
Eventual Leader Election
in Evolving Mobile Networks

Luciana Arantes1, Fab́ıola Greve2, Pierre Sens1, and Véronique Simon1

1 LIP6, Université Pierre et Marie Curie, Inria, CNRS, France
{firstname.lastname}@lip6.fr, Fax: +33-1-44-27-74-95

2 DCC - Computer Science Department / Federal University of Bahia, Brazil
fabiola@dcc.ufba.br

Abstract. Many reliable distributed services rely on an eventual leader
election to coordinate actions. The eventual leader detector has been pro-
posed as a way to implement such an abstraction. It ensures that, even-
tually, each process in the system will be provided by an unique leader,
elected among the set of correct processes in spite of crashes and uncer-
tainties. A number of eventual leader election protocols were suggested.
Nonetheless, as far as we are aware of, no one of these protocols tolerates a
free pattern of node mobility. This paper proposes a new protocol for this
scenario of dynamic and mobile unknown networks.

Keywords: Fault-tolerant leader election, dynamic networks, process mobility,
asynchronous systems

1 Introduction

Dynamic distributed systems based on ad-hoc collections of distributed com-
puting devices, wireless and mobile networks, unstructured peer to peer networks,
opportunistic grids or clouds are supposed to allow participants to access ser-
vices and information regardless of their location, topology or mobility pattern.
Nonetheless, the issue of designing reliable services which can cope with the high
dynamics of these systems is a challenge.

Many reliable distributed services rely on an eventual leader election to coor-
dinate actions. The Ω leader detector has been proposed as a way to implement
such an abstraction [1]. It ensures that, eventually, each process in the system
will be provided by an unique leader, elected among the set of correct processes,
in spite of crashes, uncertainties and dynamics. However, the Ω detector cannot
be implemented in a purely asynchronous system [1]. Thus, some additional as-
sumptions on the underlying system should be made in order to implement it.
With this aim, two orthogonal approaches can be distinguished: timer-based and
message-pattern. The timer-based is the traditional approach and supposes that
channels are eventually timely; the system may be described as being partially
synchronous. An alternative approach assumes that the system satisfies a mes-
sage exchange pattern on the execution of a communication mechanism. While
the timer-based approach imposes a constraint on the physical time (to satisfy
message transfer delays) the message-pattern approach imposes a constraint on
the logical time (to satisfy a message delivery order) [2].

A number of leadership protocols were proposed to implement Ω. The first
timer-based solutions adopted strong assumptions concerning time and channel

2 Eventual Leader Election in Evolving Mobile Networks

reliability [1, 3]; afterwards, they seek to find more and more weaker conditions
regarding synchrony and reliability [4–8]. Nonetheless, the totality of these proto-
cols adopts a classical model of “known” networks in which the set of participants
(Π), its cardinality (n), and maximum number of faults (f) are known.

It happens that the inherent dynamics of the new environments prevent pro-
cesses from gathering a global knowledge of the system properties. The network
topology is constantly changing and the best that a node can have is a local percep-
tion of these changes. Global assumptions, such as the knowledge about the whole
membership, the maximum number of crashes, full connectivity or reliable com-
munication, are no longer realistic. In these environments, message losses, failures,
and partitions are common facts.

That is why recent solutions, aiming to implement Ω in a dynamic system
of “unknown” networks have emerged [9–12]. They seek for models and solutions
with the possible weakest assumptions, regarding the knowledge graph, the com-
munication graph, as well as the channel connectivity and reliability, trying to get
as close as possible to reality. Although these proposals lead to a breakthrough in
the implementation of the leader abstraction with dynamics requirements, none of
them tolerate node mobility.

Very few papers deal with node mobility [13–16]. However, for the best of our
knowledge, none of them consider a system with an arbitrary graph topology that
changes over time. In this paper we provide a first Ω algorithm to tolerate a generic
pattern of node mobility in an unknown network, subject to messages losses and
a topology that changes over time. [16] is perhaps the work with most similarity
with ours. However, differently from our solution which follows a message-pattern
approach, it considers a timer-based one and the existence of stable periods that
should last long enough to elect a leader.

The current paper brings thus two main contributions: (i) The proposition of a
model to solve the leader election problem in mobile dynamic systems. This model,
although simple, captures the requirements to solve the problem and represents the
network by a communication graph with a dynamic topology, in which the relations
between nodes take place over a time span and moreover nodes are mobile. (ii)
A leadership algorithm that implements the Ω class under the proposed model. It
follows the message-pattern approach and does not assume timely links.

2 Related Work

Leadership protocols for “known” networks. A number of leadership pro-
tocols were proposed to implement Ω in an asynchronous system prone to crash
failures and taking into account the classical model of “known” networks in which
Π, n and f are known and moreover the communication graph is complete.

The first solutions [1, 3] adopted strong assumptions concerning reliability and
time. They consider that all links were reliable (no message loss) and eventually
timely; that is, there is an unknown communication bound δ and an unknown
time t0 such that, for any time t ≥ t0, a message sent at time t is received by time
t + δ. Further solutions seek to find more and more weaker conditions regarding
synchrony and channel reliability. Aguilera et al. relax the strong necessity regard-
ing the time constraints of all links, firstly proposing an algorithm in which only
one process should maintain an eventually time link to all the other processes [4].

Eventual Leader Election in Evolving Mobile Networks 3

Afterwards, they weak the condition to an outgoing link, in such a way that one
node (namely, the ♦-source process) should have an eventually outgoing timely
link to all the other processes, while the other links may still lose messages [5,
6]. These conditions ensure that after some time only the common leader sends
message forever.

