
Performance evaluation of

a fair fault-tolerant mutual exclusion algorithm

Julien Sopena, Luciana Arantes, and Pierre Sens

LIP6 - Université de Paris 6 - INRIA Rocquencourt

4, Place Jussieu 75252 Paris Cedex 05, France.

email: [julien.sopena,luciana.arantes,pierre.sens]@lip6.fr

Abstract

This paper presents an efficient and fair fault-tolerant

token-based algorithm for achieving mutual exclusion. It

is an extension of the Naimi-Trehel algorithm that uses a

distributed queue of token requests and a dynamic tree. In

case of failures, our algorithm tries to recover the requests’

queue by gathering intact portions of the one which existed

just before the failure. Thus, fairness of token requests is

preserved despite failures. Furthermore, the use of broad-

cast is minimized when rebuilding the dynamic tree.

Experiment results with different fault injection scenar-

ios show that our approach presents a fast failure recovery

and low message broadcast overhead.

1 Introduction

Mutual exclusion is a fundamental paradigm in dis-

tributed systems ensuring that only one process can execute

a critical section (CS) at a given time. Several distributed

mutual exclusion algorithms exist in the literature ([3], [11],

[12], [14], [10], [7], [8],[2]). Among them, an important

class provides mutual exclusion based on a unique token

circulating among nodes ([14], [10],[7],[8], [2]). The node

that currently holds the token has exclusive permission to

enter into its critical section.

Token mutual exclusion algorithms have a low average

message cost. In particular, tree-based ones have logarith-

mic message complexity O(log(N)), where N represents

the number of nodes in the system. However, it is well-

known that they suffer from poor failure resiliency. Thus,

in this paper we propose an extension to the Naimi-Tréhel

[7] tree-based token mutual exclusion algorithm in order to

make it fault tolerant. Our solution tolerates multiple node

failures. The paper also presents performance results com-

paring our fault tolerant extension and the one proposed by

Naimi and Tréhel in [6]. A preliminary version of our ex-

tension, describing its basic principles and a sketch of proof,

can be found in [13].

Naimi-Tréhel’s algorithm manages two dynamic struc-

tures: (1) a logical tree, where the root is the last node that

will receive the token among the current requesting ones

and (2) a distributed queue of pending token requests. In

order to add fault tolerance capability to Naimi-Tréhel’s al-

gorithm, we have modified the original one by adding one

message per token request. This has minimal impact on

performance in absence of failures. The aim of introduc-

ing such a message is to enable the reconstruction of the

distributed queue of token requests by gathering intact por-

tions of the queue which existed just before the failure. By

recovering this queue, the algorithm avoids both token re-

quest retransmissions and the reinitialization of the above

mentioned logical tree of requests. Furthermore, fairness

is an important property in mutual exclusion distributed al-

gorithms. In the context of Naimi-Tréhel’s algorithm, this

property is provided by satisfying token requests in the or-

der kept in the distributed queue. Therefore, our proposal

for recovering the queue in case of failure contributes to

preserve the fairness of the algorithm.

The organization of this paper is as follows. Some re-

lated work is given in section 2. Section 3 introduces the

original Naimi-Tréhel algorithm and their fault tolerant ex-

tension. In Section 4, we describe our fault-tolerant exten-

sion to the original algorithm. A performance comparison

of the two extensions is presented in section 5, and the last

section concludes our work.

2 Related Work

Several authors have proposed fault-tolerant extensions

to token-based mutual exclusion algorithms. Nishio and al.

[9] have developed a resilient extension to Suzuki-Kasami’s

algorithm [14] using broadcast. To regenerate the token, the

algorithm requires an acknowledgement from every other

site. Thus, the failure of a single site will delay the to-

ken’s regeneration until the site comes back up. Arguing

that Nishio and al.’s approach was very time consuming,

Manivannan and Singhal proposed a new algorithm in [4]

which requires to collect information from non faulty nodes

only. However, this algorithm requires that at least two spe-

cific sites be up (the last site i to have executed the CS and

the site to which i sent the token).

A tree-based mutual exclusion algorithm which toler-

ates failures is presented in Chang and al.[1]. Resiliency

is achieved by using both redundant communication paths

and an election mechanism. Nevertheless, the addition of

alternative paths and avoidance of cycles may increase traf-

fic communication. Naimi and Tréhel present in [6] a fault

tolerant extension to their own algorithm. In the absence

of failure, the original algorithm is not modified. However,

recovery from failure is very expensive in terms of mes-

sages since it requires multiple broadcasts. This algorithm

is described in section 3. Muller [5] also proposes a fault-

tolerant extension to the original Naimi-Tréhel algorithm.

In his solution, a ring communication structure, which in-

cludes all nodes of the system, is used for detecting a node

failure. This solution has two drawbacks : it lacks scalabil-

ity and does not allow multiple node failures.

3 The original algorithm of Naimi-Tréhel

and their fault tolerant extension

The Naimi-Tréhel algorithm [7] is token-based. It main-

tains a logical dynamic tree structure, named last tree, such

that the root of the tree is always the last node that will re-

ceive the token among current requesting nodes. A second

structure, named next queue, is a distributed queue that con-

trols the nodes which are waiting for the token. Each node

just holds information about its last and next nodes.

