property, a
VBDD message containing dv or a greater dv is eventually
delivered by all the correct processes in partition(p). In the
last case, neighbourhood changes provoke the broadcasting
of a VBDD message to the new neighbourhood. Clearly, the
decomposition into the first three cases just studied before
is also valid, leading to the same conclusion.

VBDD-accuracy: First of all, notice that the pth entry
of the disconnection vector is only incremented at process
p when p executes the code statements corresponding to
voluntary disconnections/reconnections (line 5) or to invol-
untary disconnections/reconnections (line 12). Next, other
processes update the pth entry of their disconnection vec-
tor only when treating VBDD messages. Therefore, the pth
entry of the disconnection vector of process q (q �= p) is al-
ways less than or equal to the pth entry of the disconnection
vector of p.

6. Partition Detection

A network can become partitioned due to link or node
failures as well as node disconnections. In this section, we
present a generic partition detector EPPD, which estab-
lishes, for process p, the set of suspected processes which
are not in partition(p). To this end, EPPD exploits infor-
mation given by both HBFD and VBDD.

EPPD has been defined based on the completeness and
accuracy properties as described in Section 3. Its specifica-
tion is inspired from [3], where a failure detection for parti-
tionable group systems is presented. The authors formalise
the stability conditions that are necessary for solving group
membership in asynchronous systems. The specification is
close to our approach because it is expressed by the reach-
ability between pairs of processes rather than on individual
processes being correct or crashed. Considering process p,
EPPD suspects those processes that do not belong to the
same partition of p. However, it provides a list of suspected
processes only for stabilised periods. Thus, the objective of
EPPD is to allow algorithms, adapted for partitionable net-
works, to terminate their execution with a smaller number
of processes during stabilised periods, that is during which
partitions stabilise.

Algorithm 3 describes our partition detector EPPD. It
tries to discover network partitions using both the heartbeat
vector and reachability information provided by HBFD, as



well as the disconnection vector provided by VBDD. All
local variables are initialised in the first task (lines 1–5).
The set of suspected processes that do not belong to the
same partition of p is noted as out (for “out” of the par-
tition). Hence, in order to be able to provide such a set,
we have introduced a time-out, which allows to build an
eventually perfect detector based on heartbeat vector val-
ues given by HBFD (see variables HB and prevHB).
At the same time, the reachability information is stored in
variable mreach. EPPD also parses disconnection vectors
provided by VBDD (see variable dv).

Algorithm 3: Eventually Perfect Partition Detector EPPD
1 upon initialisation do
2 out← ∅ {processes suspected to be out of partition(p)}
3 mreach← {∅, ..., ∅} {mutually reachable sets}
4 prevHB[1..|Π|]← {0, ..., 0} {previous heartbeat counters}
5 prevDV [1..|Π|]← {0, ..., 0} {previous disconnection vector}
6 upon local_receive(VBDD,〈VBDD, dv〉) do
7 for all q ∈ Π : prevDV [q] < dv[q] do
8 if dv[q] mod 2 = 1 then {new disconnection}
9 call add(q)
10 else call remove(q) {new reconnection}
11 local_send(HBFD,〈EPPD, out〉)
12 endfor
13 prevDV ← dv
14 upon local_receive(HBFD,〈HBFD, HB, mreachable〉) do
15 mreach← mreachable {new mutually reachable sets}
16 for all q ∈ Π : q �= p do
17 if HB[q]− prevHB[q] < 1 ∧ q /∈ out then {failure suspicion}
18 call add(q)
19 local_send(HBFD,〈EPPD, out〉)
20 else if HB[q]− prevHB[q] ≥ 1∧ q ∈ out∧ dv[p] mod 2 = 0 then
21 call remove(q) {false suspicion}
22 local_send(HBFD,〈EPPD, out〉)
23 endelseif
24 endfor
25 prevHB ← HB
26 procedure add(q)
27 out← out ∪ {q}
28 if q = p then out← Π \ {p} {local disconnection}
29 else {disconnection or failure of a remote process}
30 for all s ∈ Π : s ∈ mreach[q] ∧ s �= q ∧ dv[s] mod 2 = 0 do
31 if �u ∈ Π : u �= q ∧ dv[u] mod 2 = 0 ∧ s ∈ mreach[u] then