Another important work in this line is due to Malkhi et al. [7] that proposes a
solution without having any eventual timely links, but which considers eventually
accessible links. Their algorithm assumes that eventually one process (namely,
the ♦-accessible process) can send messages such that every message obtains f
timely responses. One very practical interest of this assumption is that the links
are moving, that is, the f responders need not to be the same and may change
from one message to another. Most recently, [8] presents a solution with a weaker
model that unifies the assumptions made in [5, 6] and [7]. It shows that Ω can be
implemented with at least one process with f outgoing moving eventually timely
links, assuming either unicast or broadcast steps.

An orthogonal and totally different approach for implementing Ω is based on
the satisfaction of a message exchange pattern in the system. It has been proposed
by [17] to implement a ♦S failure detector and exploited so far by [14, 2] to imple-
ment Ω. They show that Ω can be built as soon as the following process behavior
property (namely eventually winning link) is satisfied: There is a correct process p
and a set Q of (f + 1) processes, such that eventually the response of p from any
query issued by one process q ∈ Q is always a winning response (i.e., it is received
by q among the first (n− f) responses).

Leadership protocols for “unknown” networks. As told, some recent works
aiming to implement Ω in a dynamic system of “unknown” networks have emerged.
They seek for models with the possible weakest assumptions, regarding the knowl-
edge and communication graph. In common, they share a reachability communi-
cation assumption between every pair of correct processes.

Jimenez et al. [9] show that it is possible to implement Ω with no knowledge
about the membership of the system, even under the minimal conditions regarding
link synchrony and reliability. They provide an algorithm for Ω considering an
unknown network, a complete communication graph and links that are fair-lossy,
but timely.

Fernandez et al. [10, 11] propose two Ω algorithms with weakest assumptions. A
first algorithm considers a partial unknown network, with a global knowledge about
the lower bound on the number of correct processes (represented by α = n − f)
and fair-lossy timely links. The communication graph is not complete but there
are direct links between a correct process p and a set of correct processes. A sec-
ond algorithm considers unknown networks and a complete communication graph.
Links are fair-lossy and timely composed of output direct links between a correct
process p and every correct process in the system. One important impossibility
result stated by these works is the following: in an asynchronous system, where
processes have no knowledge neither about α (a lower bound on the number of
corrects) nor about t (a lower bound on the number of faults), any eventual leader
protocol must have at least n− f − 1 eventually timely links.

4 Eventual Leader Election in Evolving Mobile Networks

Tucci et al. [12] studies the Ω abstraction in a system with bounded concur-
rency. It assumes an unknown network, but a fully connected dynamic graph. It
provides the first proposal for Ω algorithms for the infinite arrival message-passing
mode [18], in which an infinite number of processes may arrive and depart over
time, but the number of processes which are simultaneously up is finite (including
the corrects).

Leadership protocols with node mobility. [13], Masum et al. present an Ω
algorithm which, contrarily to ours, assumes totally reliable and timely channels.

Cao et al. [14] provide an implementation of Ω for a network composed of
mobile hosts (MH) and mobile support stations (MSS). The eventual leader is an
MH, but it is elected by the MSSs. Differently from our work, the set of MSS forms
a static distributed system of reliable channels in a “known” network.

Melit et al. [15] propose both a model and an Ω algorithm that tolerate node
mobility and partitions. But, to converge, their approach requires that the topology
eventually does not change. Unlike to ours, this last requirement prevents arbitrary
changes in the topology along the system existence.

In [19], the authors propose an Ω specification suited to dynamic systems where
processes can leave and join the system, as well as an eventually timely based
algorithm that implements such a specification. Gomez-Calzado et al. [16] extended
the specification that takes into account graph joins/fragmentations and process
mobility, proposing also a new algorithm. They make a stability assumption to
converge, in which there are no graph partitioning and the existence of bidirectional
connectivity among processes. Differently from our solution, they adopt a timely
assumption during stable periods and some other conditions in the graph.

3 Model for Eventual Leader Election in Mobile Systems

The system is a collection of mobile nodes which communicate by sending and
receiving messages via a network with broadcast facilities. There are no assump-
tions on the relative speed of processes or on message transfer delays, thus the
system is asynchronous. To simplify the presentation, we take the range T of the
clock’s tick to be the set of natural numbers. There is no global clock and processes
do not have access to T : it is introduced for the convenience of the presentation
and make proofs.

3.1 Communication Model

Time-Varying Communication Graph. The network is represented by a commu-
nication graph with a dynamic topology, thus the relations between nodes take
place over a time span T ⊆ N. Following [20], we consider that the dynamics of
the network is represented by a time-varying graph, namely TVG.

Definition 1. [Time-varying graph]. A TVG is a tuple G = (V,E, T , ρ, ζ, ψ),
where: (1) V = Π represents the set of nodes, (2) E ⊆ V × V represents the set
of communication links between nodes, (3) T ⊆ N is a time span, (4) ρ : E×T →
{0, 1} is an edge presence function, indicating whether a given edge e ∈ E is
available at a given time t ∈ T , such that ρ(e, t) = 1 iff e is present at t, otherwise
ρ(e, t) = 0, (5) ζ : E × T → N is a latency function, indicating the time taken to

Eventual Leader Election in Evolving Mobile Networks 5

cross a given edge e if starting at a given time t 3; (6) ψ : V × T → {0, 1} is a
node presence function, indicating whether a given process pi ∈ V is up at a given
time t ∈ T , such that ψ(pi, t) = 1 iff node pi is up at t, otherwise ψ(p, t) = 0.

