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Abstract—This paper presents a thorough performance eval-
uation comparison study of three widespread used gossip
probabilistic algorithms over well-known random graphs that
represent some large-scale network topologies: Bernoulli (or
Erdős-Rényi) graph, random geometric graph, and scale-free
graph. In order to conduct such a comparison fairly, notably
in terms of reliability, we propose a new parameter, denoted
effectual fanout. For a given topology and gossip algorithm, the
effectual fanout characterizes the mean dissemination power
of infected sites. For large-scale networks, the effectual fanout
has thus a strong linear correlation with message complexity.
It enables the accurate analysis of the behavior of a gossip
algorithm over a topology while also simplifies the theoretical
comparison of different gossip algorithms on this topology.
Based on extensive comparison simulation experiments, that
use the effectual fanout, on top of OMNet++, we discuss the
impact of topologies and gossip algorithms on performance,
and of how to combine them to have the best gain in terms of
reliability.

I. INTRODUCTION

Information dissemination, in which a site attempts to
broadcast messages to all the other sites of the network,
is essential for many distributed systems and applications,
including large-scale ones. On the other hand, the latter
usually require a dissemination protocol that provides high
reliability, which expresses the percentage of broadcast mes-
sages that are received by all sites of the system, with both
low latency and message complexity.

A straightforward but inefficient way to disseminate infor-
mation network wide is pure flooding protocol in which upon
the first reception of a message, every site of the network
relays it once to its respective neighbors [18]. However,
in this case, a very large number of messages may be
generated, which entails broadcast storm problems [23]. To
mitigate this undesirable phenomenon, probabilistic gossip
algorithms have emerged as a solution to implement effective
broadcast protocols, highlighted by their simplicity, high re-
liability, and scalability [13], [30]. Either applied to overlay
networks [10], [12], [19], or exploited in wireless ad hoc and
sensor networks [4], [15], [17], [29], [31], they reduce the
number of messages and well satisfy application constraints.
Nevertheless, probabilistic gossip protocols do not always
ensure 100% of reliability. Hence, aiming a tradeoff between
reliability and message complexity, algorithms found in
the literature have input parameters of different natures.
For instance, fixed fanout gossip (GossipFF) [10], [12],
[19], probabilistic edge gossip (GossipPE) [15], [29], and
probabilistic broadcast gossip (GossipPB) [4], [17], [31]

are well-known gossip algorithms: GossipFF applies as
input the fanout, which is the number of per site target
neighbors to send the message; in GossipPE, based on an
input probability parameter, a site randomly chooses those
edges over which received message should be retransmitted;
in GossipPB, the input parameter defines the probability that
a site broadcasts the message to all its neighbors.

Besides gossip configuration parameters, network topolo-
gies have their own proprieties (e.g., the degree distribution,
the edge dependency, etc.), which also have an impact in the
performance of gossip algorithms such as message complex-
ity, reliability, and latency. Thus, in this paper, we consider
the following widespread studied random graphs: Bernoulli
(or Erdős-Rényi) graph B (N, pN ) [8], random geometric
graph G (N, ρ) [25], and scale-free graph S (N,m) [2]
which respectively model peer-to-peer system [19], wireless
sensor network [17], and ad hoc network [15]

Considering the above discussed differences, we propose
in this work to compare the performance of gossip prob-
abilistic algorithms on different topologies. However, in
order to carry out a fair comparison, we have introduced
a new parameter, denoted effectual fanout which expresses
the average number of messages per retransmission. It char-
acterizes, therefore, the potential mean dissemination power
of infected sites, i.e., those that received at least once the
message. In large-scale systems, the effectual fanout has thus
a strong linear correlation with message complexity metric
as we show and prove in Section V. For a given value, the
effectual fanout can be analytically calculated in function of
the input parameter of the corresponding gossip algorithm
(e.g., fanout, probability, etc.) and thus it simplifies the
theoretical comparison of different gossip algorithms on a
fixed topology. The advantage of using the effectual time
compared to message complexity metric is that the former
can be easily calculated analytically while the latter requires
to know the total number of messages generated by each
algorithm in function of the topology.

Exploiting the effectual fanout parameter, we present in
this paper results of an extensive performance evaluation,
conducted on top of OMNET++ [1], which compare Gos-
sipFF, GossipPE, and GossipPB algorithms over the above
mentioned three topologies. To the best of our knowledge,
it is the first time that such a comparison study has been
proposed.