Initially, the root of the last tree is the token holder and

the last of all other nodes points to the root. A token request

travels along a path of lasts to the root. When receiving this

request, each node along this path sets its last pointer to

the current requester i.e., the tree is modified dynamically.

When a request arrives at the root, the latter updates its next
to point to the requester. When a site releases the CS, the

token is sent to the site indicated by its next pointer.

Figure 1 shows an example of a Naimi-Tréhel execution

with 4 nodes. Initially (a), site A is the root and holds the

token. A new configuration of the next queue and the last

tree is shown in (b) and (c) after node B and then C have

requested the token. When A releases the CS, it sends the

token to B and sets its next to NIL, as shown in (d).

In [6], Naimi and Tréhel propose a fault tolerant version

of their algorithm to recover from multiple crash failures.

In the absence of failure, the original algorithm is not modi-

fied. It is extended to detect site failures, recover from them,

and regenerate the token. A requesting node Si suspects

a failure when it does not receive the token after a certain

timeout. In this case, Si broadcasts a CONSULT message in

order to check the state of its predecessor node in the next

queue. Upon receiving this message, node Sj answers Si

only if the latter is Sj’s next. If Si does not receive another

response within a timeout, it suspects that either its prede-

cessor has crashed or its token request has been lost. Si then

broadcasts a FAILURE message to detect the presence of the

token. Si then has two alternative approaches, an individ-

ual failure recovery or a global reinitialization, depending

on whether the token was lost or not:

- Individual failure recovery: if Si receives an answer

from the token holder Sk, then Si retransmits its request

directly to Sk. The broken next queue is not rebuilt.

- Global reinitialization: if after a timeout, Si has not re-

ceived an answer to its FAILURE message, it becomes a

candidate to regenerate the token. Si then broadcasts an

ELECTION message. If several nodes are candidate, the

site with the smallest identifier wins the election and broad-

casts an ELECTED message to inform all sites that it is the

new token owner. When receiving this message, a site sets

its last to the new token owner and its next to NIL. Pending

requests are lost, and sites must renew their requests.

Notice that, if different sites detect the failure simulta-

neously, many concurrent individual failure recoveries may

take place, inducing a considerable message overhead. The

total cost of these individual recoveries is much higher than

a global reinitialization. Another remark is that the longer

the next queue, the higher the probability that the token is

lost, because this increases the probability that the crashed

node belongs to the next queue and that the token will be

sent to it.

4 Fair fault-tolerant algorithm

In this section we present our own fault tolerant exten-

sion to the original Naimi-Tréhel algorithm.

We consider a distributed system consisting of N sites

Π = {S1, S2, . . . , SN}, which are fully connected, commu-

nicating only by message passing. Communication chan-

nels are reliable, but messages might be delivered out of or-

der. The system is synchronous i.e., both process speed and

message transmission times are bounded. However, there is

no bound assumption about the time for executing a criti-

cal section. Sites can fail only by crashing, and crashes are

permanent. The model tolerates N − 1 node failures. The

words site and node are interchangeable.

4.1 Description of the algorithm

The main insight of our approach is to reconstruct the

distributed queue of pending requests (the next queue) by

2

A

B

C

D

(a)

A

B

C

D

(b)

A

B

C

D

(c)

A

B

C

D

(d)

last
next

token

Figure 1. Example Naimi-Tréhel execution

re-assembling disconnected portions of the queue, as it ex-

isted before the failure. In the case where this is not possi-

ble, token requests must be resent and a new last tree created

in accordance with the new next queue.

A site’s next indicates its successor, i.e. the next site that

will receive the token after it. However, a site is neither

aware of its predecessors in the next queue, neither of its

position in the next queue. Thus, in order to give such infor-

mation to a requesting node, we have added an acknowledg-

ment message to each critical section request message. This

message informs a requesting node about both its predeces-

sors and the position that it will keep in the next queue.

Figure 2 describes our fault tolerant extension to the

Naimi-Tréhel algorithm.

For each site Si, the original Naimi-Tréhel algorithm de-

fines the following local variables:

- last : points to the last node that has requested the

token to Si.
- next : points to the node that will receive the token

when Si releases it.
- req: boolean variable that indicates if Si has requested

the token or not.

We add the following variables :

- pos: current position of Si in the next queue. The site

holding the token keeps the smallest position. A site

loses its position when it leaves the queue.
- newPred : a tuple that holds the identifier, position, and

the following node of the probable new predecessor of

site Si in the next queue after failure recovery.
- candidate : boolean variable that indicates if node Si

has started a failure recovery process or not.

For controlling the reception of messages and detec-

tion of failures our algorithm uses three timers : Com-

mitTimer, TokenTimer and ReconnectionTimer. When they

trigger, TimeoutCommit, TimeoutToken or TimeoutRecon-

nection routines are executed respectively. Only one timer

can be active at a given time. If a new timer is set, the pre-

vious one is canceled.

As in the original Naimi-Tréhel’s algorithm, when a site

Si wishes to execute a CS, it sends a request (REQ mes-

sage) to its last and sets its last pointer to NIL (lines 4 and

5). In our fault-tolerant algorithm, before waiting for the to-

ken, Si arms CommitTimer (line 6). Notice that in this case,

Si expects to receive an acknowledgment to its request (a

COMMIT message) from its closest predecessor node be-

fore receiving the token itself.