We use the notation ei,j = (pi, pj) for the edge between pi and pj . We denote
N t

i to be the set of 1-hop neighbors of pi and Et
i to be the set of edges that connect

pi to these neighbors at time t ∈ T . The neighborhood relationship establishes the
edge set, in such a way that pj ∈ N t

i iff ei,j ∈ Et
i , such that ρ(ei,j , t) = 1. The

degree of pi at time t is defined to be Degti = |Et
i |. Given a TVG G, the graph

G = (V,E) is called the underlying graph of G. G should be considered as a sort
of footprint of G which flattens the time dimension and indicates only the pair of
nodes that have relations at some time in T . Journeys can be thought of as paths
over time from a source to a destination.

Definition 2. [Journey] A sequence of couples J = {(e1, t1), (e2, t2), . . . , (ek, tk)},
such that {e1, e2, . . . , ek} is a walk in G, is a journey in G if and only if ρ(ei, ti) = 1
and ti+1 ≥ ti+ζ(ei, ti) for all i < k. Let departure(J) = t1 be the starting date and
arrival(J) = tk + ζ(ek, tk) be the last date of the journey. Let J(i,j) be a journey
from pi to pj; in this case, we say that pi reaches pj or more simply, pi pj. Let
us denote by J ∗G the set of all possible journeys in G, and by J ∗(i,j) ⊆ J

∗
G those

journeys starting at pi and ending at pj.

Channels. Local broadcast between 1-hop neighbors is fair-lossy. This means that
messages may be lost, but, if a correct pi broadcasts m to processes in its neighbor-
hood an infinite number of times, then every pj permanently in the neighborhood
receives m from pi an infinite number of times, otherwise pj is faulty or out of pi’s
neighborhood. That is, if pi starts to send m at time t an infinite number of times,
then, if ρ(ei,j , t

′) = 1,∀t′ ∈ [t; +∞), pj receives m an infinity number of times if
pj is a correct neighbor of pi. In the case of a wireless network, this condition is
e.g. attained if the MAC layer reliably delivers broadcast data, even in presence
of unpredictable behaviors, such as fading, collisions, and interference; solutions
in this sense were proposed in [21, 22].

3.2 Process Model

We consider the finite arrival model [18]: the network is a dynamic system
composed of infinitely many mobile processes; but each run consists of a finite set
Π of n nodes, namely, Π = {p1, . . . , pn}.

The membership is unknown. Processes are not aware about Π or n, because,
moreover, these values can vary from run to run [18]. There is one process per
node; each process knows its own identity, but it does not necessarily know the
identities of the others. A process may fail by crashing, i.e., by prematurely or by
deliberately halting (switched off); a crashed process does not recover. Indeed, a
process can re-connect to the system, but with a new identity, thus, it is considered
as a new process. Processes may re-connect as they wish, but the number of re-
entries is bounded, due to the finite arrival assumption. Until it possible crashes,

3 Note that the effective delivery of a message sent at time t on an edge could be
subjected to further constraints regarding the latency function, such as the condition
that ρ(e) returns 1 for the whole interval [t; t+ ζ(e, t))].

6 Eventual Leader Election in Evolving Mobile Networks

a process behaves according to its specification. A process that does follow its
algorithm specification and never crashes is said to be correct.

Let us thus define the status that a process may exhibit along the system
execution. Informally, a stable process is a correct process that never leaves the
system; otherwise, it is faulty.

Definition 3. [Process status]. Let t ∈ T . A process pi may assume the following
status.

stablet(pi)⇔ ∀t′ ≥ t, ψ(pi, t
′) = 1

faultyt(pi)⇔ (∃s, s < t, ψ(pi, s) = 1) ∧ (∀t′ ≥ t, ψ(pi, t
′) = 0)

The failure pattern of the system, namely F (t), is the set of processes that
have failed in the system by time t. That is, F (t) = {pi : faultyt(pi)}. Similarly,
S(t), is the set of processes that are stable in the system by time t. That is,
S(t) = {pi : stablet(pi)}.

Definition 4. [Process sets]. The set of processes in the system may be divided

into: Stable
def
=

⋃
t∈T S(t) and Faulty

def
=

⋃
t∈T F (t)

3.3 The Ω Class

A leader oracle is a distributed entity that provides processes with a function
leader() that when invoked by p outputs a single process q, denoted the leader.
In the context of a dynamic system, a leader oracle of the Ω class satisfies the fol-
lowing Eventual leadership property: There is a time after which every stable process
always trusts the same stable process. Therefore, the leader() function ensures
that eventually the same leader is trusted by all stable processes in the system;
moreover the leader is stable. Nonetheless, no process knows when such an election
took place.

3.4 Network Connectivity

To solve the eventual leader abstraction, we are mostly interested in the trans-
mission TVG induced by the stable nodes in the system.

Definition 5. [Transmission TVG]. The transmission TVG is a tuple GtrS =
(VS , ES , T , ρtr, ζ, ψ), in which VS = Stable; ES ⊆ VS × VS and ρtr is a trans-
mission edge presence function: ρtr(ei,j , t) = 1 iff a message sent from pi at time
t is delivered to and handled by pj at time t+ ζ(ei,j , t).

We can identify classes of TVG based on the temporal properties established
by the entities. The classes are important because they imply necessary conditions
and impossibility results for distributed computations. Notably, Class 5 (Recurrent

connectivity) [20] is important to our study. It means that, at any point t in time,
the TVG GtrS remains connected over time. Thus, for all stable nodes pi, pj , at any
time, pi pj .