The remainder of this paper is organized as follows.
Section II and III give an overview of our system random



networks and probabilistic gossip algorithms. Section IV
introduces the performance metrics. The effectual fanout is
presented in Section V. Section VI shows simulation results
on OMNET++ while Section VII discusses some related
work. Finally, Section VIII concludes this work.

II. SYSTEM TOPOLOGIES

In the sequel, | l | denotes the size of set l.
We consider a large-scale dissemination system Π com-

prised of N sites {s1, s2, · · · , sN}. The set of all si’s
neighbors is denoted Λi and Vi =| Λi | denotes the degree
of si; P (k) represents the degree distribution of a site
with k neighbors (i.e., the fraction of sites with degree
k) in the graph and V̄ is the mean degree. Therefore,

V̄ =
N−1∑
k=0

P (k) · k. There is no message loss.

Three random topologies are taken into account in our
study: Bernoulli (or Erdős-Rényi) graph B (N, pN ) [8],
random geometric graph G (N, ρ) [25], and scale-free graph
S (N,m) [2]. See Figures 1(a), 1(b), and 1(c) respectively.

Bernoulli (or Erdős-Rényi) graph B (N, pN ) is a random
bidirectional graph constructed by connecting sites randomly
with probability pN , independently of other edges. Based
on [9], we suppose that pN > (1+ε)·ln(N)

N , with a positive
constant ε, aiming at having a giant component which would
have N sites with Poisson-law degree distribution P (k) =

exp
(
−V̄
)
V̄ k

k! , where V̄ = pN ·N .
The random geometric graph G (N, ρ) is a random bidi-

rectional graph drawn on a bounded region. In this article,
such a region is a rectangular plane with length a and
width b. G (N, ρ) is generated by placing sites uniformly at
random and independently on the region. Furthermore, two
sites are connected, whenever the distance between them
is at most ρ. Moreover, based on [26], we can fine-tune

ρ >
√

(1+ε)·ln(N)·a·b
N ·π with a positive constant ε in order to

ensure that the graph is connected with Poisson-law degree
distribution [20] such that P (k) = exp

(
−V̄
)
V̄ k

k! , where
V̄ = N ·π·ρ2

a·b − 1 when ignoring the border effect of the
region in G (N, ρ).

Scale-free graph S (N,m) is a random bidirectional graph
generated by Barabási-Albert model [2]. Starting from a
small clique of m0 sites, at every time step a new site is
added such that its m (6 m0 � N ) edges connect it to m
different sites already present in the graph. The probability p
that a new site will be connected to an existed site is propor-
tional to the degree of the latter. This is called preferential
attachment. This process ensures that the graph is connected
with power-law degree distribution approximately equal to
P (k) = 2m(m+1)

k(k+1)(k+2) where k = m,m + 1, · · · , N − 1

and V̄ = 2m which does not depend on N [27]. In this
network, there are hub and periphery sites which have
degree greater than 2m and between m and 2m respectively.
Hence, the system Π is composed by the set of hubs denoted
Πh and the set of peripheries denoted Πp. We can deduce
that | Πp |> 3 | Πh |.

Definition 1. Edge Dependency (or Clustering Coeffi-
cient) of a given random graph, for distinct sites si,sj ,sk,
is defined as the conditional probability that, given the
existence of edges si ∼ sk and sj ∼ sk, an edge si ∼ sj
also exists (i.e., P (si ∼ sj |si ∼ sk, sj ∼ sk)).

In [3], it has been proved that B (N, pN ) has lit-
tle edge dependency, i.e., the existence of an edge over
B (N, pN ) does not depend on the others. Therefore,
P (si ∼ sj |si ∼ sk, sj ∼ sk) = P (si ∼ sj) = pN . On the
contrary, G (N, ρ) presents a high edge dependency and the
existence of edges is correlated. More precisely, when border
effect is neglected P (si ∼ sj |si ∼ sk, sj ∼ sk) = 0.5865, a
value greater than the probability pN in B (N, pN ).

Notice that, contrarily to G (N, ρ), the site that gossips a
message over B (N, pN ) may independently send it to any
other neighboring sites or receive it from them.

In [7], it is shown that edge dependency over S (N,m) is
very low, i.e., in the same order of B (N, pN ). On the other
hand, unlike B (N, pN ) and G (N, ρ), the degree variance is
quite high, due to its power distribution.

Compared to the other two graphs, S (N,m) has the
smallest diameter due to the hubs that create short-cut
paths [5]. The diameter of B (N, pN ) is small with rare
cliques whereas in G (N, ρ), the diameter tends to be large
and many small cliques turn out.