When the root of the last tree, Sj , receives Si’s token

request, if it is waiting for the token or executing the CS, it

updates its next to Si, as in the original algorithm (line 18).

However, it also sends a COMMIT message to Si confirm-

ing the reception of the request (lines 19-20). A COMMIT

message contains the two following informations:

- Si’s k predecessors i.e, Sj and Sj’s k−1 predecessors,

k being a configurable parameter.

- Sj’s position in the next queue.

It may happen that when Sj sends a COMMIT message

to Si it does not have all the above informations yet. In

this case, it still sends a COMMIT message to Si with the

information it holds, which consists of at least its identifier.

As soon as it receives the remaining information, it sends it

in a new message or includes it in a request message to Si.

Failure recovery - acquaintance with predecessors

Upon receiving a COMMIT message (line 29), Si regis-

ters its position in the next queue as well as the information

about its predecessors, and goes on waiting for the token.

However, during this waiting time, Si periodically checks

the liveness of its closest predecessor (line 34). The fre-

quency of this check is controlled by TokenTimer (line 45).

If Si’s closest predecessor does not answer (line 35), Si

checks the liveness of the other k − 1 predecessors (line

36). Among all the answers received from its non faulty

predecessors, Si chooses the one, Sx, with the greatest po-

sition to become its closest predecessor. Si then sends a

CONNECTION message to Sx (line 37). When receiving

this message (lines 57), Sx takes Si as its new successor

and sends a COMMIT message to Si in order to inform the

latter of its new position and its k predecessors (line 59).

However, it may happen that all of Si’s k predecessors have

crashed. In this case, Si diffuses a SEARCH POS message

(line 40) which contains its current position and the list of

its k predecessors, which are all faulty. It then arms Re-

connectionTimer, and waits for position information mes-

sages (line 43). When a site Sj receives the SEARCH POS

message, it will send a POSITION message to Si only if

its position is smaller than S′

is (lines 62). Furthermore, it

may happen that Sj’s last is currently one of the k faulty

predecessors of Si. In this case, it updates its last to Si.

In its turn, Si (by means of the variable NewPred) keeps

track of the greatest position received during Reconnection-

Timer delay (lines 66-69). When this time elapses (function

TimeoutReconnection), the site with the greatest position,

3

ReqCS ()1

req← true2

if last 6= NIL then3

Send 〈REQ, Si〉 to last4

last← NIL5

Alarm (CommitTimer)6

Wait for 〈TOKEN〉7

/* Enter critical section */8

ReleaseCS ()9

req← false10

if next 6= NIL then11

Send 〈TOKEN〉 to next12

next← NIL13

pos← -1;14

ReceiveREQ (Sj)15

if last = NIL then16

if req = true then17

next← Sj18

Send 〈COMMIT,19

[Si,pred[0],..,pred[k-2]], pos〉 to Sj20

else21

Send 〈TOKEN〉 to Sj22

pos← -1;23

else24

Send 〈REQ, Sj〉 to last25

last← Sj26

ReceiveToken ()27

Reset alarm28

ReceiveCommit ([So,..,Sk−1], pos Sj)29

pos← pos Sj + 130

pred[..] ← [So,..,Sk−1]31

Alarm (TokenTimer)32

TimeoutToken ()33

check the liveness of pred[0]34

if pred[0] failed then35

if ∃ a minimal x, s.t. pred[x] is alive then36

Send 〈CONNECTION, Si〉 to pred[x]37

Alarm (TokenTimer)38

else39

broadcast 〈SEARCH POS,pos,pred[]〉40

newPred.id← NIL41

newPred.pos← -142

Alarm (ReconnectionTimer)43

else44

Alarm (TokenTimer)45

TimeoutReconnection ()46

if newPred.id = NIL then47

Regenerate new Token48

pos← 049

else50

if newPred.next 6= NIL then51

Send 〈CONNECTION, Si〉 to newPred.id52

else53

Send 〈REQ, Si〉 to newPred.id54

Alarm (CommitTimer)55

candidate← false56

ReceiveCONNECTION (Sj)57

next← Sj58

Send 〈COMMIT, [Si,pred[0],..,pred[k-2]], pos〉 to Sj59

ReceiveSEARCH POS (Sj , posj , faultyPred[])60

if pos 6= -1 ∧ pos < posj then61

Send 〈POSITION, Si, pos, next〉 to Sj62

if (last ∈ faultyPred[]) then63

last← Sj64

ReceivePOSITION (Sj , posj , nextj)65

if newPred.pos < posj then66

newPred.id← Sj67

newPred.pos← posj68

newPred.next← nextj69

TimeoutCommit ()70

newPred.id← NIL71

newPred.next← NIL72

newPred.pos← -173

candidate← true74

broadcast 〈SEARCH QUEUE〉75

Alarm (ReconnectionTimer)76

ReceiveSEARCH QUEUE (Sj)77

if Sj is the winner of the last election then78

if pos 6= -1 then79

Send 〈POSITION, Si, pos, next〉 to Sj80

if candidate then81

Send 〈REQ, Si〉 to Sj82

Alarm (CommitTimer)83

candidate← false84

if not req ∨ pos 6= -1 then85

last← Sj86

else87

last← next88

Figure 2. Fair fault-tolerant mutual exclusion algorithm

4

NewPred.id, will become Si’s closest predecessor. In or-

der to reconnect to this site, Si sends a CONNECTION mes-

sage to it (line 52). On the other hand, if Si does not receive

any answer at all to its SEARCH POS query, it concludes

that all its predecessors have crashed and the token is con-

sequently lost. Si then regenerates the token (lines 48-49).