Assumption 1 [Network recurrent connectivity]. In the subsystem of stable nodes,
represented by TVG GtrS , ∀pi, pj ∈ VS, ∀t ∈ T , ∃J ∈ J ∗(pi,pj)

: departure(J) > t.

The recurrent connectivity is a fundamental assumption, mandatory to ensure
reliable dissemination of messages to all stable processes in a dynamic network [20]
and thus to ensure the properties of the leader oracle [1, 9, 23].

Eventual Leader Election in Evolving Mobile Networks 7

4 An Eventual Leader Oracle for Mobile Systems

4.1 Stable Query-Response Communication Mechanism

Our eventual leader oracle solution is based on the message pattern approach [17]
and uses, to this end, a local query-response communication mechanism [23]
adapted to a network with unknown membership. At each query-response round, a
node systematically broadcasts a query message to the nodes in its neighborhood
until it possibly crashes or leaves the system. The interval between two consecu-
tive queries is finite but arbitrary. Each couple of query-response messages is
uniquely identified in the system. A process pi launches the primitive by sending
a query(m) with a message m. When a process pj delivers this query, it updates
its local state and systematically answers by sending back a response(m′) with a
message m′ to pi. Then, when pi has received at least αi responses from different
processes, the current query-response terminates. Without loss of generality,
the response for pi itself is among the αi responses.

Formally, the query–response primitive has the following properties:
(i) QR-Validity: If a query(m) is delivered by process pj , it has been sent by

process pi;
(ii) QR-Uniformity: A query(m) is delivered at most once by a process;
(iii) QR-Termination: Let t be the time at which a process pi terminates to

send a query. If faultyt(pi) does not hold, then that query generates at least αi

response(m′) messages from a subset of Xi processes, |Xi| ≥ αi.
An implementation of a couple of query-response communication over fair-

lossy local channels can be done by the repeated broadcast of the query by the
sender pi until it has received at least αi responses from its neighbors. Since the
communication pattern followed is local, αi is defined locally as a function of the
expected number of stable known neighbors with whom pi may communicate at
the time t in which the query is issued. We consider that fi is the maximum
number of faulty processes in pi’s neighborhood. Thus, since the set of responses
received by pi includes its own response, αi = |N t

i | − fi + 1, which guarantees the
liveness of query-response rounds. To ensure that at least one stable node pj
(pj 6= pi) receives the query and sends a response to pi, αi > fi + 1.

The local choice for αi changes from existing solutions which consider a global
value either proportional to the total number of correct processes [17] or the total
number of stable processes [23] or the total number of faults [14] in the system.
Moreover, it follows recent works on fault tolerant communication in radio net-
works which propose a “local” fault model, instead of a “global” fault model, as an
adequate strategy to deal with the dynamics and unreliability of wireless channels
in spite of failures [22]. To reliably delivery data in spite of crashes, the maximum
number of local failures should be fi < Degti/2 [24, 25].

The following property holds:

Property 1. Stable Termination Property (SatP). Let pi be a node which
issues a query. Thus, ∃pj ∈ Stable, pj 6= pi, which receives that query.

For the leadership problem, the stable termination is necessary for the reliable
dissemination of the information to the whole network and consequent satisfaction
of the properties. It is a guarantee that information from/to pi is going to be

8 Eventual Leader Election in Evolving Mobile Networks

sent/received to/from at least a stable pj in its neighborhood. Moreover, it ensures
that the first query issued by pi, when it joins the network, will be delivered by
at least one stable process in such a way that pi may take part to the membership
of the system.

4.2 Behavioral Property

Instead of synchrony assumptions, to ensure the accuracy of the election, we
have adopted a message pattern model which establishes conditions on the logical
time the messages are delivered by processes. These are unified in the stabilized
responsiveness property or SRP.

Property 2. Stabilized Responsiveness Property (SRP). Let Xt
j be the set

of processes from which pj has received responses to its last query sent before t.
Process pi satisfies SRP at time t:
SRPt(pi) iff stablet(pi) ∧ ∀pj ∈ Π (∃ei,j ,∃t′ ≥ t, ρtr(ei,j , t

′) = 1)

⇒ ∀t′′ ≥ t′ + ζ(ei,j , t
′), pi ∈ Xt′′

j

SRPt(pi) states that there exists a time t after which all nodes of pi’s neigh-
borhood receive, to every of their queries, a response from pi which is always
among the first αj responses to the query. Similarly to the winning channel ap-
proach, defined in [2], the response of pi is always a winning response. In other
words, SRPt(pi) denotes the ability of a stable node pi to eventually always reply,
among the first αj nodes, to a query sent by pj . In this case, the channel between
pi and pj is an eventually winning channel. Moreover, as nodes may move, the
SRPt(pi) states as well that neighbors of pi eventually stop moving outside pi’s
neighborhood.

To solve Ω, the SRP(pi) property should hold for one stable node pi in the
system; thus preventing a probable leader pi to be permanently demoted. As a
matter of comparison, in the timer-based model, this property would be: there
is a time t after which the output channels from a stable node pi to every other
neighbor pj that communicates with pi are eventually timely.

4.3 An Eventual Leader Election Algorithm

Algorithm 1 describes a protocol for implementing Ω in a mobile system sat-
isfying the model, properties, and assumptions stated in Sections 3 and 4.

Notations. The algorithm uses the following variables and functions:

– midi: a counter used to timestamp every couple of query-response messages.
Before broadcasting a new query, pi increments midi. These two operations
are atomically performed.

– local knowni: the current knowledge of pi about its neighborhood, i.e., the
set of nodes that communicated directly with pi. It is composed of tuples of
the form 〈midj , pj〉: midj is associated with the greatest timestamp value of a
query or response message received by pi from pj .