III. GOSSIP ALGORITHMS

Information dissemination in large-scale network is com-
monly studied on basis of Algorithm 1. Initially, the source
sends a message to all of its neighbors (lines 2 and 3). A
site delivers and retransmits a received message provided
it has not previously received it; otherwise the message is
discarded. The sites that have received at least once the
message are denoted infected sites while those that received
no message are denoted isolated sites.

Algorithm 1: Generic Gossip algorithm

Broadcast (〈msg〉)1

foreach sj ∈ Λi do2

Send(〈msg〉, sj)3

Receive (〈msg〉)4

if msg /∈ msgHistory then5

Deliver(〈msg〉) ;6

msgHistory ← msgHistory ∪ {〈msg〉} ;7

Gossip(〈msg〉,parameters) ;8

There are three main probabilistic gossip families to
implement the retransmission Gossip() procedure, namely
(1) Fixe Fanout gossip (GossipFF), (2) Probabilistic Edge
gossip (GossipPE), and (3) Probabilistic Broadcast gossip
(GossipPB). Besides the received message, all these algo-
rithms receive one or more parameters whose value is the
same for all sites.
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Figure 1. Examples of the three random topologies with 30 sites and mean degree=4

/* fanout: number of selected9

neighbors */
GossipFF (〈msg〉,fanout)10

if fanout > Vi then11

toSend← Λi12

else13

toSend← ∅14

for f = 1 to fanout do15

random select sj ∈ Λi/toSend16

toSend← toSend
⋃
sj17

foreach sj ∈ toSend do18

Send(〈msg〉, sj)19

Algorithm 2: Fixe Fanout Gossip (at si)

In GossipFF (Algorithm 2), site si sends msg to a
fixed number of sites, denoted fanout, in Λi, which are
randomly selected (lines 15-17). Notice that if fanout > Vi,
si transmits msg to all its neighbors (lines 11 and 12).
Particularly, if fanout > max {V1, V2, · · ·VN}, Algorithm
2 is a pure flooding algorithm.
/* pe: probability to use an edge */20

GossipPE (〈msg〉,pe)21

foreach sj ∈ Λi do22

if Random() 6 pe then23

Send(〈msg〉, sj)24

Algorithm 3: Probabilistic Edge Gossip (at si)

For the two following algorithms, Random() generates a
random number in the interval [0, 1].

In GossipPE (Algorithm 3), site si randomly chooses
those edges over which msg should be transmitted with
regard to a fixed probability pe (see line 23). Note that when
pe = 1 for all sites, we obtain the flooding algorithm.
/* pv: probability to broadcast */25

GossipPB (〈msg〉,pv)26

if Random() 6 pv then27

foreach sj ∈ Λi do28

Send(〈msg〉, sj)29

Algorithm 4: Probabilistic Broadcast Gossip (at si)

Unlike Algorithm 3, in GossipPB (Algorithm 4), each site,
except the source, diffuses msg to all its neighbors with fixe
probability pv (see line 27). In particular, when pv = 1 this

protocol becomes the flooding algorithm.

IV. PERFORMANCE METRICS

In the context of information dissemination, the following
metrics are used in the literature [17], [19], [21] for perfor-
mance evaluation:

Message Complexity, denoted M: measures the mean
number of messages received (or sent, since no message
loss is taken into account) by each site:

M =
Ω

N − 1
(1)

where Ω is the total number of messages exchanged
during the dissemination.

Fraction of Total Infected Sites, denoted α: is defined
as the percentage of all sites in the system that delivered a
message generated by a source in the end of the dissemina-
tion.

Reliability, denoted R: is defined as the percentage of
messages generated by a source that are delivered by all
sites. A reliability value of 100% is indicative that the
algorithm was successful in delivering any given message
to all sites (i.e., α = 100% for any given message) ensuring
thus atomicity similarly to pure flooding algorithms [19].

Latency, denoted L: measures the number of hops re-
quired to deliver a message to all recipients, i.e., the number
of hops of the longest path among all the shortest paths from
the source to all other sites that received the message.

An efficient dissemination algorithm aims at providing
both large fraction of total infected sites and high reliability,
while minimizing both message complexity and latency.

V. EFFECTUAL FANOUT

The number of retransmitted messages of the three gossip
algorithms, and therefore their message complexity, depends
on their respective input parameters (pv , pe or fanout),
which are, in fact, quite different. Hence, aiming at conduct-
ing a fair uniform comparison of these algorithms over the
topologies described in Section II, we have introduce a new
parameter denoted effectual fanout Feff . The latter enables
the accurate analysis of the behavior of a gossip algorithm
over a topology while also simplifies the theoretical com-
parison of different gossip algorithms on this topology. For
a fixed topology and gossip algorithm, the effectual fanout
characterizes the mean dissemination power of infected sites.