Failure recovery - no acquaintance with predecessors

Let us now discuss the case when Si does not receive a

COMMIT message in response to its REQ message when

CommitTimer elapses. Si will try to reconnect itself to the

next queue by choosing the site with the greatest position

to become its closest predecessor. To this end, Si diffuses

a SEARCH QUEUE message and arms the Reconnection-

Timer timer, waiting for replies (lines 75-76). When receiv-

ing a SEARCH QUEUE message, every site Sj that has a

position in the next queue answers to Si with a POSITION

message which contains Sj’s position in the next queue, as

well as whether if it has a next or not (lines 79-80).

In order to explain Si’s failure recovery procedure at this

point, we first consider that Si is the only site which detects

the failure, or that it is the winner of the election among

concurrent sites that have also detected the failure (the elec-

tion is detailed below). Similarly to a SEARCH POS query,

Si chooses the site NewPred.id with the greatest position

among all the POSITION messages received within Recon-

nectionTimer (lines 66-69). However, Si can only recon-

nect itself to NewPred.id if the latter has also informed

that it has a next. If such information was given, Si con-

cludes that NewPred.id’s next has failed. Si then sends a

CONNECTION message to NewPred.id (line 52) in or-

der to force it to reconnect itself to Si, If NewPred.id
has no next, Si directly resends a token request to it (line

54), as NewPred.id is the last node of the next queue

and therefore the root of the last queue. In both cases, Si

arms CommitTimer, waiting for a COMMIT message from

NewPred.id, its new closest predecessor (line 55). On the

other hand, if Si does not receive any POSITION message

for its SEARCH QUEUE query during ReconnectionTimer

delay, it regenerates the token (line 48).

Contrary to the case when Si receives a COMMIT mes-

sage, the order of previous token requests is not preserved

anymore. The last tree must be reconstructed to be consis-

tent with the new next queue. This reconstruction is done

dynamically without any additional overhead in terms of

message since all the information a site needs is transmit-

ted to it in the SEARCH QUEUE message. The last tree is

reconstructed as follows: sites that either do not wait for the

token or waiting sites that know their position (line 85) set

their last pointer to Sj (line 86) since Sj is considered by

them as the last site which asked for the CS; sites waiting

for the token without a position in the next queue set their

last pointer to the same value as their next pointer (line 88).

A site in such a case is sure that its next has requested the

token after it. This approach avoids cycles in the last tree.

It remains to explained how our algorithm manages con-

current detections of failure. Simultaneous failure detec-

tions may bring the next queue and last tree to an incoherent

state or even imply the lost of the token uniqueness prop-

erty. Therefore, an election mechanism is necessary in this

case for deciding which site will actually perform the fail-

ure recovery. In order to detect concurrent attempts at fail-

ure recovery, our algorithm uses the Lamport logical clock

[3]. The value of the logical clock (counter, identifier) of

Si is included in the SEARCH QUEUE message sent by Si.

For the sake of simplification, we have not included logical

clock timestamps in the pseudo codes of Figure 2. We in-

dicated that when Si receives a SEARCH QUEUE message

from Sj , it verifies if the latter is the winner or not of the

election (line 78). Si does so by comparing logical clock

timestamps of the SEARCH QUEUE messages it received.

If they are concurrent, i.e. they have the same counter value,

the winner is the site with the greatest identifier.

Whenever a candidate Sis for receives a

SEARCH QUEUE message from another candidate

Sj which indicates that the latter is the current winner of

the the election, Si gives up failure recovery by sending

a token request directly to Sj (lines 82-84). We consider

that a node is the final winner of the election if it still is a

candidate after ReconnectionTimer has elapsed.

4.2 Example of Failure Recovery

Figure 3 shows an example of failure recovery for both

algorithms. We consider that there are two faulty sites, C
and E, as shown in figure 3.a. Therefore, the next queue is

broken into two portions I ,F and D,B,A. All sites in the

next queue have a position (i.e., they have received a COM-

MIT message) and keep information about its two closest

predecessors (k = 2). Site I is the current token holder.

D eventually detects the failures of C and E when

checking the liveness of its two predecessors (lines 35-

36). D then broadcasts a SEARCH POS message (line 40),

which includes its current position (posD = 5) and its k
faulty predecessors (Pred[]D = C,E). Sites F and I ,

whose position is smaller than 5, respond to D with a PO-

SITION message (lines 61-62). Furthermore, sites G and

F , whose last variables point to faulty nodes, set their last

to D (lines 63-64). When ReconnectionTimer elapses, D
chooses F , which has the greatest position (posF = 2)

among its predecessors to become its closest predecessor,

and sends a CONNECTION message to F (line 52). Upon

receiving such message (lines 57-59), F sets its next to D
and sends it a COMMIT message which contains F ’s po-

sition and two of the new predecessors of D. Finally, D
updates its position (posD = 3) in the next queue and the

5

A

7

B

6

C

4

D

5

E

3

F

2

I

1
G H

(a) Initial configuration

A
7

B
6

D
3

F
2

I
1

G H

(b) Our fair algorithm

AB

D

F

IG H

(c) Naimi-Tréhel’s algorithm

last
next

token

faulty site

id
p

identifier

position

Figure 3. Example of failure recovery

information about its two predecessors (Pred[]D = F, I),

going on waiting for the token (lines 29-32). Figure 3.b

shows the final configuration after failure recovery.