– global knowni: the current knowledge of pi about the membership of the sys-
tem. Similarly to local knowni, it is composed of tuples of the form 〈midj , pj〉.

– punishi: a set of tuples of the form 〈ct, p〉 where ct is a punish counter and p
the identity of the punished node.

Eventual Leader Election in Evolving Mobile Networks 9

– recvfromi: the set of processes that replied to the last query of pi.
– MaxKnown(): a boolean function that checks if pi has the greatest timestamp

associated to a message received from pj . It is used to verify if a given neighbor
process has moved or not.

– UnionMax(set1, set2, ...): a function that performs the union of sets whose tu-
ple elements have the form 〈ct, p〉. If 〈−, p〉 belongs to several sets, the function
considers the one whose value ct is the greatest one.

– Update State(): a function used to update the state of pi’s sets with the most
recent information. It keeps the tuples 〈ct, p〉 with the greatest counters in
these sets. It is used to evaluate the contents of a receiving message (query
or response).

– leader(): function that returns the current leader.

Underlying principle. The algorithm elects the leader on a basis of a punishment
procedure and on the periodic exchange of query-response messages. Processes
exchange these messages to know each other, to show that they are alive, as well as
to share the necessary information to elect the leader. If a query sent by process
pi is not responded by a process pj that pi locally knows, then pj is punished by pi.
Each time pi punishes pj it increments the counter ctj associated to pj in punishi.

The rationale behind the punishment procedure is that a process that fail
will be infinitely often punished. The algorithm thus will eventually elect a sta-
ble process that has the smallest punish counter. To ensure that all the nodes
will elect the same leader, processes should exchange their information regard-
ing locally known processes and their respective punishment counters. Thus, each
query or response message sent by pi, beyond the message id (midi), carries the
sets punishi and global knowni. Since the network remains connected over time
(Assumption 1), the information exchanged will achieve all stable processes.

To tolerate the mobility of nodes, the algorithm makes use of the message coun-
ters. The timestamp of the last message received from processes is used to avoid
false suspicions in case of mobility. If pj is in local knowni and if it moves from
pi’s neighborhood, then it will be punished by pi according to the last message
received. But, as soon as pi gets the information (by the contents of a received
message) that another node has received a message from pj with a greater times-
tamp, pi stops to punish pj . In this case, pi suspects pj to have moved from its
neighborhood and considers that it is still alive in the network.

Description. Initially, pi sends a first query to introduce itself to the network
(line 8). Then, four tasks are launched: T1, T2, T3 and T4.

Task T1 [Punishment] : This task is made up of an infinite loop. At each round,
process pi waits for at least αi responses, which includes pi’s own response. For
each response(midj , punishj , global knownj) not received from pj such that pj
is considered as a current neighbor of pi (i.e., it belongs to local knowni) and pj is
not suspected to have moved from pi’s neighborhood (i.e., pi has a greater message
timestamp received from pj than the other processes of which pi is aware), then
pj will be punished by pi (lines 15 – 19). Notice that if it is the first time that pj
is punished by pi, then, its punish counter will be equal to 〈cmin + 1, pj〉 (line 17).
Then, midi counter is incremented and a query(midi, punishi, global knowni)
message is sent to all nodes in pi’s neighborhood.

10 Eventual Leader Election in Evolving Mobile Networks

Algorithm 1 Eventual Leader Election for Mobile Networks

1 Init:
2

3 punishi ← {〈0, i〉}
4 local knowni ← {〈midi, i〉}
5 global knowni ← {〈midi, i〉}
6 recvfromi ← ∅
7 midi ← 1
8 broadcast query(midi, punishi, global knowni)
9

10 Task T1: [Punishment]
11 Repeat forever
12 Wait until |recvfromi| ≥ αi

13 { Punishing known processes which did not responded }
14 If ∀pj : 〈−, pj〉 ∈ local knowni ∧ pj 6∈ recvfromi ∧MaxKnown(pj) then
15 If 〈0, pj〉 ∈ punishi then
16 cmin ← min c : 〈c,−〉 ∈ punishi

17 replace in punishi 〈0, pj〉 by 〈cmin + 1, pj〉
18 Else
19 replace in punishi 〈v, pj〉 by 〈v + 1, pj〉
20 recvfromi ← ∅
21 midi ← midi + 1
22 broadcast query(midi, punishi, global knowni)
23 End repeat
24 Task T2: [Response]
25 upon reception of response (midj , punishj , global knownj) from pj
26

27 UpdateState(midj , punishj , global knownj , pj)
28 recvfromi ← recvfromi ∪ {pj}
29

30 Task T3 [Query]
31 upon reception of query (midj , punishj , global knownj) from pj
32

33 UpdateState(midj , punishj , global knownj , pj)
34 send response (midi, punishi, global knowni) to pj
35

36 Task T4 [Leader Election]
37 upon the invocation of leader()
38

39 return l such that 〈c, l〉 = Min(punishi)
40

41 MaxKnown (p) [Max counter associated with p]
42

43 If x : 〈x, p〉 ∈ local knowni ≥ y : 〈y, p〉 ∈ global knowni then
44 return true
45 Else
46 return false
47

48 UpdateState (midj , punishj , global knownj , pj) [Union of states]
49

50 local knowni ← UnionMax(local knowni, {〈midj , pj〉})
51 global knowni ← UnionMax(global knowni, global knownj , {〈midj , pj〉})
52 punishi ← UnionMax(punishi, punishj)
53

Eventual Leader Election in Evolving Mobile Networks 11

Task T2 [Response] : In this task, node pi handles the reception of a response
message sent by pj containing midj , as well as the sets punishj and global knownj .
Process pi calls upon Update State() to update its state about punishment of pro-
cesses, membership, and neighborhood with more recent information coming from
pj . It also includes pj with the respective midj in the set of processes that answered
to its last query (local knowi), as well as in the set that keeps its membership
knowledge (global knowni).