Therefore, when the number of sites of the system is very
large, the effectual fanout has a strong linear correlation with
message complexity, as shown in Theorem 2 of the current
section. Notice that in function of both an algorithm and
a topology, it is possible, for a given effectual fanout, to
deduce the value of the mentioned input parameter of the
gossip algorithm in question, as shown in the following.

Based on GossipPE, GossipPB, and GossipFF algorithms,
we define respectively that:

FGossipPE
eff = pe · V̄ (2)

FGossipPB
eff = pv · V̄ (3)

FGossipFF
eff =

fanout−1∑
k=1

P (k)·k+

N−1∑
k=fanout

P (k)·fanout (4)

due to the two conditions in Algorithm 2 (lines 11 and
13).

We respectively denote Uh and Ih the expected number
of sites that have not been infected before the end of hop h
and the the expected number of newly infected sites within
hop h, for 1 6 h 6 L where L is the latency. Observe that
U0 equals to N − 1, I0 equals to 1, and UL = (1− α)N .

For hop h, Uh and Ih are related as follows:

Ih = Uh−1 − Uh, 1 6 h 6 L (5)

Theorem 2. For the three probabilistic gossip algorithms
over the three large-scale random topologies (N � 1), the
message complexity M ≈ αFeff .

Proof: Since there is no loss of messages, the total
number of messages received by each site is equal to the
number of transmitted messages. In every hop h, a site will
relay Feff messages to its neighbors, while the expected
number of newly infected sites in hop h is Ih. Thus,
the expected number of transmitted messages in hop h is
Feff · Ih.

Considering all hops and (5), we obtain Ω, the total
number of received messages:

Ω =

L∑
h=1

Feff · Ih = Feff ·
L∑
h=1

Ih = Feff · (N − 1− UL)

By Equation (1), M = (N−1−UL)
N−1 · Feff = (αN−1)

N−1 · Feff ,
since N is very large we then get M = αFeff .

Corollary 3. In order to have high reliability for the three
probabilistic gossip algorithms over the three large-scale
random topologies, message complexity M ≈ Feff .

Proof: When the high reliability is reached (e.g., heuris-
tically, over 95% of total sites are infected on average at the
end of a message dissemination), α is very close to 100%
and, according to Theorem 2, the result is obtained.

VI. PERFORMANCE EVALUATION

In this section, based on simulation experiments con-
ducted on top of OMNET++ [1], we evaluate the per-
formance of the three algorithms described in Section III
over each of the large-scale random topologies described in
Section II based on the metrics presented in Section IV.

Our goal is to fairly compare the three algorithms over
the three topologies. To this end, in the experiments, the
value of the respective input parameter of each algorithm has
been varied and, in order to unify them, the effectual fanout
for the different values have been computed (see section
V). The performance evaluation results are then presented
in function of the effectual funout: for different values of
the effectual fanout, we evaluate the percentage of infected
sites, reliability, and latency of the three gossip algorithms
over the three topologies.

For each gossip algorithm, the mean of 200 different
messages are generated by 200 different sources that are
chosen uniformly amongst 1000 sites over 20 different
graphs related to each of the topologies. Their comparisons
are based on effectual fanout for the 200 message dissemi-
nations.

We consider that he network is composed of N = 1000
sites and, in order to ensure connectivity, ε = 1 for
B (N, pN ) and G (N, ρ). Since we aim at having almost
the same mean degree for all topologies (V̄ ≈ 14.0), the
following topology parameters were chosen, as shown in
Table I:

TOPOLOGY PARAMETERS
B (N, pN ) pN = 0.014
G (N, ρ) a = 7500, b = 3000, ρ = 330
S (N,m) m0 = 9 (m0 − clique), m = 7

Table I
TOPOLOGY PARAMETERS

A. Linearity Between Effectual Fanout and Message Com-
plexity

As explained, our aim is to fairly compare the perfor-
mance of the three gossip algorithms, notably the reliability,
using the effectual fanout. Such a fairness requires the
equivalence in terms of message complexity of the three
algorithms over a given topology. Therefore, we would like
to verify the linear relation between the effectual fanout
and message complexity. Figures 2(a), 2(b), and 2(c) show
this relation. They confirm that the linearity Feff = M
holds whenever Feff value is great enough (Feff > 3).
On the other hand, for smaller Feff values, the fraction of
infected sites α is too small to be neglected in the equation
of Theorem 2. The only exception is for GossipPB over
G (N, ρ) ( Figure 2(b)) since, in this case, a clustering effect
(see Section VI-C) prevents this algorithm to benefit from the
growth of the dissemination power. Notice that such value
is much smaller than the dissemination power value which
provides reliability. Hence, the fairness of the algorithm
comparison is ensured in this case.
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Figure 2. Relation between Message Complexity and Effectual Fanout
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Figure 3. Difference between Fanout in GossipFF and Effectual Fanout.