In our execution example of the Naimi-Tréhel fault-

tolerant algorithm, we also consider the initial configura-

tion of figure 3.a and that node D detects the failure after

the token was lost when sent to E (i.e., F and I have ex-

ecuted their critical sections). Getting no response either

to its CONSULT broadcast or its FAILURE broadcast, D
concludes that the token is lost. Supposing that D is the

only site which has detected the failure after having broad-

casted an ELECTION message, it regenerates a new token

and broadcasts an ELECTED message to inform that it is

the new token holder. Both the last tree and the next queue

will be reinitialized i.e., every site will point its last to D
and will set its next to NIL, when receiving the ELECTED

message. Notice that nodes A and B will have to resend

their request to D. Figure 3.c shows the final configuration

after failure recovery.

4.3 Relevant algorithm features

Some of the features of our fault tolerant algorithm de-

serve being emphasized:

Low free failure overhead: The cost of having the pre-

decessors’ information mechanism is relatively low in terms

of messages. We have just added one message per token re-

quest. Thus, the message complexity of the algorithm grows

up from log(n) to log(n) + 1, remaining O(logN).

Efficient failure recovery: By minimizing the number of

broadcasts and request retransmissions, our algorithm re-

duces recovery message overhead.

Failure isolation: By periodically checking the liveness

of the closest predecessor, our algorithm may detect a fault

predecessor node and recover the failure before the token

arrives at this predecessor. In this case, the execution of the

critical section by non-faulty sites and the execution of the

failure recovery are completely overlapped.

Fairness: The next queue is reconstructed by assembling

portions of the queue, minimizing the number of token re-

quest retransmissions and preserving the order of requests.

5 Performance Results

This section describes a set of performance evaluation

results aimed at comparing the efficiency of both our fault

tolerant extension and Naimi-Tréhel’s one.

5.1 Environment and Parameters

The experiments were conducted on a 20-nodes cluster.

Each node is equipped with two 2.8GHz Xeon processors

and 2GB of RAM, running Linux 2.6. Nodes are linked

by a 1 Gbit/s Ethernet switch. Using hyperthreading, each

processor can run two “virtual nodes”. Thus N = 80 nodes.

The algorithms were implemented in C using UDP sock-

ets. Each application process that runs on a single virtual

node executes 5 critical sections. On each experiment, the

following number of simultaneous faults were respectively

injected: 1, 3, 5, 8, 20, or 40. Each experiment was executed

20 times. The results represent the average value.

An application is characterized by:

- α: time to execute the critical section.
- β: mean time interval between the release of the CS by

a node and its request by this same node.
- ρ: the ratio β/α, which expresses the frequency with

which the critical section is requested.
We have developed three types of applications having

low, intermediate, and high levels of parallelism. These

three levels are respectively expressed by ρ:

- ρ = 1 : an application where almost all sites wait for

the token. The next queue is long.
- ρ = N : an application where some sites wait for the

token. The next queue is small.
- ρ = 2 ∗ N : a highly parallel application where sites

do not compete to get the CS. The next queue is often

empty, having at most one site.

6

The choice of timeout values is very important for fault

tolerant algorithms’ effectiveness. Having measured the av-

erage time (APing) and the maximum time (MPing) of a

round-trip ping message between two nodes of our cluster,

we have defined the following three timer values:

- Passive: PassT = N ∗ MPing = 11.85s
- Intermediate: InterT = log2(N) ∗ MPing = 3.95s
- Aggressive: AggrT = log2(N) ∗ APing = 0.32s

For each experiment, the same timeout value is set to

both CommitTimer and TokenTimer as well as to all time-

outs used by the Naimi-Tréhel algorithm (NT-Timer). Re-

connectionTimer is set to 10∗MPing. This value is chosen

to minimize false suspicions.

We have considered three metrics: number of sent mes-

sages, number of received messages, and the obtaining

time i.e., the time between the moment a node requests the

CS and the moment it gets it.

The difference between the number of sent and received

messages expresses the use of broadcast by an algorithm.

Concerning the obtaining time, it tends to be high when

ρ = 1 since there are always many nodes in the next queue.

However, when ρ = 2N , the obtaining time is quite short

because the next queue is empty almost all the time.

Note: In all the figures presented in this section, the

abscissas of the curves represent the number of crashes.

Thus, when analysing the curves the reader must remember

that when the number of crashes increases, the number of

nodes that actually execute the algorithm decreases. Con-

sequently, if we do not consider the messages due to failure

detection or recovery, the total number of sent or received

messages and the obtaining time decrease as well.