Task T3 [Query] : In this task, node pi handles the reception of a query mes-
sage sent by pj containing midj , as well as the sets punishj and global knownj .
Similarly to T2, node pi updates its state about punishment of processes, mem-
bership, and neighborhood with more recent information coming from pj . It also
answers pj ’s query with a response message timestamped with its midi counter.

Task T4 [Leader] : This task handles the invocation of leader(). Whenever
called, the leader() function returns the process with the smallest counter in
punishi, thanks to the Min(punishi) function (line 39). In the case that more
than a node satisfies such a condition, the identities of the nodes break the tie.
Eventually, all nodes will elect the same leader, as proved in the next section.

5 Proof of Correctness

We present a sketch of proof that Algorithm 1 ensures the eventual leadership
property. We consider a mobile network of unknown membership that satisfies the
model and assumptions stated in Sections 3 and 4.

Notations.
(i) The state of a process pi in time t is represented by the contents of its

variables at t.
(ii) Let seti be one of the sets local knowni, global knowni or punishi of

process pi. We denote setti this set at time t. Moreover, setti(pj) = c if the value
〈c, pj〉 ∈ seti at time t; otherwise setti(pj) = ⊥. We denote set∗i (pj) as the set of
all values of setti(pj) such that t ∈ T and set∗∗(pj) as the set of all set∗i (pj), i ∈ Π.

(iii) Let m be a message sent by pi. Then, m is either a query or a response
message and it contains midi and the sets punishi and global knowni.

(iv) We consider that process pj punishes pi if it executes lines 17 or 19 in-
creasing the counter of pi in its punishj set.

(v) Let us denote the set SBP as the subset of processes that have a bounded
value on the punish set of all processes, SBP = {pi ∈ Π | punish∗∗(pi) is bounded}.

Lemma 1. Let J(i,j) be a journey from pi to pj in the TVG GtrS . Let t0 be the
departure and tf be the arrival of J(i,j). Let set be either punish or global known.

For any process pk, if sett0i (pk) 6= ⊥ then set
tf
j (pk) 6= ⊥ ∧ settfj (pk) ≥ sett0i (pk).

Proof. We first show that the lemma holds for the one-step journey J(i,j) =
{(ei,j , t0)}, i.e., there is a message m sent by pi at time t0 which is delivered and
handled by pj at time tf = Arrival(J(i,j)). We denote punishm and global knownm

the sets punisht0i and global knownt0
i carried by m respectively. Upon recep-

tion of m, pj calls UpdateState() and the result of UnionMax(setj , setm, ...) is

stored in setj . Thus, after m is handled, if sett0i (pk) 6= ⊥, then set
tf
j (pk) 6= ⊥ ∧

12 Eventual Leader Election in Evolving Mobile Networks

set
tf
j (pk) ≥ sett0i (pk). Moreover, punishi is modified either (i) when pi punishes

some process or (ii) upon reception of m. In (i), punishi is updated in line 17
and 19. In both cases, the associated counter values are increased by at least one.
In (ii), the result of UnionMax(punishi, punishk) is stored in punishi. There-
fore, values in punishi never decrease locally. On the other hand, global knowni is
only updated on reception of a message and, thus, similarly to punishi, values in
global knowni never decrease as well. Since in a journey, the arrival of a message
precedes the departure of the message that follows, by induction and transitivity
of inequality, the lemma holds for a journey of any step size.

Observation 1. Let midi = c at time t. If a process pj does not receive any

message sent by pi after t then local knownt
′

j (pi) ≤ c or local knownt′

j (pi) = ⊥,
∀t′ ≥ t. This follows since local knownj(pi) is updated by pj upon the reception of
a message from pi and, from assumption, the value midm carried by this message
is such that midm ≤ c.

Lemma 2. Let pi be a stable process and t ∈ T . If SRPt(pi) then there is a time
u ≥ t after which no process punishes pi.

Proof. Let pj be a process. Three cases are possible.
Case 1: pj is faulty. If faultyu(pj), u ≥ t, then pj will not punish pi after u.
Case 2: pj is stable and it receives a message sent from pi at time t′ > t. Since

SRPt(pi) holds and t′ > t, ∀u ≥ t′ + ζ(ei,j , t
′) pi ∈ Xu

j . Thus, after u, because
pi ∈ recvfromj , the predicate of line 14 will always return false and pj will never
punish pi after u.

Case 3: pj is stable and it never receives a message from pi, sent after t. In
this case, (i) either pj does not receive any message from pi or (ii) pj receives
at least one message from pi. In (i), if pj never receives a message from pi at
any time, the latter will never be added to the set local knownj . Therefore, the
predicate of line 14 always returns false and pj never punishes pi. In (ii), if pj
receives at least one message from pi, then pi sent this message at time t at the
latest. Let midi = c at time t. Due to Observation 1, local knownt

j(pi) ≤ c. As
pi is stable, there is a time t′ > t such that midi = c + 1 and pi broadcasts
a query. Upon reception of its own response at time t′′ > t′, pi updates its
local state. In particular global knownt′′

i (pi) is updated to c + 1 (line 51). Fur-
thermore, Assumption 1 (recurrent connectivity) ensures that there is a journey
J(i,j) from pi to pj , such that departure(J(i,j)) > t′′ and arrival(J(i,j)) = u. Ac-

cording to Lemma 1, global knownuj (pi) ≥ global knownt′′

i (pi) = c + 1. Thus,

∀u′ ∈ T, u′ > u ⇒ global knownu′

j (pi) > c ≥ local knownt
j(pi) and, thus, every

call to Maxknown() will always return false. It follows then that after u, pj never
punishes pi.