Fanout vs. Effectual Fanout: In order to well understand
the difference between the fanout in GossipFF and effectual
fanout, Figures 3(a), 3(b), and 3(c) present the value of
effectual fanout for each random topology in function of
fanout in GossipFF. We observe that for small values there
is an equality between them, while their values diverge for
large fanout values (i.e., the effectual fanout is proportionally
smaller). In fact, the sites whose number of neighbors is
inferior to fanout do not use all their dissemination power.
In S (N,m), where the degree variance is very great and
the number of sites such as peripheries with small num-
ber of neighbors is very large, this phenomenon is much
more remarkable (see Figure 3(c)). Hence, this shows the
importance of the hypotheses done in a great number of
theoretical studies to have a fanout for GossipFF inferior to
the minimum degree of the graph.

B. Algorithms Equivalence Over B (N, pN )

We discuss now the performance evaluation for the gossip
algorithms over B (N, pN ). On one hand, both the fraction
of infected sites (α) and the reliability (R) in Figures 4(a)
and 4(b) present a threshold effect as a function of effectual
fanout. In other words, the fraction of infected sites or
the reliability stays at 0 for some small effectual fanout
values, but it quickly comes to 100% for a threshold value
(effectual fanout = 4). On the other hand, we observe that
the performance for all gossip algorithms is the same for the
same effectual fanout.

However, if we compare the thresholds for the fraction of
infected sites and reliability, they are different. The fraction
of infected sites percolates with smaller effectual fanout than

reliability (respectively, 4 and 13). As a matter of fact when
the effectual fanout is great enough such that almost all sites
receive each message (i.e., α ≈ 100%), none of the messages
is received by all sites (i.e., R = 0). Only when the effectual
fanout equals to 13 that almost all messages are received
by every site surely (i.e., R ≈ 100%). We thus observe a
great gap in terms of effectual fanout value between the
dissemination power necessary for infecting almost every
site and high reliability.

Since the algorithms have the same behavior over
B (N, pN ), then, we can use the theoretical result of Gos-
sipFF [19] to determine the corresponding thresholds for
GossipPE and GossipPB: fanout = − ln

(
− ln(R)
N

)
. For

instance, for R = 99.4%, fanout = − ln
(

− ln(.994)
1000

)
≈ 12.

By Equation (4) in Section V we obtain Feff = 11.3.
Thereby, pe = pv = Feff/V̄ = 11.3/14 = 0.81. Hence,
it becomes possible to dimension the input probabilities of
GossipPE and GossipPB to obtain a desired reliability.

In Figure 4(c), after a given effectual fanout, latency does
not decrease anymore, but converges towards pure flooding
approach (i.e., the shortest routes between the source and the
other sites), and therefore, towards the minimum latency.

C. Algorithms Difference over G (N, ρ)

We now present simulation results related to the perfor-
mance of the gossip algorithms on G (N, ρ) (Figures 5 and
6).

If the performance of the gossip algorithms is identical
in B (N, pN ), it is not always the case for other random
topologies. Thus, if we now consider the reliability (see
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Figure 4. Performance Comparison of Algorithms over B (N, pN ).

Figure 5(b)), we notice that GossipFF is much more efficient
(i.e., with merely Feff = 8.5, R = 99% is reached) than
the two other algorithms that require Feff = 14 to reach
R = 99%. Furthermore, we can observe in the same figure
that the threshold effect for both GossipPE and GossipPB
is much smoother (i.e., from 5.5 to 14) than for GossipFF
and that GossipPE presents a slightly better performance
than GossipPB. However, if we look at the performance
in terms of the fraction of infected sites in Figure 5(a),
the comparison results are quite different. GossipPE has
very similar performance to GossipFF which is the most
effective. GossipPB shows the worst performance: it requires
about Feff = 8 in order to infect almost every sites.

The behavior of the latency curves of Figure 5(c) for
G (N, ρ) is similar to that of B (N, pN ), except that the
minimum latency value is around 22 hops since the diameter
of the former is greater than the latter.