out← out ∪ {s}
32 endfor
33 endelse
34 procedure remove(q)
35 out← out \ {q}

The second task of EPPD (lines 6–13) monitors the dis-
connection events received from VBDD. Each entry of the
disconnection vector is analysed. When VBDD at process
p notifies a new disconnection of process q, all processes
considered not to be reachable anymore from p due to the
disconnection of q (line 8), are added to out by the call
of the procedure add (lines 26–33). The latter procedure
parses the reachability sets to detect which are the processes
that became unreachable from p, that is processes that are
no more reachable through any neighbour of p. Then, in
order to forget those processes that were previously reach-
able from p through q (when q was a neighbour of p), the
reachable set mreach[q] is reset. This is done by sending a
message to the local HBFD (line 11). On the other hand,
when the event notified by VBDD is a new reconnection of

q, that is q is no more suspected to be unreachable from p,
q is removed from out (procedure remove at lines 34–35).

The last task (lines 14–25) monitors failure by examin-
ing both the heartbeat counters and reachability sets pro-
vided by HBFD. For each process in Π, the difference
between the values of the new heartbeat counter HB and
the old heartbeat counter prevHB is compared against the
failure detection threshold value 1. In the test of line 17, a
failure suspicion of process q detected at process p is new
if (1) p suspects q (HB[q] − prevHB[q] < 1), and (2) q
is not already suspected (q /∈ out). In this case, process q
and all the processes that became unreachable from p due
to the failure suspicion of q are added to out by the call of
the procedure add. Contrariwise, a false suspicion of pro-
cess q detected at process p (line 20) is new if (1) p does not
suspect q (HB[q] − prevHB[q] ≥ 1), (2) q is already sus-
pected (q ∈ out), and (3) p is not seen as disconnected. In
this case, q is removed from out by the call to the procedure
remove (lines 34–35).

Sketch of proof Strong partition completeness: There are
3 cases to consider: q is included in out (1) either due to
the disconnection detection of q, (2) or due to the failure
suspicion of q, (3) or even due to the partition suspicion
of q following the disconnection or the failure of another
process r. In the first case, from the VBDD-completeness
property, we know that the corresponding disconnection
event of q is eventually delivered by every correct pro-
cess in partition(p). Thus, all the correct processes in
partition(q) execute the code block at lines 6–13, and q
is added to the set out. In the second case, from the HB-
completeness property, we know that the heartbeat counter
of every process q /∈ partition(p) is eventually bounded.
Thus, for all the processes in partition(p), the condition at
line 17 is eventually true and q is added to the set out. The
third case, the partition suspicion of q due to the disconnec-
tion detection or the failure suspicion of another process r,
is included in the previous cases. Process q is added to the
set out by the call of the procedure add(r) at lines 29–31.

Eventual strong partition accuracy: The proof is by con-
tradiction. Assume a correct process q ∈ partition(p) is
permanently suspected by p, that is q ∈ out. From the HB-
accuracy property, we know that the heartbeat counter of ev-
ery process in partition(p) is unbounded. In addition, from
the VBDD-accuracy property and since q ∈ partition(p),
q is connected. Therefore, the condition of the test at line 20
is eventually true and q is eventually removed from the set
out —a contradiction.

7. Related work

The failure detector presented in this paper is based on
seminal work on heartbeat failure detectors by Aguilera,



Chen and Toueg [1, 2]. The distributed system model is
the same and is suitable for mobile ad hoc networks: A par-
tially synchronous model, that is an asynchronous model
augmented with failure detection for partitionable networks.
Even if not mentioned in their papers, heartbeat failure de-
tection algorithms are inherently convenient for tolerating
nodes mobility. We have added a neighbourhood detector
that notifies topology changes of the neighbourhood, and
modified the transmission and the parsing of paths in heart-
beat messages in order to (1) let the heartbeat message re-
turn to the initiator even if the path includes a cycle and to
(2) build the set of processes reachable through neighbours.

In the literature, few unreliable failure detectors explic-
itly target mobile ad hoc networks. In [6], the authors pro-
pose an adaptation of a gossip-based failure detector. Heart-
beat messages are logically stamped, and a vector clock is
piggybacked in every heartbeat message. In order to tolerate
nodes mobility, the failure detector algorithm allows gaps of
some heartbeats between adjacent heartbeat arrivals. Con-
trary to our distributed model, the links are bidirectional.