We have shown that for any process pj , there is a time u after which pj never
punishes pi. As there is a finite number of processes, there is a finite time after
which no process punishes pi.

Lemma 3. Let pi be a process such that no process punishes pi after a finite time
t. Thus, pi ∈ SBP .

Eventual Leader Election in Evolving Mobile Networks 13

Proof. Since after t, no process punishes pi, a process pj punishes pi at most
the number of times pj broadcasts a query till t. As there is a finite number
of processes (from the finite arrival assumption), over all processes, the overall
total number of times pi is punished is finite. Let puni be this number and let
max puni be the maximum value by which the punish counter of pi is incremented
or updated ∀pj ∈ Π (note that at each punish step, the counter associated to pi
is either incremented by 1 at line 19 or set to cmin + 1 at line 17). Then, as the
initial value of every punish counter is 0, we have ∀s ∈ T, ∀pj ∈ Π, punishsj(pi) ≤
puni ∗max puni ∨ punishsj(pi) = ⊥; and, by definition of SBP , pi ∈ SBP .

Lemma 4. Let pi ∈ SBP . There is a time t after which pi is not punished by any
process.

Proof. The proof is by contradiction. Let us assume that ∀t ∈ T, ∃(t′, pj) ∈ T ×Π,
such that t′ > t and pj punishes pi at time t′. Hence, process pi is punished
infinitely often and, as the number of processes is finite, there is a process pj that
punishes pi infinitely often. It follows, therefore, that punish∗j (pi) is not bounded,
which is a contradiction.

Theorem 1. SBP is the set of processes that are eventually not punished.

Proof. Theorem 1 follows directly from lemma 3 and lemma 4.

Lemma 5. Let pj ∈ Faulty. pj will be punished an infinite number of times by
at least one process pi ∈ Stable. Thus, it follows that SBP ⊂ Stable.

Proof. When pj connects to the system, it broadcasts at least one query, corre-
sponding to the first message sent upon execution of line 8. Let faultyt(pj) and
last midj be the last value of midj before t. Since the increment of variable midj
and the query (lines 7–8 or 21–22) are performed atomically (i.e., pj does not
crash between these two operations), pj broadcasts a query with midj = last midj
before crashing. Furthermore, due to the stable termination Property 1 (SatP),
there is at least one process pi ∈ Stable that receives this query. Thus, there is a
time t′ such that local knownt′

i (pj) and global knownt′

i (pj) equal to last midj .
We remark (lines 50 and 51) that no process pk inserts in its global knownk set

neither in its local knownk set the tuple 〈midj , pj〉, such that midj > last midj ,
since last midj is the greatest value of midj of any message received from pj . Thus,
after t′, each call by process pi to the function MaxKnown(pj) returns true. Let

be t′′ = max(t, t′). Since stablet
′′
(pi), the number of queries sent by pi after t′′ is

infinite. Moreover, since pj crashed at time t ≤ t′′, pj does not respond to any of
those queries. Therefore, pi will punish pj infinitely often.

Lemma 6. Let pj /∈ SBP be a process such that ∃pi, pi ∈ Stable which punishes
pj infinitely often. Then, ∀pk ∈ Stable, punish∗k(pj) is unbounded.

Proof. Since pi punishes pj infinitely often, punish∗i (pj) is unbounded. Let pk ∈
Stable, pk 6= pi. Let us show that punish∗k(pj) is unbounded as well. Let b ∈ N,
since punish∗i (pj) is unbounded, there is a time t ∈ T such as punishti(pj) ≥ b.
From Assumption 1 (recurrent connectivity) there is a journey J(i,k) from pi to
pk, such that t′ = departure(J(i,k)) > t and arrival(J(i,k)) = t′′. As punish values

increase over time and according to Lemma 1, punisht
′′

k (pj) ≥ punishti(pj) > b.
We conclude then that punish∗k(pj) is unbounded.

14 Eventual Leader Election in Evolving Mobile Networks

Lemma 7. Let pi ∈ SBP . There is a time t after which ∀pj , pj ∈ Stable will
carry the same punishtj(pi) value for pi and this value never changes after t.

Proof. Since pi ∈ SBP , ∃b ∈ N, such that ∀s ∈ T, ∀pj ∈ Π , punishsj(pi) <
b ∨ punishsj(pi) = ⊥. This remains true if pj ∈ Stable. Furthermore, there is
a time when pi adds itself to punishi (line 3). Thus, punish∗∗(pi) 6= ∅ and it is
bounded. As punish∗∗(pi) is composed of integer values, there exists a maximum
value; let max punish(pi) be such a maximum value. Let pj be the stable process
such that punishsj(pi) = max punish(pi). Due to Assumption 1 (recurrent connec-
tivity), there is a journey J(j,k) from pj to pk, such that departure(J(j,k)) > s and

arrival(J(j,k)) = s′, s′ > s. On the one hand, following Lemma 1, punishs
′

k (pi) ≥
max punish(pi). On the other hand, since punishs

′

k (pi) ≤ max punish(pi), we

conclude that punishs
′

k (pi) = max punish(pi). Moreover, the punish values in-

crease over time. Thus, ∀s′′, s′′ ≥ s′ ⇒ punishs
′′

k (pi) = max punish(pi). Since
there is a finite number of stable processes, ∀pk ∈ Stable, there is a time s′k
where punish

s′k
k (pi) = max punish(pi). Let be t = max(s′k|pk ∈ Stable) then

∀pk ∈ Stable, ∀t′ ≥ t, punisht′k (pi) = max punish(pi).