5.2 Application behavior influence

The current experiments analyze both algorithms when

applications with different levels of parallelism are exe-

cuted. CommitTimer, TokenTimer, and NT-Timer are set to

the intermediate InterT timer and the number of predeces-

sors k is fixed to 2.

Number of sent messages: When comparing the number

of sent messages with no crash of figures 4.a, 4.b, and 4.c,

we can notice the impact of ρ in the failure detection mech-

anism of both algorithms : the shorter ρ is, the longer the

obtaining time, and therefore the higher the number of false

suspicions. This explains why the number of sent messages

decreases when ρ increases in the absence of failures.

We can also observe for the same figures without crash

that our algorithm presents an overhead in terms of sent

messages when compared to Naimi-Tréhel’s, which is due

both to COMMIT and failure detection messages (we will

come back to this point when discussing the received mes-

sages). However, when ρ = 1 and there is a small number

of crashes, the difference of sent messages between both the

algorithms decreases. In our algorithm, as the next queue is

long, the predecessor’s failure recovery mechanism is exe-

cuted. In Naimi-Tréhel’s, a total reinitialization of the struc-

tures takes place. Therefore, the mentioned decrease is due

to the effectiveness of our predecessors’ mechanism. On

the other hand, when 50% of the nodes crash, our mecha-

nism of checking the predecessors’ liveness becomes more

costly. Indeed, if almost all of the predecessors are faulty,

it is easier and more efficient to reinitialize (next queue and

last tree), even at the expense of token request fairness.

When ρ increases, the number of sites which are not in

a waiting state increases as well. These sites are likely to

send a request along a broken path of the last tree. We ob-

serve that our algorithm presents quite a regular behavior

when the number of faults increases, contrary to Naimi-

Tréhel’s. This happens since in our algorithm, the loss

of just one of these requests starts a global reconstruction

(SEARCH QUEUE mechanism, see section 4.1). However,

in Naimi-Tréhel’s, each request loss launches an individ-

ual failure recovery (see section 3). The number of these

individual recoveries depends on the probability of token

loss and the damage in the last tree. The greater the num-

ber of failures, the greater the last tree’s damage is and this

increases the number of individual failure recoveries. How-

ever, beyond a certain number of crashes, the token is even-

tually lost and therefore a global reinitialization is executed.

Such a behavior increases with ρ since the next queue is

smaller (see the last paragraph of section 3).

Number of received messages: The significant differ-

ence in the number of received messages between both al-

gorithms (Figures 4.d, 4.e, and 4.f) proves that our algo-

rithm has reduced the usage of broadcasts when compared

to Nami-Tréhel’s one.

By comparing the number of received messages in

failure-free runs, we can also analyze the failure detec-

tion mechanism of the algorithms. For Naimi-Tréhel, when

ρ = 2N , the number of messages is 3,700. However, when

ρ = 1, this number goes up to 56,000 messages. This hap-

pens because the obtaining time for ρ = 1 is much higher

then for ρ = 2N , and consequently the number of false fail-

ure suspicions. On the other hand, our algorithm does not

present such huge variation of received messages. In case of

a failure suspicion, the Naimi-Tréhel algorithm checks the

liveness of its closest predecessor by broadcasting a CON-

SULT message while in our algorithm this checking is just

resumed to a ping message. We can conclude then that the

obtaining time, and implicitly the critical section duration,

has a great influence on Naimi-Tréhel’s failure detection

mechanism, contrary to ours.

Obtaining time: When observing the results of Figures

4.g, 4.h, and 4.i, a first global remark is that our algorithm

presents a shorter obtaining time for almost all experiences

when compared to Naimi-Tréhel’s in the presence of failure.

7

ρ = 1 ρ = N ρ = 2N

1800

2000

2200

2400

2600

2800

3000

3200

3400

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
se

n
t

m
es

sa
g

es

Naimi-Trehel
Our algorithm k=2

(a)

1200

1400

1600

1800

2000

2200

2400

2600

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
se

n
t

m
es

sa
g

es

Naimi-Trehel
Our algorithm k=2

(b)

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
se

n
t

m
es

sa
g

es

Naimi-Trehel
Our algorithm k=2

(c)

0

10000

20000

30000

40000

50000

60000

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
re

ce
iv

ed
m

es
sa

g
es

Naimi-Trehel
Our algorithm k=2

(d)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
re

ce
iv

ed
m

es
sa

g
es

Naimi-Trehel
Our algorithm k=2

(e)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
re

ce
iv

ed
m

es
sa

g
es

Naimi-Trehel
Our algorithm k=2

(f)

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

0 1 2 3 5 10 20 40
Number of simultaneous crashes

O
b

ta
in

in
g

ti
m

e
(s

ec
o

n
d

es
)

Naimi-Trehel
Our algorithm k=2

(g)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 1 2 3 5 10 20 40
Number of simultaneous crashes

O
b

ta
in

in
g

ti
m

e
(s

ec
o

n
d

es
)

Naimi-Trehel
Our algorithm k=2

(h)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 5 10 20 40
Number of simultaneous crashes

O
b

ta
in

in
g

ti
m

e
(s

ec
o

n
d

es
)

Naimi-Trehel
Our algorithm k=2

(i)

Figure 4. Application Behavior Influence

This gain is due to the fact that both our failure detection and

recovery mechanisms are faster than those of Naimi-Tréhel.