In order to thoroughly analyze the results, we conducted a
series of specific experimentations when placing the source
in the center of rectangular plane of dimension 3000×7000
with 1000 sites uniformly distributed at random. The mean
degree corresponding to the radius ρ = 330 is about 14.
The results are presented in Figure 6. Several values of Feff
are chosen for the three gossip algorithms. In addition, the
axis x and y represent the geographic position of the site in
the graph, whereas the axis z characterizes the percentage
of messages received by every site. The greater the value
towards the axis z for a site, the greater the number of
messages received by the site. The plane z=0 indicates the
sites that never received any message.

The performance of GossipFF is shown in the third
column of Figure 6. We can verify that this algorithm is the
most effective for infecting all sites (i.e., with Feff merely
equal to 6.97) contrarily to the other two algorithms (see
Columns 1 and 2) that cannot broadcast every message from
the source to the whole system Π until Feff = 9.77. Even
though these two algorithms completes the broadcast with
almost the same performance, the evolution of their infection
is quite different.

On the first column, we notice that GossipPB presents
a peek for long time for several values of Feff in the
graphs. This phenomenon implies that the infected sites are
located around the source and the message dissemination

stops quickly. It can be explained by the clustering effect
entailed by the broadcast probability pv: in this algorithm,
sites stop retransmitting the message with probability 1−pv .
If this probability is high, the sites that do not relay the
message give rise to a confinement around the source (i.e.,
the border of the peak). On the other hand, by increasing
pv , the clustering effect is reduced and the message can
be received by every site. The study of such phenomenon
is particularly important since, as explained in Section II,
G (N, ρ) has very high edge dependency which induces a
higher number of possible peak borders which increase the
risk of dissemination stop.

Inversely, for GossipPE (see the second column), by
slightly increasing the value Feff , almost all sites receive
every message from the source. Nevertheless, contrarily to
GossipFF there are always some sites which receive only a
few messages. Such sites are located either on the border of
the rectangular plane or in areas with small site density of the
graph. As a matter of fact, GossipPE imposes random choice
for each edge of every site no matter its degree. Therefore,
sites having very few neighbors, with high probability, do not
receive all messages. This explains GossipPE bad reliability
(see Figure 5(b)) even when almost all sites are infected
(see Figure 5(a)). For instance, when Feff = 5, α ≈ 100%
whereas there is no reliability.

Therefore, this study shows why GossipFF is particularly
efficient over G (N, ρ). By forcing each site to retransmit
some messages, it reduces the clustering effect more effec-
tively than the other algorithms. Furthermore, by obliging
the sites with small degree (i.e. smaller than fantout) to
broadcast the message to all its neighbors, it prevents the
risk of dissemination stop of small density areas.

D. Algorithms Difference over S (N,m)

We discuss now the performance of the different gossip
algorithms over S (N,m) (Figures 7 and 8). Results are
completely different from the other two random topologies.
Similarly to B (N, pN ), the three algorithms present the
same performance behavior in terms of the fraction of in-
fected sites as shown in Figure 7(a). Nevertheless, contrarily
to the reliability over G (N, ρ), GossipFF turns to be the
worst choice (see Figure 7(b)).

Such a performance behavior is a consequence of the
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(a) Infected Sites Over G (N, ρ)
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(b) Reliability Over G (N, ρ)
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(c) Latency Over G (N, ρ)

Figure 5. Performance comparison of algorithms over G (N, ρ).

degree distribution of the graph which has sites with higher
degrees, the hubs (see Section II). In order to understand
the dissemination power of the hubs, we have measured,
for different Feff values, the reliability of the hubs (i.e.,
the proportion of messages generated by the source that
are received by all hubs in the system Π). The results are
presented in Figure 8. For each algorithm, the latter are
compared with the reliability when we consider all sites of
Π (denoted global reliability). This comparison shows that
hubs are infected on priority no matter which algorithm is
applied. Thereby, with a Feff equal to 6, the reliability of
the hubs is 100% for all the three algorithms whereas almost
none of the messages is received by all sites (i.e., the global
reliability is still zero).

GossipFF presents the worst performance which can be
explained by its poor exploitation of hubs. In fact, even if
hubs degree is quite high, the algorithm limits their dis-
semination power to the value fixed by the fanout. On the
other hand, it should be understood that a transmission of 10
messages by one site is more powerful than a transmission
of 1 message by 10 sites. In the first case, all receivers are
different, which ensures a better message dissemination with
less message redundancy.