Theorem 2. Algorithm 1 satisfies the eventual leadership property.

Proof. From assumption, there is at least one process pi ∈ Stable satisfying
SRPs(pi) at time s. According to Lemma 2, pi ∈ SBP ; thus, SBP 6= ∅. Accord-
ing to Lemma 7 and the finite arrival assumption, ∃t ∈ T, ∀t′ > t,∀pi ∈ SBP,∀pj ∈
Stable, punisht

′

j (pi) = max punish(pi). LetmaxSBP = Max(max punish(pk)),
pk ∈ SBP . From Lemma 6, the finite arrival assumption and the fact that the pun-
ish values never decrease, ∃t′′ ∈ T, ∀pj ∈ Stable,∀pk /∈ SBP,∀t′ > t′′ maxSBP

< punisht
′

j (pk). Thus, there exists a time u = max(t, t′′) after whichMin(punishj)
will return the same tuple 〈c, pi〉, ∀pj , such that pi ∈ SBP . Hence, upon invok-
ing the leader() function after u, all stable processes will return the same process
identity as the leader.

6 Conclusion

This paper has provided a model and an algorithm to solve the eventual leader
election problem in mobile dynamic systems, in which both the network topol-
ogy and relations between mobile nodes evolve over time. The algorithm imple-
ments the Ω class, following the message-pattern approach and exploiting the TVG
framework to represent the dynamics of the network topology. As a future research,
we plan to extend the results by also considering the timer-based approach.

References
1. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.

JACM 43(2) (March 1996) 225–267
2. Mostefaoui, A., Raynal, M., Travers, C.: Time-free and timer-based assumptions can

be combined to obtain eventual leadership. IEEE TPDS 17(7) (2006) 656–666
3. Larrea, M., Fernandez, A., Arévalo, S.: Optimal implementation of the weakest

failure detector for solving consensus. In: SRDS 2000. (2000) 334–334
4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election.

In: Proc. of the 15th Int. Conf. on Distributed Computing. (2001) 108–122

Eventual Leader Election in Evolving Mobile Networks 15

5. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. In: PODC 2003, ACM
Press (2003) 306–314

6. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: PODC 2004.
(July 2004) 328–337

7. Malkhi, D., Oprea, F., Zhou, L.: Meets paxos: Leader election and stability without
eventual timely links. In: DISC 2005. (2005) 199–213

8. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model
for implementing ω and consensus. IEEE Transactions on Dependable and Secure
Computing 6 (2009) 269–281

9. Jiménez, E., Arévalo, S., Fernandez, A.: Implementing unreliable failure detectors
with unknown membership. Inf. Process. Lett. 100(2) (2006) 60–63

10. Fernandez, A., Jimnez, E., Raynal, M.: Eventual leader election with weak assump-
tions on initial knowledge, communication reliability, and synchrony. In: DSN. (2006)
166–175

11. Fernandez, A., Jimnez, E., Raynal, M.: Eventual leader election with weak assump-
tions on initial knowledge, communication reliability, and synchrony. Journal of
Computer Science and Technology 25(6) (2010) 1267–1281

12. Tucci-Piergiovanni, S., Baldoni, R.: Eventual leader election in infinite arrival
message-passing system model with bounded concurrency. In: EDCC 2010. (2010)
127 –134

13. Masum, S.M., Ali, A.A., Touhid-youl Islam Bhuiyan, M.: Asynchronous leader elec-
tion in mobile ad hoc networks. In: AINA Conference. (2006) 827–831

14. Cao, J., Raynal, M., Travers, C., Wu, W.: The eventual leadership in dynamic mobile
networking environments. In: PRDC Conference. (2007) 123–130

15. Melit, L., Badache, N.: An Ω-based leader election algorithm for mobile ad hoc
networks. In: 4th Networked Digital Technologies Conf. (2012) 483–490

16. Gomez-Calzado, C., Larrea, M., Raynal, M.: Fault-tolerant leader election in mobile
dynamic distributed systems. Technical report, University of the Basque Country
UPV/EHU (2013)

17. Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: DSN Conference. (2003) 351–360

18. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures.
SIGACT News 35(2) (2004) 36–59

19. Larrea, M., Raynal, M., Soraluze, I., Cortiñas, R.: Specifying and implementing an
eventual leader service for dynamic systems. Int. J. Web Grid Serv. 8(3) (2012)
204–224

20. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Adhoc-Now Conference. (2011) 346–359

21. Min-Te, S., Lifei, H., A. Arora, A., L.Ten-Hwang: Reliable mac layer multicast in
ieee 802.11 wireless networks. In: ICPP Conference. (2002) 527–536

22. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: PODC 2004. (2004) 275–282

23. Mostefaoui, A., Raynal, M., Travers, C., Patterson, S., Agrawal, D., Abbadi, A.:
From static distributed systems to dynamic systems. In: SRDS 2005. (2005) 109–118

24. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: PODC
2005, ACM (2005) 138–147

25. Bhandari, V., Vaidya, N.H.: Reliable broadcast in radio networks with locally
bounded failures. IEEE TPDS 21 (2010) 801–811