The only exception is for 50% crashes when ρ = 1. Indeed,

it is easier and less costly to reinitialize the next queue when

it is long and extremely broken than to try to recover it.

Another interesting point to discuss is the linear behavior

of the obtaining time’s curve of our algorithm when ρ = 1
and the number of crashes varies from 0 to 5 (Figure 4.g).

This behavior is due to the failure isolation feature of our

algorithm, discussed in section 4.3. Since the next queue

is long, failures are recovered before the token is sent to

the faulty node, leaving then the execution of the algorithm

undisturbed. When the next queue is smaller (ρ = N or

ρ = 2N), the failure isolation feature is not observed.

5.3 Failure suspicion timeout influence

We have measured the impact of timeout bounds on mes-

sage overhead and the obtaining time. We have considered

the three timer values, PassT , InterT and AggrT , de-

scribed in 5.1. CommitTimer, TokenTimer and NT-Timer are

set to one of these values for each experiment. The paral-

lelism level of the application is ρ = N and the number of

predecessors is k = 2.

Number of sent messages: Comparing the number of

sent messages of figures 5.a, 5.b, and 5.c in failure-free exe-

cutions, we can observe that our algorithm sends more mes-

sages than Naimi-Tréhel’s. In figure 5.a, where the timeout

value is high, the difference in the number of sent messages

is due only to COMMIT messages since there are hardly any

false suspicions in this case. By decreasing the timeout, the

number of false suspicions to both algorithms increases and

therefore so does the number of sent messages.

When there are crashes, we can see in figures 5.b and

5.c that the cost of our failure recovery mechanism does not

increase with shorter timeouts (InterT and AggrT), con-

trary to Naimi-Tréhel’s. The considerable growth of sent

messages overhead in Naimi-Tréhel is a consequence of the

concurrent individual failure recoveries performed by the

algorithm. On the other hand, the SEARCH QUEUE elec-

8

PassT InterT AggrT

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
se

n
t

m
es

sa
g

es

Naimi-Trehel
Our algorithm k=2

(a)

1200

1400

1600

1800

2000

2200

2400

2600

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
se

n
t

m
es

sa
g

es

Naimi-Trehel
Our algorithm k=2

(b)

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
se

n
t

m
es

sa
g

es

Naimi-Trehel
Our algorithm k=2

(c)

1500

2000

2500

3000

3500

4000

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
re

ce
iv

ed
m

es
sa

g
es

Naimi-Trehel
Our algorithm k=2

(d)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
re

ce
iv

ed
m

es
sa

g
es

Naimi-Trehel
Our algorithm k=2

(e)

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
re

ce
iv

ed
m

es
sa

g
es

Naimi-Trehel
Our algorithm k=2

(f)

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 5 10 20 40
Number of simultaneous crashes

O
b

ta
in

in
g

ti
m

e
(s

ec
o

n
d

es
)

Naimi-Trehel
Our algorithm k=2

(g)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 1 2 3 5 10 20 40
Number of simultaneous crashes

O
b

ta
in

in
g

ti
m

e
(s

ec
o

n
d

es
)

Naimi-Trehel
Our algorithm k=2

(h)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 1 2 3 5 10 20 40
Number of simultaneous crashes

O
b

ta
in

in
g

ti
m

e
(s

ec
o

n
d

es
)

Naimi-Trehel
Our algorithm k=2

(i)

Figure 5. Failure Suspicion timeout influence

tion of our algorithm reduces the effect of concurrent in-

dividual’s attempts at failure recovery. When the timeout

value is high (figure 5.a), the majority of nodes are waiting

for the token before the failure is detected. Thus, in the case

of Naimi-Tréhel’s algorithm, a global reinitialisation, which

is less costly than the concurrent individual failure recover-

ies, takes place (see section 3). Such a reinitialisation has

the same cost in terms of sent messages as our algorithm,

which explains the similar behavior of both curves (the dif-

ference is due to COMMIT messages).

Number of received messages: In all curves (Figures

5.d, 5.e, and 5.f), independently of the timeout, we can see

the heavy cost of multiple broadcasts usage by the Naimi

Tréhel algorithm. This limits its timeout bound. The worst

case is achieved with AggrT with no crash: 100,000. Our

algorithm is less subject to timeout variation: the number of

received messages is around 2,000 for the three timeouts.

Obtaining time: Considering the high cost of the aggres-

sive timeout, one could argue about the benefits of reducing

the timeout. To answer this question, we should compare

the obtaining time of the application for the three different

timeouts (Figures 5.g, 5.h, and 5.i). For a small number

of faults, the order of magnitude of the obtaining time is

around 4s when the timer is set to PassT . If the latter is

reduced to InterT , the order of magnitude falls to 2.1s for

our solution and 2.4s for Naimi-Tréhel’s one. By setting the

timer to AggrT , the obtaining time is still reduced to 1.3s

for our algorithm and to 1.8s for Naimi-Tréhel’s. There is

thus a real benefit in taking an aggressive timeout, despite

possible false suspicions and bandwidth cost.

5.4 Predecessors number influence

In order to study the impact of the k parameter on the

failure recovery mechanism of our algorithm, we set both

CommitTimer and TokenTimer to the intermediate InterT
timer and we considered ρ = 1 i.e, an application with a

long next queue.