The fact that the dissemination potential of hubs is not
fully exploited also explains the latency of Figure 7(c). Even
if GossipPB and GossipPE present the same latency, it is not
the same for GossipFF which keeps a larger latency when its
reliability is near 100%. As a matter of fact, in S (N,m),
the hubs is the heart of the network: the peripheries have
at least one hub in its neighborhood with high probability.
By limiting the dissemination power of the hubs, GossipFF
discards numerous short-cut paths.

E. Impact of the Topology on the Algorithms

Since in our simulations we have considered topologies
with the same mean degree (V̄ ≈ 14.0), we can compare the
reliability of the algorithms over the different topologies, as
shown in Figure 9 and summarized in Table II. When the
graph has low edge dependency and low degree variance
as in (B (N, pN )), the three algorithms present the same
behavior. When edge dependency (resp., degree variance) is
introduced in the graph, but the degree variance (resp., de-
pendency) does not change as in G (N, ρ) (resp., S (N,m)),
the performance of GossipPB (resp., GossipFF) decreases.
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Figure 9. Topologies impact on algorithms

Such results confirm that the best algorithm choice for the
reliability with the same message complexity depends on the
properties of network topology. It should be pointed out that
the performance of GossipPE is never worse than GossipPB,
since in the percolation theory [16], the former can be
modeled by bond percolation while the latter matches the site
percolation. The percolation threshold of bond percolation
is always smaller or equal to that of site percolation in any
topology.

Low Degree High Degree
Variance Variance

Low Edge B (N, pN ): GossipFF, S (N,m): GossipPE,
Dependency GossipPE,GossipPB GossipPB
High Edge G (N, ρ): −−Dependency GossipFF

Table II
ALGORITHM CHOICE

We have also measured the relative gain in terms of effec-
tual fanout when the reliability reaches 80% and 99% and
the fraction of infected sites is large (i.e., α is approximate
to 100%) compared with effectual fanout needed by the
flooding algorithm (i.e., the maximum message complexity).
The results over the three random topologies are shown in
Tables III and IV respectively. We observe that over G (N, ρ)
to reach R = 99% the gain of GossipPB and GossipPE is



zero. Hence, they need almost the same message complexity
as the pure flooding. On the other hand, to reach R = 80%,
B (N, pN ) exhibits the best gain for GossipPB and GossipPE
amongst all random topologies. Furthermore, GossipFF over
G (N, ρ) is the best combination for achieving the highest
gain.

In conclusion, in order to reduce message complexity of
gossip algorithms in contrast to the flooding algorithm, it
is necessary to consider both the gossip algorithm and the
topology.

B (N, pN ) S (N,m) G (N, ρ)
GossipFF 14% 14% 43%
GossipPB 14% 21% 0%
GossipPE 14% 21% 0%

Table III
GAIN IN TERMS OF EFFECTUAL FANOUT TO REACH R = 99%

B (N, pN ) S (N,m) G (N, ρ)
GossipFF 40% 23% 52%
GossipPB 40% 34% 27%
GossipPE 40% 34% 31%

Table IV
GAIN IN TERMS OF EFFECTUAL FANOUT TO REACH R = 80%

VII. RELATED WORK

In the previous sections, we have presented a thorough
comparative study of the performance of three probabilistic
gossip algorithms over three widespread topologies, thanks
to the effectual fanout. There are several analysis and imple-
mentations in the literature but for a specific algorithm over
one or two graphs or some given metrics. In the following,
we provide a brief presentation of these works which are
summarized in Table V.

[12] [14]

[23]

[7]

[32] [6] [20]

[18] [13]

[17]

[36] [37]

B (N, pN) S (N,m) G (N, ρ)

GossipN

GossipE

GossipV

[18]

[17]

[36] [37]

Table V
PREVIOUS STUDIES OF RANDOM GOSSIP ALGORITHMS

The reliability of the information dissemination is studied
in [19] by applying GossipFF over B (N, pN ). it is assumed

that the fanout of every site is always smaller than the
number of its neighbors. The article mainly concludes that
in a system with N sites to have the reliability equal to
R, it requires to fix fanout = − ln

(
− ln(R)
N

)
. Results for

GossipFF over B (N, pN ) which are based on simulations
are also discussed in [10], [12]. However, the other gossip
algorithms are not studied or compared in the articles. One
the other hand, since the fanout is not linear to message
complexity while the other two gossip algorithms take the
probability as input parameter, the comparisons amongst
them in function of their probabilistic input become difficult
due to the lack of one generic parameter like effectual fanout.