In [8], an architecture for local failure detection that tol-
erates terminal mobility is presented in the context of sensor
networks. The distributed model assumes that every pro-
cess uses the same time unit. The mobility is said to be
passive, that is nodes are not aware they are moving and
the network does not partition. In our work, the distributed
model is weaker, but assumes that each node is equipped
with a neighbour detector. We do not build such neighbour
detector but claim that network protocols can provide such
information. Furthermore, in [8], the architecture is built
around a local failure detector (correct processes eventually
only suspect processes in the local neighbourhood) and mo-
bility detection layer. The local failure detection is imple-
mented using any �P algorithm, not provided in the paper.
The mobility detection algorithm is a periodic gossip broad-
casting computation with one initiator and with termination
detection.

Concerning disconnection detection, to the best of our
knowledge, there is no deterministic algorithm in the lit-
erature. Concerning partition detection, [3] discusses the
property of a failure detector for partitionable group com-
munication systems, but the authors do not give any imple-
mentation. Our partition detector is inspired by this spec-
ification. In addition, contrary to [3], in our proposition,
communication channels can be unidirectional. Finally, we
see our partition detector as the participant detector intro-
duced in [4]: The set of participants is the set of reachable
processes and the consensus is re-launched when the parti-
tion changes. Our neighbourhood detector conforms to the
information accuracy property of the participant detector.
The second property, namely information inclusion, is not
present in our proposition because the set of potential par-
ticipants Π is assumed to be known in our model.

8. Conclusion

This paper has presented a derived version of a heartbeat
failure detector in which the paths of processes piggybacked
in the heartbeat messages are also parsed to build a topol-
ogy of the network reachable through the neighbours. The
failure detector tolerates the mobility of the processes, and
then topology changes. Since disconnections are frequent
in mobile ad hoc networks, and in order to make the dis-
tinction between failures and disconnections, the paper has
also introduced the concept of unreliable disconnection de-
tection and has presented a vector-based disconnection de-
tector. Our disconnection detector take advantage of a qui-
escent stubborn broadcast primitive to broadcast disconnec-
tion information whenever possible, that is optimistically.
The hints provided by the heartbeat failure detector and by
the vector-based disconnection detector are interpreted by
an eventually perfect unreliable partition detector for wire-
less systems subject to node and link crashes, and subject to
nodes mobility. The partition detector outputs for each pro-
cess p a list of processes suspected to be unreachable, that
is those processes which are suspected of being in another
partition than p’s one.

References

[1] M. Aguilera, W. Chen, and S. Toueg. Using the Heartbeat
Failure Detector for Quiescent Reliable Communication and
Consensus in Partitionable Networks. Theoretical Computer
Science, 220(1):3–30, June 1999.

[2] M. Aguilera, W. Chen, and S. Toueg. On Quiescent Reliable
Communication. SIAM Journal of Computing, 29(6):2040–
2073, Apr. 2000.

[3] Ö. Babaoǧlu, R. Davoli, and A. Montresor. Group Com-
munication in Partitionable Systems: Specification and Al-
gorithms. IEEE TOSE, 27(4):308–336, Apr. 2001.

[4] D. Cavin, Y. Sasson, and A. Schiper. Reaching Agree-
ment with Unknown Participants in Mobile Self-Organized
Networks in Spite of Process Crashes. Technical Report
IC/2005/026, EPFL, Lausanne, Switzerland, 2005.

[5] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for
Reliable Distributed Systems. JACM, 43(2):225–267, Mar.
1996.

[6] R. Friedman and G. Tcharny. Evaluating Failure Detection in
Mobile Ad-Hoc Networks. International Journal of Wireless
and Mobile Computing, 1(8), 2005.

[7] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn Commu-
nication Channels. Technical Report TR97, EPFL, Lausanne,
Switzerland, 1997.

[8] N. Sridhar. Decentralized Local Failure Detection in Dy-
namic Distributed Systems. In IEEE SRDS’06, pages 143–
154, Leeds (UK), Oct. 2006.

[9] L. Temal and D. Conan. Failure, connectivity, and disconnec-
tion detectors. In UbiMob, volume 64 of ACM ICPS, pages
90–97, Nice, France, June 2004.