As illustrated in Figure 6, k has no impact on our algo-

rithm in failure-free runs. Indeed, the k-predecessors in-

9

2500

2600

2700

2800

2900

3000

3100

3200

3300

3400

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
se

n
t

m
es

sa
g

es
k=2

k=10
k=20

(a)

2600

2700

2800

2900

3000

3100

3200

3300

3400

0 1 2 3 5 10 20 40
Number of simultaneous crashes

N
u

m
b

er
o

f
re

ce
iv

ed
m

es
sa

g
es

k=2
k=10
k=20

(b)

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

0 1 2 3 5 10 20 40
Number of simultaneous crashes

O
b

ta
in

in
g

ti
m

e
(s

ec
o

n
d

es
)

k=2
k=10
k=20

(c)

Figure 6. Predecessors number influence

formation is sent in the COMMIT message and the num-

ber of predecessors keeps constant during failure detection.

However, when there are few failures, the number of sent

messages increases with greater values of k (figure 6.a).

This happens since the number of sent messages for find-

ing the first no faulty predecessor increases with k.

When the number of failures increases, the probability of

having at least 2 successive faulty nodes increases as well.

By analyzing the number of received messages (figure 6.b),

we can observe that greater values of k (k = 10 and k = 20)

reduce the number of SEARCH POS broadcasts when

compared to a small value of k (k = 2), as the predecessors’

mechanism is more efficient with greater values of k.

Finally, we note a light gain in the obtaining time for

k = 10 or k = 20 when there are many failures (figure 6.c)

due to the effectiveness of our predecessors’ mechanism.

6 Conclusions

We presented and evaluated a fault-tolerant token based

mutual exclusion algorithm. Most existing algorithms do

not preserve the request queue after failure recovering. Con-

sequently, waiting nodes have to resend their requests, in-

creasing message overhead. Our algorithm recovers the dis-

tributed request queue by re-assembling disconnected por-

tions of the queue, as it existed before the failure. This

approach minimizes the number of request retransmissions

and preserves fairness of the algorithm despite failures.

In failure-free executions, the complexity of our algo-

rithm is O(log(N)). Therefore, our algorithm is scalable.

Experiments on a real environment were conducted in

order to compare the performance of our algorithm with

a fault-tolerant version of Naimi-Tréhel’s algorithm, where

the distributed waiting queue is reinitialized in case of fail-

ures. In the majority of the experiments, our algorithm has

presented a faster and more efficient failure recovery. Per-

formance results show that our fault tolerant approach does

not depend on the application behavior, supporting applica-

tions with evolutive parallelism grains.

References

[1] I. Chang, M. Singhal, and M. Liu. A fault tolerant algorithm

for distributed mutual exclusion. In Proc. of the IEEE 9th

Symp. on Reliable Distrib. Systems, pages 146–154, 1990.

[2] I. Chang, M. Singhal, and M. Liu. An improved O(log N)

mutual exclusion algorithm. In Proc. of the 1990 Int’ Con-

ference on Parallel Processing, 1990.

[3] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM, 21(7).

[4] D. Manivannan and M. Singhal. An efficient fault-tolerant

mutual exclusion algorithm for distributed systems. In Int’.

Conf. on Parallel and Distributed Computing Systems, pages

525–530, 1994.

[5] F. Mueller. Fault tolerance for token-based synchronization

protocols. Workshop on Fault-Tolerant Parallel and Dis-

tributed Systems, IEEE, april 2001.

[6] M. Naimi and M. Trehel. How to detect a failure and regen-

erate the token in the log(n) distributed algorithm for mutual

exclusion. LNCS, 312:155–166, 1987.

[7] M. Naimi, M. Trehel, and A. Arnold. A log (N) distributed

mutual exclusion algorithm based on path reversal. Journal

of Parallel and Distributed Computing, 34(1):1–13, 1996.

[8] M. L. Neilsen and M. Mizuno. A dag-based algorithm for

distributed mutual exclusion. In Proc. of the 11th Int’ Con-

ference on Distributed Computing Systems, pages 354–360,

Washington, DC, 1991.

[9] S. Nishio, K. F. Li, and E. G. Manning. A resilient mutual

exclusion algorithm for computer networks. IEEE Trans. on

Parallel and Distributed Systems, 1(3):344–355, july 1990.

[10] K. Raymond. A tree-based algorithm for distributed mutual

exclusion. Trans. on Computer Systems, 7(1):61–77, 1989.

[11] G. Ricart and A. K. Agrawala. An optimal algorithm for

mutual exclusion in computer networks. Communications

of the ACM, 24(1):9–17, 1981.

[12] M. Singhal. A dynamic information structure for mutual

exclusion algorithm for distributed systems. IEEE Transac-

tions on Parallel Distributed Systems, 3(1):121–125, 1992.

[13] J. Sopena, L. Arantes, M. Bertier, and P. Sens. A fault-

tolerant token -based mutual exclusion algorithm using a dy-

namic tree. In Euro-Par’05, LCNS, pages 654–663, 2005.

[14] I. Suzuki and T. Kasami. A distributed mutual exclusion al-

gorithm. Trans. on Computer Systems, 3(4):344–349, 1985.

10