The performance of GossipPB over G (N, ρ) is discussed
and implemented in [4], [17] and it is theoretically analyzed
over B (N, pN ) in [6]. The former is also studied in [31],
aiming at answering how to choose pv in order to reach
high reliability. Besides the discussion about the reliability
by percolation property over B (N, pN ), the asymptotic
expressions in [24] with respect to the average number of
messages and the average time required to complete network
coverage are derived as well, showing the benefits of the
properly choice of pv . However, compared to our work,
their efforts are focused on the performance of one gossip
algorithm over a certain random topology, which can be
considered as one aspect of our discussion. Over the two
random topologies S (N,m) and B (N, pN ), the latency of
a modified version of GossipPB algorithm which lets every
site send message to one neighbor with certain probability
several times is theoretically studied by SIS (Susceptible-
Infective-Susceptible) model in [14].

According to the heuristic results firstly shown in [15],
the performance of the three probabilistic gossip algorithms
over S (N,m) is better than B (N, pN ). However, without
effectual fanout, they cannot obtain the quantitative gains
for all gossip algorithms in terms of message complexity to
reach the same reliability.

GossipPE presents better performance than GossipPB
Raman2009, which is studied in function of the system size
(or the site degree) in [29]. Moreover, the three algorithms
over S (N,m) are compared in the same way in [11]. In [28],
the choice between GossipPE and GossipPB depends on the
different application constraints over G (N, ρ). Compared
to their work, we exploit the generic parameter, effectual
fanout, which is linear to message complexity, and thus, the
difference of all metrics can be fairly compared.

VIII. CONCLUSION

By exploiting the effectual fanout parameter, it is possible
to finely observe the trade-off amongst dissemination relia-
bility, message complexity, and latency for the three families
of gossip algorithms with various kinds of probabilistic
input over three graphs that characterize different random
topologies. Thanks to this generic parameter which charac-
terizes the sites mean dissemination, we have compared their
performance in a quantitative way in this article.

On top of the simulation, we show that unlike the fanout



in GossipFF, the effectual fanout takes into account the de-
gree distribution of the topology, which makes measures and
performance evaluation more realistic and comparable over
all the topologies and all the algorithms. Therefore, effectual
fanout is a useful measurement parameter to uniform random
networks with different degree distributions.

We have shown that in terms of reliability, GossipFF is
the best algorithm on G (N, ρ) but the worst on S (N,m).
All the algorithms have the same performance on B (N, pN ).

Results obtained in this study help in the decision of the
most suitable combination between gossip algorithm and
random topology to satisfy certain application requirements.
It is also worth pointing out that the effectual fanout may the-
oretically analyze the performance, for instance, due to the
equivalence of the three gossip algorithms over B (N, pN ),
the relation between the effectual fanout and reliability can
be studied in the similar way as in [19].

Our study presents the general choice for the combination
between a gossip algorithm and a modeled random topology,
while in fact, some results are already known in the literature
for certain real applications: GossipPE and GossipPB are
much more suitable for dissemination in TDMA-based net-
works; GossipFF proves its advantages relative to collisions
and contentions in CDMA-based networks [22]; GossipPE
is suitable for low-duty cycle sensor networks where few
neighbors wake up simultaneously and also exhibits better
performance than GossipPB in mobile ad hoc network with
directional antennas [29].

We intend in a future work to extend our study to other
gossip algorithms over various kinds of random topologies.
Novel algorithm designs over other random topologies can
also be evaluated and compared by this generic parameter.
In other words, the effectual fanout proves to be a useful
bridge amongst message redundancy, reliability, and latency
for evaluating and studying novel algorithms.
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(a) GossipPB with Feff =1 (b) GossipPE with Feff =1 (c) GossipFF with Feff =1

(d) GossipPB with Feff =2 (e) GossipPE with Feff =2 (f) GossipFF with Feff =2

(g) GossipPB with Feff =3.99 (h) GossipPE with Feff =3.99 (i) GossipFF with Feff =3.99

(j) GossipPB with Feff =4.99 (k) GossipPE with Feff =4.99 (l) GossipFF with Feff =4.99

(m) GossipPB with Feff =6.97 (n) GossipPE with Feff =6.97 (o) GossipFF with Feff =6.97

(p) GossipPB with Feff =9.77 (q) GossipPE with Feff =9.77 (r) GossipFF with Feff =9.77

Figure 6. The message reception of every site.
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(a) Infected Sites Over S (N,m)
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(b) Reliability Over S (N,m)
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(c) Latency Over S (N,m)

Figure 7. Performance comparison of algorithms over S (N,m).
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(a) Reliability by GossipPB
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(b) Reliability by GossipPE
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(c) Reliability by GossipFF

Figure 8. The reliability of all hubs and all sites by gossip algorithms over S (N,m)


